The current role and future potential of digital diagnostic imaging in implant dentistry: A scoping review
João Marcus de Carvalho e Silva Fuglsig
Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
Search for more papers by this authorIsabella Neme Ribeiro dos Reis
Department of Periodontology, School of Dentistry, University of São Paulo—USP, São Paulo, Brazil
Search for more papers by this authorAndy Wai Kan Yeung
Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
Search for more papers by this authorMichael M. Bornstein
Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
Search for more papers by this authorCorresponding Author
Rubens Spin-Neto
Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
Correspondence
Rubens Spin-Neto, Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, Aarhus 8000, Denmark.
Email: [email protected]
Search for more papers by this authorJoão Marcus de Carvalho e Silva Fuglsig
Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
Search for more papers by this authorIsabella Neme Ribeiro dos Reis
Department of Periodontology, School of Dentistry, University of São Paulo—USP, São Paulo, Brazil
Search for more papers by this authorAndy Wai Kan Yeung
Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
Search for more papers by this authorMichael M. Bornstein
Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
Search for more papers by this authorCorresponding Author
Rubens Spin-Neto
Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
Correspondence
Rubens Spin-Neto, Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, Aarhus 8000, Denmark.
Email: [email protected]
Search for more papers by this authorAbstract
Objectives
Diagnostic imaging is crucial for implant dentistry. This review provides an up-to-date perspective on the application of digital diagnostic imaging in implant dentistry.
Methods
Electronic searches were conducted in PubMed focusing on the question ‘when (and why) do we need diagnostic imaging in implant dentistry?’ The search results were summarised to identify different applications of digital diagnostic imaging in implant dentistry.
Results
The most used imaging modalities in implant dentistry include intraoral periapical radiographs, panoramic views and cone beam computed tomography (CBCT). These are dependent on acquisition standardisation to optimise image quality. Particularly for CBCT, other technical parameters (i.e., tube current, tube voltage, field-of-view, voxel size) are relevant minimising the occurrence of artefacts. There is a growing interest in digital workflows, integrating diagnostic imaging and automation. Artificial intelligence (AI) has been incorporated into these workflows and is expected to play a significant role in the future of implant dentistry. Preliminary evidence supports the use of ionising-radiation-free imaging modalities (e.g., MRI and ultrasound) that can add value in terms of soft tissue visualisation.
Conclusions
Digital diagnostic imaging is the sine qua non in implant dentistry. Image acquisition protocols must be tailored to the patient's needs and clinical indication, considering the trade-off between radiation exposure and needed information. growing evidence supporting the benefits of digital workflows, from planning to execution, and the future of implant dentistry will likely involve a synergy between human expertise and AI-driven intelligence. Transiting into ionising-radiation-free imaging modalities is feasible, but these must be further developed before clinical implementation.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Barootchi, S., Tavelli, L., Majzoub, J., Chan, H. L., Wang, H. L., & Kripfgans, O. D. (2022). Ultrasonographic tissue perfusion in peri-implant health and disease. Journal of Dental Research, 101, 278–285. https://doi.org/10.1177/00220345211035684
- Baumann, E., Bornstein, M. M., Dalstra, M., Verna, C., & Dagassan-Berndt, D. C. (2022). Image quality assessment of three cone beam computed tomography scanners-an analysis of the visibility of anatomical landmarks. European Journal of Orthodontics, 44, 513–521. https://doi.org/10.1093/ejo/cjac004
- Bender, P., Salvi, G. E., Buser, D., Sculean, A., & Bornstein, M. M. (2017). Correlation of three-dimensional radiologic data with subsequent treatment approach in patients with peri-implantitis: A retrospective analysis. The International Journal of Periodontics & Restorative Dentistry, 37, 481–489. https://doi.org/10.11607/prd.2844
- Berglundh, T., Armitage, G., Araujo, M. G., Avila-Ortiz, G., Blanco, J., Camargo, P. M., Chen, S., Cochran, D., Derks, J., Figuero, E., Hämmerle, C. H. F., Heitz-Mayfield, L. J. A., Huynh-Ba, G., Iacono, V., Koo, K. T., Lambert, F., McCauley, L., Quirynen, M., Renvert, S., … Zitzmann, N. (2018). Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. Journal of Clinical Periodontology, 45(Suppl 20), S286–S291. https://doi.org/10.1111/jcpe.12957
- Bittar-Cortez, J. A., Passeri, L. A., de Almeida, S. M., & Haiter-Neto, F. (2006). Comparison of peri-implant bone level assessment in digitized conventional radiographs and digital subtraction images. Dento Maxillo Facial Radiology, 35, 258–262. https://doi.org/10.1259/dmfr/84778143
- Blatz, M. B., & Coachman, C. (2023). The complete digital workflow in implant dentistry. The Compendium of Continuing Education in Dentistry, 44, 416.
- Block, M. S. (2016). Static and dynamic navigation for dental implant placement. Journal of Oral and Maxillofacial Surgery, 74, 231–233. https://doi.org/10.1016/j.joms.2015.12.002
- Bornstein, M. M. (2021). Current trends in dentomaxillofacial research—What is just hype, what has potential impact? Dento Maxillo Facial Radiology, 50, 20219004. https://doi.org/10.1259/dmfr.20219004
- Bornstein, M. M. (2023). Artificial intelligence and personalised dental medicine—Just a hype or true game changers? British Dental Journal, 234, 755. https://doi.org/10.1038/s41415-023-5815-8
- Bornstein, M. M., Brugger, O. E., Janner, S. F., Kuchler, U., Chappuis, V., Jacobs, R., & Buser, D. (2015). Indications and frequency for the use of cone beam computed tomography for implant treatment planning in a specialty clinic. The International Journal of Oral & Maxillofacial Implants, 30, 1076–1083. https://doi.org/10.11607/jomi.4081
- Bornstein, M. M., Horner, K., & Jacobs, R. (2017). Use of cone beam computed tomography in implant dentistry: Current concepts, indications and limitations for clinical practice and research. Periodontology 2000, 2000(73), 51–72. https://doi.org/10.1111/prd.12161
10.1111/prd.12161 Google Scholar
- Bornstein, M. M., Scarfe, W. C., Vaughn, V. M., & Jacobs, R. (2014). Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. The International Journal of Oral & Maxillofacial Implants, 29(Suppl), 55–77. https://doi.org/10.11607/jomi.2014suppl.g1.4
- Brullmann, D., & Schulze, R. K. (2015). Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dento Maxillo Facial Radiology, 44, 20140204. https://doi.org/10.1259/dmfr.20140204
- Buser, D., Martin, W., & Belser, U. C. (2004). Optimizing esthetics for implant restorations in the anterior maxilla: Anatomic and surgical considerations. The International Journal of Oral & Maxillofacial Implants, 19(Suppl), 43–61.
- Candemil, A. P., Salmon, B., Freitas, D. Q., Ambrosano, G. M. B., Haiter-Neto, F., & Oliveira, M. L. (2019). Are metal artefact reduction algorithms effective to correct cone beam CT artefacts arising from the exomass? Dento Maxillo Facial Radiology, 48, 20180290. https://doi.org/10.1259/dmfr.20180290
- Chackartchi, T., Romanos, G. E., Parkanyi, L., Schwarz, F., & Sculean, A. (2022). Reducing errors in guided implant surgery to optimize treatment outcomes. Periodontology 2000, 2000(88), 64–72. https://doi.org/10.1111/prd.12411
10.1111/prd.12411 Google Scholar
- Chan, H. L., & Kripfgans, O. D. (2020). Ultrasonography for diagnosis of peri-implant diseases and conditions: A detailed scanning protocol and case demonstration. Dento Maxillo Facial Radiology, 49, 20190445. https://doi.org/10.1259/dmfr.20190445
- Choi, M., Culjat, M. O., Singh, R. S., & White, S. N. (2012). Ultrasound imagery for dental implant diagnosis and treatment planning in a porcine model. The Journal of Prosthetic Dentistry, 108, 344–353. https://doi.org/10.1016/S0022-3913(12)60190-5
- Corpas Ldos, S., Jacobs, R., Quirynen, M., Huang, Y., Naert, I., & Duyck, J. (2011). Peri-implant bone tissue assessment by comparing the outcome of intra-oral radiograph and cone beam computed tomography analyses to the histological standard. Clinical Oral Implants Research, 22, 492–499. https://doi.org/10.1111/j.1600-0501.2010.02029.x
- de Azevedo-Vaz, S. L., Peyneau, P. D., Ramirez-Sotelo, L. R., Vasconcelos Kde, F., Campos, P. S., & Haiter-Neto, F. (2016). Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 121, 550–556. https://doi.org/10.1016/j.oooo.2016.01.013
- de Carvalho, E., Silva Fuglsig, J. M., Wenzel, A., Hansen, B., Lund, T. E., & Spin-Neto, R. (2021). Magnetic resonance imaging for the planning, execution, and follow-up of implant-based Oral rehabilitation: Systematic review. The International Journal of Oral & Maxillofacial Implants, 36, 432–441. https://doi.org/10.11607/jomi.8536
- de Castro, H. S., Kehrwald, R., Matheus, R. A., Gomes, A. F., & Queiroz, P. M. (2021). Influence of low-dose protocols of CBCT on dental implant planning. The International Journal of Oral & Maxillofacial Implants, 36, 307–312. https://doi.org/10.11607/jomi.8773
- de Freitas, B. N., da Motta, R. J. G., Pauwels, R., Oliveira-Santos, C., & Tirapelli, C. (2023). Influence of metal artefact reduction on the diagnosis of contact between implant and mandibular canal in cone beam computed tomography: An ex-vivo study. Clinical Oral Implants Research, 34, 741–750. https://doi.org/10.1111/clr.14100
- De Smet, E., Jacobs, R., Gijbels, F., & Naert, I. (2002). The accuracy and reliability of radiographic methods for the assessment of marginal bone level around oral implants. Dento Maxillo Facial Radiology, 31, 176–181. https://doi.org/10.1038/sj/dmfr/4600694
- Demirturk Kocasarac, H., Geha, H., Gaalaas, L. R., & Nixdorf, D. R. (2018). MRI for dental applications. Dental Clinics of North America, 62, 467–480. https://doi.org/10.1016/j.cden.2018.03.006
- Deshpande, A., & Bhargava, D. (2014). Intraoral periapical radiographs with grids for implant dentistry. Journal of Maxillofacial and Oral Surgery, 13, 603–605. https://doi.org/10.1007/s12663-013-0499-2
- D'Haese, J., Ackhurst, J., Wismeijer, D., De Bruyn, H., & Tahmaseb, A. (2017). Current state of the art of computer-guided implant surgery. Periodontology 2000, 2000(73), 121–133. https://doi.org/10.1111/prd.12175
10.1111/prd.12175 Google Scholar
- Dhondt, R., Quirynen, M., Tarce, M., Teughels, W., Temmerman, A., & Jacobs, R. (2022). The accuracy of probing, ultrasound and cone-beam CT scans for determining the buccal bone plate dimensions around oral implants—A systematic review. Journal of Periodontal Research, 57, 754–767. https://doi.org/10.1111/jre.12998
- Du, Y., Wangrao, K., Liu, L., Liu, L., & Yao, Y. (2019). Quantification of image artifacts from navigation markers in dynamic guided implant surgery and the effect on registration performance in different clinical scenarios. The International Journal of Oral & Maxillofacial Implants, 34, 726–736. https://doi.org/10.11607/jomi.7179
- Dula, K., Mini, R., van der Stelt, P. F., & Buser, D. (2001). The radiographic assessment of implant patients: Decision-making criteria. The International Journal of Oral & Maxillofacial Implants, 16, 80–89.
- Faridani, A., Ritman, E. L., & Smith, K. T. (1992). Local tomography. SIAM Journal on Applied Mathematics, 52, 459–484. https://doi.org/10.1137/0152026
- Flugge, T., Derksen, W., Te Poel, J., Hassan, B., Nelson, K., & Wismeijer, D. (2017). Registration of cone beam computed tomography data and intraoral surface scans—A prerequisite for guided implant surgery with CAD/CAM drilling guides. Clinical Oral Implants Research, 28, 1113–1118. https://doi.org/10.1111/clr.12925
- Flugge, T., Gross, C., Ludwig, U., Schmitz, J., Nahles, S., Heiland, M., & Nelson, K. (2023). Dental MRI-only a future vision or standard of care? A literature review on current indications and applications of MRI in dentistry. Dento Maxillo Facial Radiology, 52, 20220333. https://doi.org/10.1259/dmfr.20220333
- Fokas, G., Vaughn, V. M., Scarfe, W. C., & Bornstein, M. M. (2018). Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: A systematic review. Clinical Oral Implants Research, 29(Suppl 16), 393–415. https://doi.org/10.1111/clr.13142
- Fontenele, R. C., Nascimento, E. H. L., Imbelloni-Vasconcelos, A. C., Martins, L. A. C., Pontual, A. D. A., Ramos-Perez, F. M. M., & Freitas, D. Q. (2022). Influence of kilovoltage-peak and the metal artifact reduction tool in cone-beam computed tomography on the detection of bone defects around titanium-zirconia and zirconia implants. Imaging Science in Dentistry, 52, 267–273. https://doi.org/10.5624/isd.20220040
- Fuglsig, J., Schropp, L., Thorn, J. J., Ingerslev, J., Wenzel, A., & Spin-Neto, R. (2019). Long-term radiographic assessment of titanium implants installed in maxillary areas grafted with autogenous bone blocks using two predefined sets of success criteria. Clinical Implant Dentistry and Related Research, 21, 845–852. https://doi.org/10.1111/cid.12827
- Ganz, S. D. (2015). Three-dimensional imaging and guided surgery for dental implants. Dental Clinics of North America, 59, 265–290. https://doi.org/10.1016/j.cden.2014.11.001
- Gray, C. F., Redpath, T. W., & Smith, F. W. (1996). Pre-surgical dental implant assessment by magnetic resonance imaging. The Journal of Oral Implantology, 22, 147–153.
- Gray, C. F., Redpath, T. W., Smith, F. W., & Staff, R. T. (2003). Advanced imaging: Magnetic resonance imaging in implant dentistry. Clinical Oral Implants Research, 14, 18–27.
- Han, Y. T., Lin, W. C., Fan, F. Y., Chen, C. L., Lin, C. C., & Cheng, H. C. (2021). Comparison of dental surface image registration and fiducial marker registration: An in vivo accuracy study of static computer-assisted implant surgery. Journal of Clinical Medicine, 10, 4183. https://doi.org/10.3390/jcm10184183
- Harris, D., Horner, K., Grondahl, K., Jacobs, R., Helmrot, E., Benic, G. I., Bornstein, M. M., Dawood, A., & Quirynen, M. (2012). E.A.O. Guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw. Clinical Oral Implants Research, 23, 1243–1253. https://doi.org/10.1111/j.1600-0501.2012.02441.x
- Hassan, B., Couto Souza, P., Jacobs, R., de Azambuja Berti, S., & van der Stelt, P. (2010). Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clinical Oral Investigations, 14, 303–310. https://doi.org/10.1007/s00784-009-0291-3
- Hegazy, M. A. A., Eldib, M. E., Hernandez, D., Cho, M. H., Cho, M. H., & Lee, S. Y. (2018). Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography. Medical Physics, 45, 714–724. https://doi.org/10.1002/mp.12719
- Hilgenfeld, T., Juerchott, A., Jende, J. M. E., Rammelsberg, P., Heiland, S., Bendszus, M., & Schwindling, F. S. (2020). Use of dental MRI for radiation-free guided dental implant planning: A prospective, in vivo study of accuracy and reliability. European Radiology, 30, 6392–6401. https://doi.org/10.1007/s00330-020-07262-1
- Horner, K., Jacobs, R., & Schulze, R. (2013). Dental CBCT equipment and performance issues. Radiation Protection Dosimetry, 153, 212–218. https://doi.org/10.1093/rpd/ncs289
- Hung, K., Hui, L., Yeung, A. W. K., Scarfe, W. C., & Bornstein, M. M. (2020). Image retake rates of cone beam computed tomography in a dental institution. Clinical Oral Investigations, 24, 4501–4510. https://doi.org/10.1007/s00784-020-03315-3
- Hung, K. F., Yeung, A. W. K., Bornstein, M. M., & Schwendicke, F. (2023). Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dento Maxillo Facial Radiology, 52, 20220335. https://doi.org/10.1259/dmfr.20220335
- Jacobs, R., Quirynen, M., & Bornstein, M. M. (2014). Neurovascular disturbances after implant surgery. Periodontology 2000, 66, 188–202. https://doi.org/10.1111/prd.12050
- Jacobs, R., Salmon, B., Codari, M., Hassan, B., & Bornstein, M. M. (2018). Cone beam computed tomography in implant dentistry: Recommendations for clinical use. BMC Oral Health, 18, 88. https://doi.org/10.1186/s12903-018-0523-5
- Joda, T., & Gallucci, G. O. (2015). The virtual patient in dental medicine. Clinical Oral Implants Research, 26, 725–726. https://doi.org/10.1111/clr.12379
- Kim, M. J., Lee, S. S., Choi, M., Yong, H. S., Lee, C., Kim, J. E., & Heo, M. S. (2020). Developing evidence-based clinical imaging guidelines of justification for radiographic examination after dental implant installation. BMC Medical Imaging, 20, 102. https://doi.org/10.1186/s12880-020-00501-3
- Koivisto, J., van Eijnatten, M., Ludlow, J., Kiljunen, T., Shi, X. Q., & Wolff, J. (2021). Comparative dosimetry of radiography device, MSCT device and two CBCT devices in the elbow region. Journal of Applied Clinical Medical Physics, 22, 128–138. https://doi.org/10.1002/acm2.13245
- Kurt Bayrakdar, S., Orhan, K., Bayrakdar, I. S., Bilgir, E., Ezhov, M., Gusarev, M., & Shumilov, E. (2021). A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Medical Imaging, 21, 86. https://doi.org/10.1186/s12880-021-00618-z
- Lahoud, P., Diels, S., Niclaes, L., Van Aelst, S., Willems, H., Van Gerven, A., Quirynen, M., & Jacobs, R. (2022). Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. Journal of Dentistry, 116, 103891. https://doi.org/10.1016/j.jdent.2021.103891
- Lee, C. T., Huang, Y. W., Zhu, L., & Weltman, R. (2017). Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. Journal of Dentistry, 62, 1–12. https://doi.org/10.1016/j.jdent.2017.04.011
- Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: Advancing the methodology. Implementation Science, 5, 69. https://doi.org/10.1186/1748-5908-5-69
- Liedke, G. S., Spin-Neto, R., da Silveira, H. E. D., Schropp, L., Stavropoulos, A., & Wenzel, A. (2017). Factors affecting the possibility to detect buccal bone condition around dental implants using cone beam computed tomography. Clinical Oral Implants Research, 28, 1082–1088. https://doi.org/10.1111/clr.12921
- Mai, H. N., Dam, V. V., & Lee, D. H. (2023). Accuracy of augmented reality-assisted navigation in dental implant surgery: Systematic review and meta-analysis. Journal of Medical Internet Research, 25, e42040. https://doi.org/10.2196/42040
- Mangano, F. G., Admakin, O., Lerner, H., & Mangano, C. (2023). Artificial intelligence and augmented reality for guided implant surgery planning: A proof of concept. Journal of Dentistry, 133, 104485. https://doi.org/10.1016/j.jdent.2023.104485
- Mattheos, N., Vergoullis, I., Janda, M., & Miseli, A. (2021). The implant Supracrestal complex and its significance for long-term successful clinical outcomes. The International Journal of Prosthodontics, 34, 88–100. https://doi.org/10.11607/ijp.7201
- McGuigan, M. B., Duncan, H. F., & Horner, K. (2018). An analysis of effective dose optimization and its impact on image quality and diagnostic efficacy relating to dental cone beam computed tomography (CBCT). Swiss Dental Journal, 128, 297–316.
- Miotk, N., Schwindling, F. S., Zidan, M., Juerchott, A., Rammelsberg, P., Hosseini, Z., Nittka, M., Heiland, S., Bendszus, M., & Hilgenfeld, T. (2023). Reliability and accuracy of intraoral radiography, cone beam CT, and dental MRI for evaluation of peri-implant bone lesions at zirconia implants—An ex vivo feasibility study. Journal of Dentistry, 130, 104422. https://doi.org/10.1016/j.jdent.2023.104422
- Mohammad-Rahimi, H., Motamedian, S. R., Pirayesh, Z., Haiat, A., Zahedrozegar, S., Mahmoudinia, E., Rohban, M. H., Krois, J., Lee, J. H., & Schwendicke, F. (2022). Deep learning in periodontology and oral implantology: A scoping review. Journal of Periodontal Research, 57, 942–951. https://doi.org/10.1111/jre.13037
- Molteni, R. (2021). The way we were (and how we got here): Fifty years of technology changes in dental and maxillofacial radiology. Dento Maxillo Facial Radiology, 50, 20200133. https://doi.org/10.1259/dmfr.20200133
- Monsour, P. A., & Dudhia, R. (2008). Implant radiography and radiology. Australian Dental Journal, 53(Suppl 1), S11–S25. https://doi.org/10.1111/j.1834-7819.2008.00037.x
- Muller, H. P., Schaller, N., & Eger, T. (1999). Ultrasonic determination of thickness of masticatory mucosa: A methodologic study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 88, 248–253. https://doi.org/10.1016/s1079-2104(99)70123-x
- Neto, J. D. P., Melo, G., Marin, C., Rivero, E. R. C., Cruz, A. C. C., Flores-Mir, C., & Correa, M. (2021). Diagnostic performance of periapical and panoramic radiography and cone beam computed tomography for detection of circumferential gaps simulating osseointegration failure around dental implants: A systematic review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 132, e208–e222. https://doi.org/10.1016/j.oooo.2021.08.012
- Norbash, A., Bluth, E., Lee, C. I., Francavilla, M., Donner, M., 3rd, Dutton, S. C., … McGinty, G. (2014). Radiologist manpower considerations and imaging 3.0: Effort planning for value-based imaging. Journal of the American College of Radiology, 11, 953–958. https://doi.org/10.1016/j.jacr.2014.05.022
- Oenning, A. C., Jacobs, R., Salmon, B., & DIMITRA Research Group. (2021). ALADAIP, beyond ALARA and towards personalized optimization for paediatric cone-beam CT. International Journal of Paediatric Dentistry, 31, 676–678. https://doi.org/10.1111/ipd.12797
- Oh, S., Kim, Y. J., Kim, J., Jung, J. H., Lim, H. J., Kim, B. C., & Kim, K. G. (2023). Deep learning-based prediction of osseointegration for dental implant using plain radiography. BMC Oral Health, 23, 208. https://doi.org/10.1186/s12903-023-02921-3
- Oliveira, M. L., Candemil, A. P., Freitas, D. Q., Haiter-Neto, F., Wenzel, A., & Spin-Neto, R. (2021). Objective assessment of the combined effect of exomass-related- and motion artefacts in cone beam CT. Dento Maxillo Facial Radiology, 50, 20200255. https://doi.org/10.1259/dmfr.20200255
- Pauwels, R., Araki, K., Siewerdsen, J. H., & Thongvigitmanee, S. S. (2015). Technical aspects of dental CBCT: State of the art. Dento Maxillo Facial Radiology, 44, 20140224. https://doi.org/10.1259/dmfr.20140224
- Pauwels, R., Jacobs, R., Singer, S. R., & Mupparapu, M. (2015). CBCT-based bone quality assessment: Are Hounsfield units applicable? Dento Maxillo Facial Radiology, 44, 20140238. https://doi.org/10.1259/dmfr.20140238
- Pelekos, G., Acharya, A., Tonetti, M. S., & Bornstein, M. M. (2018). Diagnostic performance of cone beam computed tomography in assessing peri-implant bone loss: A systematic review. Clinical Oral Implants Research, 29, 443–464. https://doi.org/10.1111/clr.13143
- Petersen, L. B., Olsen, K. R., Matzen, L. H., Vaeth, M., & Wenzel, A. (2015). Economic and health implications of routine CBCT examination before surgical removal of the mandibular third molar in the Danish population. Dento Maxillo Facial Radiology, 44, 20140406. https://doi.org/10.1259/dmfr.20140406
- Probst, M., Burian, E., Robl, T., Weidlich, D., Karampinos, D., Brunner, T., Zimmer, C., Probst, F. A., & Folwaczny, M. (2021). Magnetic resonance imaging as a diagnostic tool for periodontal disease: A prospective study with correlation to standard clinical findings-is there added value? Journal of Clinical Periodontology, 48, 929–948. https://doi.org/10.1111/jcpe.13458
- Revilla-Leon, M., Gomez-Polo, M., Vyas, S., Barmak, B. A., Galluci, G. O., Att, W., & Krishnamurthy, V. R. (2023). Artificial intelligence applications in implant dentistry: A systematic review. The Journal of Prosthetic Dentistry, 129, 293–300. https://doi.org/10.1016/j.prosdent.2021.05.008
- Riecke, B., Friedrich, R. E., Schulze, D., Loos, C., Blessmann, M., Heiland, M., & Wikner, J. (2015). Impact of malpositioning on panoramic radiography in implant dentistry. Clinical Oral Investigations, 19, 781–790. https://doi.org/10.1007/s00784-014-1295-1
- Romandini, M., Ruales-Carrera, E., Sadilina, S., Hammerle, C. H. F., & Sanz, M. (2023). Minimal invasiveness at dental implant placement: A systematic review with meta-analyses on flapless fully guided surgery. Periodontology 2000, 2000(91), 89–112. https://doi.org/10.1111/prd.12440
10.1111/prd.12440 Google Scholar
- Ruppin, J., Popovic, A., Strauss, M., Spuntrup, E., Steiner, A., & Stoll, C. (2008). Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: Optical tracking vs. stereolithographic splint systems. Clinical Oral Implants Research, 19, 709–716. https://doi.org/10.1111/j.1600-0501.2007.01430.x
- Sakai, T., Li, H., Shimada, T., Kita, S., Iida, M., Lee, C., Nakano, T., Yamaguchi, S., & Imazato, S. (2022). Development of artificial intelligence model for supporting implant drilling protocol decision making. Journal of Prosthodontic Research, 67, 360–365. https://doi.org/10.2186/jpr.JPR_D_22_00053
- Santaella, G. M., Wenzel, A., Haiter-Neto, F., Rosalen, P. L., & Spin-Neto, R. (2020). Impact of movement and motion-artefact correction on image quality and interpretability in CBCT units with aligned and lateral-offset detectors. Dento Maxillo Facial Radiology, 49, 20190240. https://doi.org/10.1259/dmfr.20190240
- Sawicki, P., Zawadzki, P. J., & Regulski, P. (2022). The impact of cone-beam computed tomography exposure parameters on peri-implant artifacts: A literature review. Cureus, 14, e23035. https://doi.org/10.7759/cureus.23035
- Schertel Cassiano, L., Barriviera, M., Suzuki, S., Giacomelli Nascimento, G., Lourenco Januario, A., Hilgert, L. A., & Rodrigues Duarte, W. (2016). Soft tissue cone beam computed tomography (ST-CBCT) for the planning of esthetic crown lengthening procedures. The International Journal of Esthetic Dentistry, 11, 482–493.
- Schriber, M., Yeung, A. W. K., Suter, V. G. A., Buser, D., Leung, Y. Y., & Bornstein, M. M. (2020). Cone beam computed tomography artefacts around dental implants with different materials influencing the detection of peri-implant bone defects. Clinical Oral Implants Research, 31, 595–606. https://doi.org/10.1111/clr.13596
- Schropp, L., Stavropoulos, A., Gotfredsen, E., & Wenzel, A. (2009). Calibration of radiographs by a reference metal ball affects preoperative selection of implant size. Clinical Oral Investigations, 13, 375–381. https://doi.org/10.1007/s00784-009-0257-5
- Schropp, L., Stavropoulos, A., Spin-Neto, R., & Wenzel, A. (2012). Evaluation of the RB-RB/LB-LB mnemonic rule for recording optimally projected intraoral images of dental implants: An in vitro study. Dento Maxillo Facial Radiology, 41, 298–304. https://doi.org/10.1259/dmfr/20861598
- Schulze, R., Heil, U., Gross, D., Bruellmann, D. D., Dranischnikow, E., Schwanecke, U., & Schoemer, E. (2011). Artefacts in CBCT: A review. Dento Maxillo Facial Radiology, 40, 265–273. https://doi.org/10.1259/dmfr/30642039
- Schwarz, F., Alcoforado, G., Guerrero, A., Jonsson, D., Klinge, B., Lang, N., Mattheos, N., Mertens, B., Pitta, J., Ramanauskaite, A., Sayardoust, S., Sanz-Martin, I., Stavropoulos, A., & Heitz-Mayfield, L. (2021). Peri-implantitis: Summary and consensus statements of group 3. The 6th EAO consensus conference 2021. Clinical Oral Implants Research, 32(Suppl 21), 245–253. https://doi.org/10.1111/clr.13827
- Siqueira, R., Sinjab, K., Pan, Y. C., Soki, F., Chan, H. L., & Kripfgans, O. (2021). Comprehensive peri-implant tissue evaluation with ultrasonography and cone-beam computed tomography: A pilot study. Clinical Oral Implants Research, 32, 777–785. https://doi.org/10.1111/clr.13758
- Song, D., Shujaat, S., de Faria Vasconcelos, K., Huang, Y., Politis, C., Lambrichts, I., & Jacobs, R. (2021). Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Medical Imaging, 21, 23. https://doi.org/10.1186/s12880-021-00557-9
- Spin-Neto, R., Hauge Matzen, L., Hermann, L., Fuglsig, J. M. C. E. S., & Wenzel, A. (2021). Head motion and perception of discomfort by young children during simulated CBCT examinations. Dento Maxillo Facial Radiology, 50, 20200445. https://doi.org/10.1259/dmfr.20200445
- Spin-Neto, R., Matzen, L. H., Schropp, L. W., Sorensen, T. S., & Wenzel, A. (2018). An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability. Dento Maxillo Facial Radiology, 47, 20180013. https://doi.org/10.1259/dmfr.20180013
- Spin-Neto, R., & Wenzel, A. (2016). Patient movement and motion artefacts in cone beam computed tomography of the dentomaxillofacial region: A systematic literature review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 121, 425–433. https://doi.org/10.1016/j.oooo.2015.11.019
- Stamenkovic, D., Obradovic-Duricic, K., Stamenkovic, D., Grbovic, A., & Dordevic, I. (2021). The fourth industrial Revolution's impact on dentistry. Srpski Arhiv za Celokupno Lekarstvo, 149, 503–510. https://doi.org/10.2298/Sarh210130037s
- Tahmaseb, A., Wu, V., Wismeijer, D., Coucke, W., & Evans, C. (2018). The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clinical Oral Implants Research, 29(Suppl 16), 416–435. https://doi.org/10.1111/clr.13346
- Tanaka, R., Lau, K., Yeung, A. W., Leung, W. K., Hayashi, T., Bornstein, M. M., Tonetti, M. S., & Pelekos, G. (2023). Diagnostic application of intraoral ultrasonography to assess furcation involvement in mandibular first molars. Dento Maxillo Facial Radiology, 52, 20230027. https://doi.org/10.1259/dmfr.20230027
- Tarnow, D. P., Cho, S. C., & Wallace, S. S. (2000). The effect of inter-implant distance on the height of inter-implant bone crest. Journal of Periodontology, 71, 546–549. https://doi.org/10.1902/jop.2000.71.4.546
- Tavelli, L., Yu, N., Mancini, L., & Barootchi, S. (2023). Keratinized mucosa width assessment at implant sites using high-frequency ultrasonography. Journal of Periodontology, 94, 956–966. https://doi.org/10.1002/JPER.23-0014
- Thoma, D. S., Sailer, I., Ioannidis, A., Zwahlen, M., Makarov, N., & Pjetursson, B. E. (2017). A systematic review of the survival and complication rates of resin-bonded fixed dental prostheses after a mean observation period of at least 5 years. Clinical Oral Implants Research, 28, 1421–1432. https://doi.org/10.1111/clr.13007
- Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., Godfrey, C. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., & Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med, 169(7), 467–473. doi:10.7326/M18-0850
- Truhlar, R. S., Morris, H. F., & Ochi, S. (1993). A review of panoramic radiography and its potential use in implant dentistry. Implant Dentistry, 2, 122–130. https://doi.org/10.1097/00008505-199305000-00010
- Tuzoff, D. V., Tuzova, L. N., Bornstein, M. M., Krasnov, A. S., Kharchenko, M. A., Nikolenko, S. I., Sveshnikov, M. M., & Bednenko, G. B. (2019). Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dento Maxillo Facial Radiology, 48, 20180051. https://doi.org/10.1259/dmfr.20180051
- Tymofiyeva, O., Vaegler, S., Rottner, K., Boldt, J., Hopfgartner, A. J., Proff, P. C., Richter, E. J., & Jakob, P. M. (2013). Influence of dental materials on dental MRI. Dento Maxillo Facial Radiology, 42, 20120271. https://doi.org/10.1259/dmfr.20120271
- Tyndall, D. A., Price, J. B., Tetradis, S., Ganz, S. D., Hildebolt, C., Scarfe, W. C., & American Academy of Oral and Maxillofacial Radiology. (2012). Position statement of the American Academy of Oral and Maxillofacial radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 113, 817–826. https://doi.org/10.1016/j.oooo.2012.03.005
- Van Assche, N., Vercruyssen, M., Coucke, W., Teughels, W., Jacobs, R., & Quirynen, M. (2012). Accuracy of computer-aided implant placement. Clinical Oral Implants Research, 23(Suppl 6), 112–123. https://doi.org/10.1111/j.1600-0501.2012.02552.x
- Welsh, A. W., Fowlkes, J. B., Pinter, S. Z., Ives, K. A., Owens, G. E., Rubin, J. M., Kripfgans, O. D., Looney, P., Collins, S. L., & Stevenson, G. N. (2019). Three-dimensional US fractional moving blood volume: Validation of renal perfusion quantification. Radiology, 293, 460–468. https://doi.org/10.1148/radiol.2019190248
- Yeung, A. W. K., Azevedo, B., Scarfe, W. C., & Bornstein, M. M. (2020). Patient motion image artifacts can be minimized and re-exposure avoided by selective removal of a sequence of basis images from cone beam computed tomography data sets: A case series. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 129, e212–e223. https://doi.org/10.1016/j.oooo.2019.07.003
- Yeung, A. W. K., Jacobs, R., & Bornstein, M. M. (2019). Novel low-dose protocols using cone beam computed tomography in dental medicine: A review focusing on indications, limitations, and future possibilities. Clinical Oral Investigations, 23, 2573–2581. https://doi.org/10.1007/s00784-019-02907-y
- Zitzmann, N. U., Margolin, M. D., Filippi, A., Weiger, R., & Krastl, G. (2008). Patient assessment and diagnosis in implant treatment. Australian Dental Journal, 53(Suppl 1), S3–S10. https://doi.org/10.1111/j.1834-7819.2008.00036.x