Consistent Post-Reconstruction for Progressive Photon Mapping
Hajin Choi
Gwangju Institute of Science and Technology, South Korea
Search for more papers by this authorBochang Moon
Gwangju Institute of Science and Technology, South Korea
Search for more papers by this authorHajin Choi
Gwangju Institute of Science and Technology, South Korea
Search for more papers by this authorBochang Moon
Gwangju Institute of Science and Technology, South Korea
Search for more papers by this authorAbstract
Photon mapping is a light transport algorithm that simulates various rendering effects (e.g., caustics) robustly, and its progressive variants, progressive photon mapping (PPM) methods, can produce a biased but consistent rendering output. PPM estimates radiance using a kernel density estimation whose parameters (bandwidths) are adjusted progressively, and this refinement enables to reduce its estimation bias. Nonetheless, many iterations (and thus a large number of photons) are often required until PPM produces nearly converged estimates. This paper proposes a post-reconstruction that improves the performance of PPM by reducing residual errors in PPM estimates. Our key idea is to take multiple PPM estimates with multi-level correlation structures, and fuse the input images using a weight function trained by supervised learning with maintaining the consistency of PPM. We demonstrate that our technique boosts an existing PPM technique for various rendering scenes.
References
- Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I., Harp A., Irving G., Isard M., Jia Y., Jozefowicz R., Kaiser L., Kudlur M., Levenberg J., Mané D., Monga R., Moore S., Murray D., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P., Vanhoucke V., Vasudevan V., Viégas F., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y., Zheng X.: TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.
- Back J., Hua B.-S., Hachisuka T., Moon B.: Deep combiner for independent and correlated pixel estimates. ACM Trans. Graph. 39, 6 (Nov. 2020).
- Bitterli B.: Rendering resources, 2016.
- Bitterli B., Rousselle F., Moon B., Iglesias-Guitián J. A., Adler D., Mitchell K., Jarosz W., Novák J.: Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Computer Graphics Forum 35, 4 (July 2016), 107–117.
- Bako S., Vogels T., Mcwilliams B., Meyer M., NováK J., Harvill A., Sen P., Derose T., Rousselle F.: Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4 (July 2017).
- Cook R. L., Porter T., Carpenter L.: Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 137–145.
10.1145/964965.808590 Google Scholar
- Glorot X., Bengio Y.: Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (May 2010), pp. 249–256.
- Gruson A., Hua B.-S., Vibert N., Nowrouzezahrai D., Hachisuka T.: Gradient-domain volumetric photon density estimation. ACM Trans. Graph. 37, 4 (July 2018).
- Hua B.-S., Gruson A., Nowrouzezahrai D., Hachisuka T.: Gradient-domain photon density estimation. Computer Graphics Forum 36, 2 (2017), 31–38.
- Hachisuka T., Jensen H. W.: Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5 (Dec. 2009), 1–8.
- Hachisuka T., Jarosz W., Jensen H. W.: A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6 (Dec. 2010).
- Hachisuka T., Ogaki S., Jensen H. W.: Progressive photon mapping. ACM Trans. Graph. 27, 5 (Dec. 2008).
- Jakob W.: Mitsuba renderer, 2010.
- Jensen H. W.: Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques '96 (1996), Springer-Verlag, p. 21–30.
- Jensen H. W.: Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., 2009.
- Jarosz W., Zwicker M., Jensen H. W.: The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum 27, 2 (Apr. 2008), 557–566.
- Kajiya J. T.: The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (Aug. 1986), 143–150.
10.1145/15886.15902 Google Scholar
- Kingma D. P., Ba J.: Adam: A method for stochastic optimization. In ICLR (Poster) (2015).
- Kaplanyan A. S., Dachsbacher C.: Adaptive progressive photon mapping. ACM Trans. Graph. 32, 2 (Apr. 2013).
- Knaus C., Zwicker M.: Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3 (May 2011).
- Lin Z., Li S., Zeng X., Zhang C., Jia J., Wang G., Manocha D.: CPPM: Chi-squared progressive photon mapping. ACM Trans. Graph. 39, 6 (Nov. 2020).
- Lafortune E. P., Willems Y. D.: Bi-directional path tracing. In Proceedings of Third International Conference on Computational Graphics and Visualization Techniques (Dec. 1993), pp. 145–153.
- Moon B., Carr N., Yoon S.-E.: Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33, 5 (Sept. 2014).
- Mara M., Luebke D., McGuire M.: Toward practical real-time photon mapping: Efficient gpu density estimation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2013), I3D '13, p. 71–78.
- Qin H., Sun X., Hou Q., Guo B., Zhou K.: Unbiased photon gathering for light transport simulation. ACM Trans. Graph. 34, 6 (Oct. 2015).
- Rousselle F., Knaus C., Zwicker M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–12.
- Schregle R.: Bias compensation for photon maps. Computer Graphics Forum 22, 4 (2003), 729–742.
- Spencer B., Jones M.: Into the blue: Better caustics through photon relaxation. Computer Graphics Forum 28, 2 (2009), 319–328.
- Spencer B., Jones M. W.: Progressive photon relaxation. ACM Trans. Graph. 32, 1 (Feb. 2013).
- Schj⊘th L., Sporring J., Fogh Olsen O.: Diffusion based photon mapping. Computer Graphics Forum 27, 8 (2008), 2114–2127.
- Veach E., Guibas L.: Bidirectional estimators for light transport. In Photorealistic Rendering Techniques. Springer, 1995, pp. 145–167.
10.1007/978-3-642-87825-1_11 Google Scholar
- Vogels T., Rousselle F., Mcwilliams B., Röthlin G., Harvill A., Adler D., Meyer M., Novák J.: Denoising with kernel prediction and asymmetric loss functions. ACM Trans. Graph. 37, 4 (July 2018).
- Welford B. P.: Note on a method for calculating corrected sums of squares and products. Technometrics 4, 3 (1962), 419–420.
- Xu Z., Sun Q., Wang L., Xu Y., Wang B.: Unsupervised image reconstruction for gradient-domain volumetric rendering. Computer Graphics Forum 39, 7 (2020), 193–203.
- Xu B., Zhang J., Wang R., Xu K., Yang Y.-L., Li C., Tang R.: Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Trans. Graph. 38, 6 (Nov. 2019).
- Zhou K., Hou Q., Wang R., Guo B.: Real-time kd-tree construction on graphics hardware. ACM Trans. Graph. 27, 5 (Dec. 2008).
- Zwicker M., Jarosz W., Lehtinen J., Moon B., Ramamoorthi R., Rousselle F., Sen P., Soler C., Yoon S.-E.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum 34, 2 (2015), 667–681.
- Zeng Z., Wang L., Wang B., Kang C., Xu Y.: Denoising stochastic progressive photon mapping renderings using a multi-residual network. Journal of Computer Science and Technology 35 (2020), 506–521.
- Zhu S., Xu Z., Jensen H. W., Su H., Ramamoorthi R.: Deep kernel density estimation for photon mapping. Computer Graphics Forum 39, 4 (2020), 35–45.