Stable and efficient differential estimators on oriented point clouds
Abstract
Point clouds are now ubiquitous in computer graphics and computer vision. Differential properties of the point-sampled surface, such as principal curvatures, are important to estimate in order to locally characterize the scanned shape. To approximate the surface from unstructured points equipped with normal vectors, we rely on the Algebraic Point Set Surfaces (APSS) [GG07] for which we provide convergence and stability proofs for the mean curvature estimator. Using an integral invariant viewpoint, this first contribution links the algebraic sphere regression involved in the APSS algorithm to several surface derivatives of different orders. As a second contribution, we propose an analytic method to compute the shape operator and its principal curvatures from the fitted algebraic sphere. We compare our method to the state-of-the-art with several convergence and robustness tests performed on a synthetic sampled surface. Experiments show that our curvature estimations are more accurate and stable while being faster to compute compared to previous methods. Our differential estimators are easy to implement with little memory footprint and only require a unique range neighbors query per estimation. Its highly parallelizable nature makes it appropriate for processing large acquired data, as we show in several real-world experiments.
Supporting Information
Filename | Description |
---|---|
cgf14368-sup-0001-S1.pdf29 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Adamson A., Alexa M.: Approximating and intersecting surfaces from points. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (Goslar, DEU, 2003), SGP '03, Eurographics Association, p. 230–239. 2
- Adamson A., Alexa M.: Anisotropic point set surfaces. In Proceedings of the 4th international conference on Computer graphics, virtual reality, visualisation and interaction in Africa (2006), pp. 7–13. 2
- Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin D., Silva C. T.: Point set surfaces. In Visualization Conference (2001), IEEE, pp. 21–29. 2, 3, 5, 8
- Alliez P., Giraudot S., Jamin C., Lafarge F., Mérigot Q., Meyron J., Saboret L., Salman N., Wu S., Yildiran N. F.: Point set processing. In CGAL User and Reference Manual, 5.2.1 ed. CGAL Editorial Board, 2021. URL: https://doc.cgal.org/5.2.1/Manual/packages.html#PkgPointSetProcessing3. 7
- Allaire S., Jacq J.-J., Burdin V., Roux C., Couture C.: Type-constrained robust fitting of quadrics with application to the 3d morphological characterization of saddle-shaped articular surfaces. In IEEE 11th International Conference on Computer Vision (2007), pp. 1–8. doi:10.1109/ICCV.2007.4409163. 3
- Amenta N., Kil Y. J.: Defining point-set surfaces. In ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004), SIGGRAPH '04, Association for Computing Machinery, p. 264–270. doi:10.1145/1186562.1015713. 2
- Berkmann J., Caelli T.: Computation of surface geometry and segmentation using covariance techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 11 (1994), 1114–1116. 3
- Béarzi Y., Digne J., Chaine R.: Wavejets: A local frequency framework for shape details amplification. Computer Graphics Forum 37, 2 (2018), 13–24. doi:10.1111/cgf.13338. 2, 8
- Bertrand J.: Démonstration d'un théorème de m. gauss. Journal de mathématiques pures et appliquées (1848), 80–82. 3
- Chen J., Guennebaud G., Barla P., Granier X.: Non-Oriented MLS Gradient Fields. Computer Graphics Forum (2013). doi:10.1111/cgf.12164. 8
- Coeurjolly D., Lachaud J.-O., Levallois J.: Integral based curvature estimators in digital geometry. In Discrete Geometry for Computer Imagery (Berlin, Heidelberg, 2013), R. Gonzalez-Diaz, M.-J. Jimenez, B. Medrano, (Eds.), Springer Berlin Heidelberg, pp. 215–227. 3
10.1007/978-3-642-37067-0_19 Google Scholar
- Connolly M. L.: Measurement of protein surface shape by solid angles. Journal of Molecular Graphics 4, 1 (1986), 3–6. doi:https://doi.org/10.1016/0263-7855(86)80086-8. 2, 3
- Cazals F., Pouget M.: Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design 22, 2 (2005), 121–146. doi:https://doi.org/10.1016/j.cagd.2004.09.004. 2, 3, 8
- Clarenz U., Rumpf M., Telea A.: Robust feature detection and local classification for surfaces based on moment analysis. IEEE Transactions on Visualization and Computer Graphics 10, 5 (2004), 516–524. doi:10.1109/TVCG.2004.34. 3
- Cohen-Steiner D., Morvan J.-M.: Restricted delaunay triangulations and normal cycle. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry (New York, NY, USA, 2003), SCG '03, Association for Computing Machinery, p. 312–321. doi:10.1145/777792.777839. 3
- Do Carmo M. P.: Differential geometry of curves and surfaces. Prentice-Hall, 1976. 3
- Digne J., Morel J.-M.: Numerical analysis of differential operators on raw point clouds. Numerische Mathematik 127, 2 (2014), 255–289. 2, 3, 5
- Digne J., Morel J.-M., Souzani C.-M., Lartigue C.: Scale space meshing of raw data point sets. Computer Graphics Forum 30, 6 (2011), 1630–1642. doi:10.1111/j.1467-8659.2011.01848.x. 3, 4, 5, 7, 8, 11
- Fleishman S., Cohen-Or D., Alexa M., Silva C. T.: Progressive point set surfaces. ACM Trans. Graph. 22, 4 (Oct. 2003), 997–1011. doi:10.1145/944020.944023. 2
- Guennebaud G., Gross M.: Algebraic point set surfaces. ACM Trans. Graph. 26, 3 (July 2007), 23–es. doi:10.1145/1276377.1276406. 1, 2, 3, 8
- Guennebaud G., Germann M., Gross M.: Dynamic sampling and rendering of algebraic point set surfaces. Computer Graphics Forum 27, 2 (2008), 653–662. doi:10.1111/j.1467-8659.2008.01163.x. 2, 3
- Guennebaud G., Jacob B., et al.: Eigen v3. http://eigen.tuxfamily.org, 2010. 7
- Guerrero P., Kleiman Y., Ovsjanikov M., Mitra N. J.: Pcpnet learning local shape properties from raw point clouds. Computer Graphics Forum 37, 2 (2018), 75–85. doi:10.1111/cgf.13343. 2, 7
- Gelfand N., Mitra N. J., Guibas L. J., Pottmann H.: Robust global registration. In Proceedings of the Third Eurographics Symposium on Geometry Processing (Goslar, DEU, 2005), SGP '05, The Eurographics Association, p. 197–es. 2, 3
- Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3 (July 2006), 569–578. doi:10.1145/1141911.1141925. 2, 3
- Himeur C.-E., Lejemble T., Pellegrini T., Paulin M., Barthe L., Mellado N.: Pcednet: A neural network for fast and efficient edge detection in 3d point clouds. arXiv preprint arXiv:2011.01630 (2020). 2, 3
- Hulin D., Troyanov M.: Mean curvature and asymptotic volume of small balls. The American Mathematical Monthly 110, 10 (2003), 947–950. 3
- Kalogerakis E., Hertzmann A., Singh K.: Learning 3d mesh segmentation and labeling. ACM Trans. Graph. 29, 4 (July 2010). doi:10.1145/1778765.1778839. 2
- Kim V. G., Li W., Mitra N. J., Chaudhuri S., DiVerdi S., Funkhouser T.: Learning part-based templates from large collections of 3d shapes. ACM Trans. Graph. 32, 4 (July 2013). doi:10.1145/2461912.2461933. 2
- Kalogerakis E., Simari P., Nowrouzezahrai D., Singh K.: Robust statistical estimation of curvature on discretized surfaces. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (Goslar, DEU, 2007), SGP '07, The Eurographics Association, p. 13–22. 2
- Levin D.: The approximation power of moving least-squares. Mathematics of computation 67, 224 (1998), 1517–1531. 2
- Levin D.: Mesh-independent surface interpolation. In Geometric modeling for scientific visualization. Springer, 2004, pp. 37–49. 2
10.1007/978-3-662-07443-5_3 Google Scholar
- Levy B.: Geogram, 2015. 6
- Lejemble T., Mura C., Barthe L., Mellado N.: Persistence analysis of multi-scale planar structure graph in point clouds. Computer Graphics Forum 39, 2 (2020), 35–50. doi:https://doi.org/10.1111/cgf.13910. 3
- Liang P., Todhunter J. S.: Representation and recognition of surface shapes in range images: A differential geometry approach. Comput. Vision Graph. Image Process. 52, 1 (Aug. 1990), 78–109. doi:10.1016/0734-189X(90)90124-E. 3
10.1016/0734-189X(90)90124-E Google Scholar
- Lai Y.-K., Zhou Q.-Y., Hu S.-M., Wallner J., Pottmann H.: Robust feature classification and editing. IEEE Transactions on Visualization and Computer Graphics 13, 1 (2007), 34–45. doi:10.1109/TVCG.2007.19. 3
- Mellado N., Dellepiane M., Scopigno R.: Relative scale estimation and 3d registration of multi-modal geometry using growing least squares. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2015), 2160–2173. 2, 3
- Mellado N., Guennebaud G., Barla P., Reuter P., Schlick C.: Growing least squares for the analysis of manifolds in scale-space. Computer Graphics Forum 31, 5 (2012), 1691–1701. doi:10.1111/j.1467-8659.2012.03174.x. 2, 3, 4, 5
- Manay S., Hong B.-W., Yezzi A. J., Soatto S.: Integral invariant signatures. In European Conference on Computer Vision (ECCV) (2004), Springer, pp. 87–99. 2, 3
- Mellado N., Lejemble T., Guennebaud G., Barla P.: Ponca: a point cloud analysis library, 2020. URL: https://github.com/poncateam/ponca/. 7
- Mérigot Q., Ovsjanikov M., Guibas L. J.: Voronoi-based curvature and feature estimation from point clouds. IEEE Transactions on Visualization and Computer Graphics 17, 6 (2010), 743–756. 2, 8
- Mourglia C., Roussellet V., Barthe L., Mellado N., Mathias P., Vanderhaeghe D., et al.: Radium engine. URL: https://github.com/STORM-IRIT/Radium-Engine/. 7
- Nader G., Guennebaud G., Mellado N.: Adaptive multi-scale analysis for point-based surface editing. Computer Graphics Forum 33, 7 (2014), 171–179. doi:10.1111/cgf.12485. 3
- Öztireli A. C., Guennebaud G., Gross M.: Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum 28, 2 (2009), 493–501. doi:https://doi.org/10.1111/j.1467-8659.2009.01388.x. 8
- Pouget M., Cazals F.: Estimation of local differential properties of point-sampled surfaces. In CGAL User and Reference Manual, 5.2.1 ed. CGAL Editorial Board, 2021. URL: https://doc.cgal.org/5.2.1/Manual/packages.html#PkgJetFitting3. 6, 7
- Pauly M., Gross M., Kobbelt L. P.: Efficient simplification of point-sampled surfaces. In IEEE Visualization, 2002. VIS 2002. (2002), IEEE, pp. 163–170. 2, 3
- Pauly M., Keiser R., Gross M.: Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum 22, 3 (2003), 281–289. doi:10.1111/1467-8659.00675. 2, 3
- Pratt V.: Direct least-squares fitting of algebraic surfaces. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 145–152. doi:10.1145/37402.37420. 2
10.1145/37402.37420 Google Scholar
- Pratt V.: Direct least-squares fitting of algebraic surfaces. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 145–152. doi:10.1145/37402.37420. 3
10.1145/37402.37420 Google Scholar
- Pottmann H., Wallner J., Huang Q.-X., Yang Y.-L.: Integral invariants for robust geometry processing. Computer Aided Geometric Design 26, 1 (2009), 37–60. doi:https://doi.org/10.1016/j.cagd.2008.01.002. 2, 3
- Pottmann H., Wallner J., Yang Y.-L., Lai Y.-K., Hu S.-M.: Principal curvatures from the integral invariant viewpoint. Computer Aided Geometric Design 24, 8 (2007), 428–442. Discrete Differential Geometry. doi:https://doi.org/10.1016/j.cagd.2007.07.004. 3, 7, 8, 11
- Qi C. R., Su H., Mo K., Guibas L. J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 652–660. 2
- Ridel B., Guennebaud G., Reuter P., Granier X.: Parabolic-cylindrical moving least squares surfaces. Computers & Graphics 51 (2015), 60–66. International Conference Shape Modeling International. doi:https://doi.org/10.1016/j.cag.2015.05.006. 2
- Reuter P., Joyot P., Trunzler J., Boubekeur T., Schlick C.: Surface reconstruction with enriched reproducing kernel particle approximation. In Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005. (2005), pp. 79–87. doi:10.1109/PBG.2005.194068. 8
- Tachella J., Altmann Y., Mellado N., Mccarthy A., Tobin R., Stuart Buller G., Tourneret J.-Y., Mclaughlin S.: Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nature Communications 10 (2019), 4984. doi:10.1038/s41467-019-12943-7. 2
- Thomas H., Goulette F., Deschaud J.-E., Marcotegui B.: Semantic classification of 3d point clouds with multiscale spherical neighborhoods. In 2018 International Conference on 3D Vision (3DV) (2018), IEEE, pp. 390–398. 2
- Yang Y.-L., Lai Y.-K., Hu S.-M., Pottmann H.: Robust principal curvatures on multiple scales. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (Goslar, DEU, 2006), SGP '06, The Eurographics Association, p. 223–226. 3
- Yang P., Qian X.: Direct computing of surface curvatures for point-set surfaces. SPBG 7 (2007), 29–36. 2