Clinical, radiographic, and histological/histomorphometric analysis of maxillary sinus grafting with deproteinized porcine or bovine bone mineral: A randomized clinical trial
Stefan Krennmair
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorLukas Postl
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorUwe Yacine Schwarze
Division of Oral Surgery and Orthodontics and Musculo-Skeletal Research Unit for Biomaterials, Medical University Graz, Graz, Austria
Search for more papers by this authorMichael Malek
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
Search for more papers by this authorMichael Stimmelmayr
Department of Prosthodontics, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorCorresponding Author
Gerald Krennmair
Department of Prosthodontics, Dental School, Sigmund Freud Medical University of Vienna, Vienna, Austria
Correspondence
Gerald Krennmair, Department of Prosthodontics, Dental School, Sigmund Freud Medical University of Vienna, 4600 Wels, Auwaldstrasse 5, Vienna, Austria.
Email: [email protected]
Search for more papers by this authorStefan Krennmair
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorLukas Postl
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
NumBiolab Research Associate, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorUwe Yacine Schwarze
Division of Oral Surgery and Orthodontics and Musculo-Skeletal Research Unit for Biomaterials, Medical University Graz, Graz, Austria
Search for more papers by this authorMichael Malek
Department of Oral and Maxillofacial Surgery, Keplerklinikum Linz, Johannes Kepler University (JKU) Linz, Linz, Austria
Search for more papers by this authorMichael Stimmelmayr
Department of Prosthodontics, Ludwig-Maximilian University (LMU), Munich, Germany
Search for more papers by this authorCorresponding Author
Gerald Krennmair
Department of Prosthodontics, Dental School, Sigmund Freud Medical University of Vienna, Vienna, Austria
Correspondence
Gerald Krennmair, Department of Prosthodontics, Dental School, Sigmund Freud Medical University of Vienna, 4600 Wels, Auwaldstrasse 5, Vienna, Austria.
Email: [email protected]
Search for more papers by this authorAbstract
Objective
The present study aimed to compare histomorphometrically evaluated new bone formation, radiographically measured graft stability, and clinical implant outcome between maxillary sinus grafting with either deproteinized porcine bone mineral (DPBM) or deproteinized bovine bone mineral (DBBM).
Materials and Methods
Thirty maxillary sinuses were initially included and randomly assigned to the test group (TG; DPBM, n = 15) or control group (CG; DBBM, n = 15). After a healing period (6 months), axially retrieved bone biopsies of the molar region were used for histological/histomorphometric analysis of new bone formations. Additionally, radiographically measured graft stability and clinical implant outcome were assessed.
Results
Twenty-three sinus sites with 10 sinuses of the TG and 13 of the CG were ultimately available for data and statistical analysis. In the TG, a slightly, but yet significantly (p = .040) higher proportion of new bone formation (TG: 27.7 ± 5.6% vs. CG: 22.9 ± 5.1%) and a lesser (p = .019) amount of connective (non-mineralized) tissue (TG: 47.5 ± 9.5% vs. CG: 56.1 ± 9.5%) was found than in the CG. However, both xenografts showed comparable (n.s.) residual bone graft (TG: 23.7 ± 7.2% vs. CG: 21.1 ± 9.85.6%), bone-to-graft contacts (TG: 26.2 ± 9.8% vs. CG: 30.8 ± 13.8%), similar graft height reduction over time (TG: 12.9 ± 6.7% CG: 12.4 ± 5.8%) and implant survival/success rate (100%). At the 3-year post-loading evaluation, the peri-implant marginal bone loss (TG: 0.52 ± 0.19 mm; CG: 0.48 ± 0.15 mm) and the peri-implant health conditions (TG: 87.5%/CG: 81.2%) did not differ between implants inserted in both xenografts used.
Conclusions
The use of DPBM or DBBM for maxillary sinus augmentation is associated with comparable bone formation providing stable graft dimension combined with healthy peri-implant conditions.
CONFLICT OF INTEREST STATEMENT
All authors have no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
REFERENCES
- Aghaloo, T. L., & Moy, P. K. (2007). Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? International Journal of Oral & Maxillofacial Implants, 22(Suppl), 49–70.
- Al-Moraissi, E. A., Alkhutari, A. S., Abotaleb, B., Altairi, N. H., & Del Fabbro, M. (2020). Do osteo-conductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. International Journal of Oral & Maxillofacial Surgery, 49, 107–120.
- Al-Nawas, B., & Schiegnitz, E. (2014). Augmentation procedures using bone substitute materials or autogenous bone—A systematic review and meta-analysis. European Journal of Oral Implantology, 7, S219–S233.
- Assari, A., Hani, M., Qaid, H., Omar, B., & Aleid, L. (2022). Effect of religious beliefs on bone graft selection for oral and maxillofacial surgery in Saudi Arabia. Journal Stomatology and Oral Maxillofac Surgery, 123, e563–e566.
- Avila, G., Wang, H. L., Galindo-Moreno, P., Misch, C. E., Bagramian, R. A., Rudek, I., Benavides, E., Moreno-Riestra, I., Braun, T., & Neiva, R. (2010). The influence of the bucco-palatal distance on sinus augmentation outcomes. Journal of Periodontology, 81, 1041–1050.
- Avila-Ortiz, G., Wang, H.-L., Galindo-Moreno, P., Misch, C. E., Rudek, I., & Neiva, R. (2012). Influence of lateral window dimensions on vital bone formation following maxillary sinus augmentation. The International Journal of Oral & Maxillofacial Implants, 27, 1230–1238.
- Bornstein, M. M., Chappuis, V., von Arx, T., & Buser, D. (2008). Performance of dental implants after staged sinus floor elevation procedures: 5-year results of a prospective study in partially edentulous patients. Clinical Oral Implants Research, 19, 1034–1043.
- Buser, D., Weber, H. P., & Lang, N. P. (1990). Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clinical Oral Implants Research, 1, 33–40.
- Canellas, J. V. D. S., Drugos, L., Ritto, F. G., Fischer, R. G., & Medeiros, P. J. D. (2021). Xenograft materials in maxillary sinus floor elevation surgery: a systematic review with network meta-analyses. British Journal of Oral & Maxillofacial Surgery, 59, 742–751.
- Cassetta, M., Perrotti, V., Calasso, S., Piattelli, A., Sinjari, B., & Iezzi, G. (2015). Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50: 50 mixture: A human clinical and histological evaluation at 2 months. Clinical Oral Implants Research, 26, 1180–1184.
- Clavero, J., & Lundgren, S. (2003). Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: Comparison of donor site morbidity and complications. Clinical Implant Dentistry and Related Research, 5, 154–160.
- Corbella, S., Taschieri, S., Weinstein, R., & Del Fabbro, M. (2016). Histomorphometric outcomes after lateral sinus floor elevation procedure: A systematic review of the literature and meta-analysis. Clinical Oral Implants Research, 27, 1106–1122.
- Cosso, M. G., de Brito, R. B., Piattelli, A., Jr., Shibli, J. A., & Zenobio, E. G. (2014). Volumetric dimensional changes of autogenous bone and the mixture of hydroxyapatite and autogenous bone graft in humans maxillary sinus augmentation. A multislice tomographic study. Clinical Oral Implants Research, 25, 1251–1256.
- da Silva, H. F., Goulart, D. R., Sverzut, A. T., Olate, S., & de Moraes, M. (2020). Comparison of two anorganic bovine bone in maxillary sinus lift: A split-mouth study with clinical, radiographical, and histomorphometrical analysis. International Journal of Implant Dentistry, 6, 17.
- Danesh-Sani, S. A., Engebretson, S. P., & Janal, M. N. (2017). Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: a systematic review and meta-analysis. Journal of Periodontal Research, 52, 301–312.
- Donath, K. (1988). Die Trenn–Dünnschliff–Technik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien. Präparator, 34, 197–206.
- Ferreira, C. E., Novaes, A. B., Haraszthy, V. I., Bittencourt, M., Martinelli, C. B., & Luczyszyn, S. M. (2009). A clinical study of 406 sinus augmentations with 100% anorganic bovine bone. Journal of Periodontology, 80, 1920–1927.
- Figueiredo, M., Henriques, J., Martins, G., Guerra, F., Judas, F., & Figueiredo, H. (2019). Physiochemical characterization of biomaterials commonly used in dentistry as bone substitutes-comparison with human bone. Journal of Biomed Materials Research-Part B Applied Biomaterials, 92, 409–419.
- Galindo-Moreno, P., Abril-García, D., Carrillo-Galvez, A. B., Zurita, F., Martín-Morales, N., O'Valle, F., & Padial-Molina, M. (2022). Maxillary sinus augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clinical Oral Implants Research, 33, 524–536.
- Galindo-Moreno, P., Fernandez-Jimenez, A., O'Valle, F., Silvestre, F. J., Sanchez-Fernandez, E., Monje, A., & Catena, A. (2015). Marginal bone loss in implants placed in grafted maxillary sinus. Clinical Implant Dentistry and Related Research, 17, 373–383.
- Guarnieri, R., Di Nardo, D., Di Giorgio, G., Miccoli, G., & Testarelli, L. (2019). Effectiveness of xenograft and porcine-derived resorbable membrane in augmentation of posterior extraction sockets with a severe wall defect. A radiographic/tomographic evaluation. Journal of Oral Maxillofacial Research, 10(1), e3.
- Güngörmüş, Z., & Güngörmüş, M. (2017). Effect of religious belief on selecting of graft materials used in oral and maxillofacial surgery. Journal of Oral & Maxillofacial Surgery, 75, 2347–2353.
- Hallman, M., & Thor, A. (2008). Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontology, 2000(47), 172–192.
- Handschel, J., Simonowska, M., Naujoks, C., Depprich, R. A., Ommerborn, M. A., Meyer, U., & Kübler, N. R. (2009). A histomorphometric meta-analysis of sinus elevation with various grafting materials. Head & Face Medicine, 11, 12.
10.1186/1746-160X-5-12 Google Scholar
- Hanisch, O., Lozada, J. L., Holmes, R. E., Calhoun, C. J., Kan, J. Y., & Spiekermann, H. (1999). Maxillary sinus augmentation prior to placement of endosseous implants: A histomorphometric analysis. International Journal of Oral & Maxillofacial Implants, 14, 329–336.
- Hatano, N., Shimizu, Y., Ooya, K., Hatano, N., Shimizu, Y., & Ooya, K. (2004). A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clinical Oral Implants Research, 15, 339–345.
- Heitz-Mayfield, L. J., & Huynh-Ba, G. (2009). History of treated periodontitis and smoking as risks for implant therapy. International Journal of Oral & Maxillofacial Implants, 24(Suppl), 39–68.
- Janner, S. F. M., Dubach, P., Suter, V. G. A., Caversaccio, M. D., Buser, D., & Bornstein, M. M. (2020). Sinus floor elevation or referral for further diagnosis and therapy. A comparison of maxillary sinus assessment by ENT specialists and dentists using cone beam computed tomography. Clinical Oral Implants Research, 31, 463–475.
- Jensen, T., Schou, S., Stavropoulos, A., Terheyden, H., & Holmstrup, P. (2012). Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft: a systematic review. Clinical Oral Implants Research, 23, 263–273.
- Jensen, T., Schou, S., Svendsen, P. A., Forman, J. L., Gundersen, H. J., Terheyden, H., & Holmstrup, P. (2012). Volumetric changes of the graft after maxillary sinus floor augmentation with Bio-Oss and autogenous bone in different ratios: A radiographic study in minipigs. Clinical Oral Implants Research, 23, 902–910.
- Kim, Y., Nowzari, H., & Rich, S. K. (2013). Risk of prion disease transmission through bovine-derived bone substitutes: A systematic review. Clinical Implant Dentistry and Related Research, 15, 645–653.
- Klinge, B. (2012). Peri-implant marginal bone loss: An academic controversy or a clinical challenge ? European Journal of Oral Implantology, 5(suppl), 13–19.
- Kolermann, R., Nissan, J., Rahmanov, M., Vered, H., Cohen, O., & Tal, H. (2017). Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: A split mouth histomorphometric study. Clinical Implants Dentistry and Related Research, 19, 812–820.
- Krennmair, S., Gugenberger, A., Weinländer, M., Krennmair, G., Malek, M., & Postl, L. (2021). Prevalence, risk factors and repair mechanism of different forms of sinus membrane perforations in lateral window sinus lift procedure: A retrospective study. Clinical Implant Dentistry and Related Research, 23, 821–832.
- Krennmair, S., Weinländer, M., Malek, M., Forstner, T., Krennmair, G., & Stimmelmayr, M. (2018). Clinical outcome of implants placed in staged maxillary sinus augmentation using bovine bone mineral mixed with autogenous bone at three different ratios: A 5-year prospective follow-up study. International Journal of Oral & Maxillofacial Implants, 33, 1351–1361.
- Kühl, S., Payer, M., Kirmeier, R., Wildburger, A., Wegscheider, W., & Jakse, N. (2014). The influence of bone marrow aspirates and concentrates on the early volume stability of maxillary sinus grafts with deproteinized bovine bone mineral-first results of a RCT. Clinical Oral Implants Research, 25, 221–225.
- Laczko, J., & Levai, G. (1975). A simple differential staining method for semi-thin sections of ossifying cartilage and bone tissue embedded in epoxy resin. Mikroskopie [WIEN], 31(1), 1–4.
- Lapczyna, H., Galea, L., Wüst, S., Bohner, M., Jerban, S., Sweedy, A., Doebelin, N., van Garderen, N., Hofmann, S., Baroud, G., Müller, R., & von Rechenberg, B. (2014). Effect of grain size and microporosity on the in vivo behaviour of β-tricalcium phosphate scaffolds. European Cells & Materials, 23, 1299–3019.
- Laurell, L., & Lungdren, D. (2011). Marginal bone level changes at dental implants after 5 years in function: A meta-analysis. Clinical Implant Dentistry and Related Research, 13, 19–28.
- Lee, J. H., Yi, G. S., Lee, J. W., & Kim, D. J. (2017). Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. Journal of Periodontal Implant Science, 47, 388–401.
- Lee, J. S., Shin, H. K., Yun, J. H., & Cho, K. S. (2017). Randomized clinical trial of maxillary sinus grafting using deproteinized porcine and bovine bone mineral. Clinical Implant Dentistry and Related Research, 19, 140–150.
- Mancini, L., Manilia, C., Casalena, F., Capogreco, M., Marzo, G., & Marchetti, E. (2020). Histomorphometric evaluation of bovine bone and equine bone matrix in maxillary sinus floor augmentation: a systematic review. Journal of Biological Regulators and Homeostatic Agents, 34, 181–191.
- Meloni, S. M., Lumbau, A., Spano, G., Baldoni, E., Pisano, M., Tullio, A., & Tallarico, M. (2019). Sinus augmentation grafting with anorganic bovine bone versus 50% autologous bone mixed with 50% anorganic bovine bone: 5 years after loading results from a randomised controlled trial. International Journal of Oral Implantology, 12, 483–492.
- Molina, A., Sanz-Sánchez, I., Sanz-Martín, I., Ortiz-Vigón, A., & Sanz, M. (2022). Complications in sinus lifting procedures: Classification and management. Periodontology, 2000(88), 103–111.
10.1111/prd.12414 Google Scholar
- Mordeenfeld, A., Lindgren, C., & Hallmann, M. (2015). Sinus floor augmentation using Straumann® bone ceramic and Bio-Oss® in a split mouth design and later placement of implants: A 5-year report from a longitudinal study. Clinical Implant Dentistry and Related Research, 18(5), 926–936.
- Orsini, G., Scarano, A., Piattelli, M., Piccirilli, M., Caputi, S., & Piattelli, A. (2006). Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. Journal of Periodontology, 77, 1984–1990.
- Pesce, P., Menini, M., Canullo, L., Khijmatgar, S., Modenese, L., Gallifante, G., & Del Fabbro, M. (2021). Radiographic and histomorphometric evaluation of biomaterials used for lateral sinus augmentation: A systematic review on the effect of residual bone height and vertical graft size on new bone formation and graft shrinkage. Journal of Clinical Medicine, 10, 4996.
- Pignaton, T. B., Wenzel, A., Ferreira, C. E. A., Borges Martinelli, C., Oliveira, G. J. P. L., Marcantonio, E., Jr., & Spin-Neto, R. (2019). Influence of residual bone height and sinus width on the outcome of maxillary sinus bone augmentation using anorganic bovine bone. Clinical Oral Implants Research, 30, 315–323.
- Reissmann, D. R., Poxleitner, P., & Heydecke, G. (2018). Location, intensity, and experience of pain after intra-oral versus extra-oral bone graft harvesting for dental implants. Journal of Dentistry, 79, 102–106.
- Renvert, S., Persson, G. R., Ririh, F. Q., & Camargo, P. M. (2018). Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. Journal of Periodontology, 89(Suppl), 304–312.
10.1002/JPER.17-0588 Google Scholar
- Roos, J., Sennerby, L., Lekholm, U., Jemt, T., Gröndahl, K., & Albrektsson, T. (1997). A qualitative and quantitative method for evaluating implant success: A 5-year retrospective analysis of the Branemark implant. International Journal of Oral & Maxillofacial Implants, 12, 504–514.
- Sanz, M., & Chappie, I. L. (2012). Clinical research on peri-implant diseases: Consensus report of working group 4. Journal of Clinical Periodontology, 39(Suppl), 202–206.
- Sbordone, L., Levin, L., Guidetti, F., Sbordone, C., Glikman, A., & Schwartz-Arad, D. (2011). Apical and marginal bone alterations around implants in maxillary sinus augmentation grafted with autogenous bone or bovine bone material and simultaneous or delayed dental implant positioning. Clinical Oral Implants Research, 22, 485–491.
- Scarano, A., Piattelli, A., Perrotti, V., Manzon, L., & Iezzi, G. (2011). Maxillary sinus augmentation in humans using cortical porcine bone: A histological and histomorphometrical evaluation after 4 and 6 months. Clinical Implant Dentistry and Related Research, 13, 13–18.
- Schmitt, C. M., Moest, T., Lutz, R., Neukam, F. W., & Schlegel, K. A. (2015). Anorganic bovine bone (ABB) vs. autologous bone (AB) plus ABB in maxillary sinus grafting. A prospective non-randomized clinical and histomorphometrical trial. Clinical Oral Implants Research, 26, 1043–1105.
- Schrott, A. R., Jimenez, M., Hwang, J. W., Fiorellini, J., & Weber, H. P. (2009). Five-year evaluation of the influence of keratinized mucosa on peri-implant soft-tissue health and stability around implants supporting full-arch mandibular fixed prostheses. Clinical Oral Implants Research, 20, 1170–1177.
- Schwarz, F., Becker, K., Sahm, N., Horstkemper, T., Rousi, K., & Becker, J. (2015). The prevalence of peri-implant diseases for two-piece implants with an internal tube-in-tube connection: A cross-sectional analysis of 512 implants. Clinical Oral Implants Research, 23, 550–555.
- Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–442.
- Simunek, A., Kopecka, D., Somanathan, R. V., Pilathadka, S., & Brazda, T. (2008). Deproteinized bovine bone versus beta-tricalcium phosphate in sinus augmentation surgery: A comparative histologic and histomorphometric study. International Journal of Oral & Maxillofacial Implants, 23, 935–942.
- Stacchi, C., Lombardi, T., Ottonelli, R., Berton, F., Perinetti, G., & Traini, T. (2018). New bone formation after transcrestal sinus floor elevation was influenced by sinus cavity dimension: A prospective histologic and histomorphometric study. Clinical Oral Implants Research, 29, 465–479.
- Stacchi, C., Rapani, A., Lombardi, T., Bernardello, F., Nicolin, V., & Berton, F. (2022). Does new bone formation vary in different sites within the same maxillary sinus after lateral augmentation? A prospective histomorphometric study. Clinical Oral Implants Research, 33, 322–332.
- Starch-Jensen, T., Ahmad, M., Bruun, N. H., & Becktor, J. P. (2021). Patient's perception of recovery after maxillary sinus floor augmentation with autogenous bone graft compared with composite grafts: a single-blinded randomized controlled trial. International Journal of Implant Dentistry, 7, 99.
- Tatum, H., Jr. (1986). Maxillary and sinus implant reconstructions. Dentistry of Clinical North America, 30, 207–229.
- Testori, T., Wallace, S. S., Trisi, P., Capelli, M., Zuffetti, F., & Del Fabbro, M. (2013). Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: A multicenter, randomized, controlled, clinical histomorphometric trial. International Journal of Periodontics & Restorative Dentistry, 33, 467–475.
- Tete, S., Zizzari, V. L., Vinci, R., Zara, S., Di Tore, U., Manica, M., Cataldi, A., Mortellaro, C., Piattelli, A., & Gherlone, E. (2014). Equine and porcine bone substitutes in maxillary sinus augmentation: A histological and immunohistochemical analysis of VEGF expression. Journal of Craniofacial Surgery, 25, 835–839.
- Tomasi, C., & Derks, J. (2012). Clinical research of peri-implant diseases-quality of reporting, case definitions and methods to study incidence, prevalence and risk factors of peri-implants disease. Journal of Clinical Periodontology, 39(suppl), 207–223.
- Urban, I. A., & Lozada, J. L. (2010). A prospective study of implants placed in augmented sinuses with minimal and moderate residual crestal bone: Results after 1 to 5 years. International Journal of Oral & Maxillofacial Implants, 25, 1203–1212.
- Uribarri, A., Bilbao, E., Marichalar-Mendia, X., Martinez-Conde, R., Aguirre, J. M., & Verdugo, F. (2016). Bone remodeling around implants placed in augmented sinuses in patients with and without history of periodontitis. Clinical Implant Dentistry and Related Research, 19, 268–279.
- Vázquez-Alvarez, R., Pérez Sayáns, M., Gayoso Diz, P., & García García, A. (2015). Factors affecting peri-implant bone loss: A post-five-year retrospective study. Clinical Oral Implants Research, 26, 1006–1014.
- Zijderveld, S. A., Schulten, E. A., Aartman, I. H., & ten Bruggenkate, C. M. (2009). Long-term changes in graft height after maxillary sinus floor elevation with different grafting materials: radiographic evaluation with a minimum follow-up of 4.5 years. Clinical Oral Implants Research, 20, 691–700.