Non-Local Low-Rank Normal Filtering for Mesh Denoising
Chi-Wing Fu
The Chinese University of Hong Kong
Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS, China
Search for more papers by this authorPheng-Ann Heng
The Chinese University of Hong Kong
Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS, China
Search for more papers by this authorChi-Wing Fu
The Chinese University of Hong Kong
Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS, China
Search for more papers by this authorPheng-Ann Heng
The Chinese University of Hong Kong
Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS, China
Search for more papers by this authorAbstract
This paper presents a non-local low-rank normal filtering method for mesh denoising. By exploring the geometric similarity between local surface patches on 3D meshes in the form of normal fields, we devise a low-rank recovery model that filters normal vectors by means of patch groups. In summary, our method has the following key contributions. First, we present the guided normal patch covariance descriptor to analyze the similarity between patches. Second, we pack normal vectors on similar patches into the normal-field patch-group (NPG) matrix for rank analysis. Third, we formulate mesh denoising as a low-rank matrix recovery problem based on the prior that the rank of the NPG matrix is high for raw meshes with noise, but can be significantly reduced for denoised meshes, whose normal vectors across similar patches should be more strongly correlated. Furthermore, we devise an objective function based on an improved truncated γ norm, and derive an optimization procedure using the alternative direction method of multipliers and iteratively re-weighted least squares techniques. We conducted several experiments to evaluate our method using various 3D models, and compared our results against several state-of-the-art methods. Experimental results show that our method consistently outperforms other methods and better preserves the fine details.
Supporting Information
Filename | Description |
---|---|
cgf13556-sup-0001-S1.pdf10.8 MB | Supplement Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Amaldi E., Kann V.: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science 209, 1–2 (1998), 237–260. 5
- Bajaj C. L., Xu G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. on Graphics 22, 1 (2003), 4–32. 3
- Clarenz U., Diewald U., Rumpf M.: Anisotropic geometric diffusion in surface processing. Proc. IEEE Vis. (2000), 397–405. 3
- Cherian A., Sra S., Banerjee A., Papanikolopoulos N.: Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet divergence. IEEE ICCV (2011), 2399–2406. 3
- Digne J.: Similarity based filtering of point clouds. In IEEE CVPR Workshops (2012), pp. 73–79. 3
- Desbrun M., Meyer M., Schroder P., Barr A.: Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. of SIGGRAPH (1999), 317–324. 2
- Desbrun M., Meyer M., Schroder P., Barr A.: Anisotropic feature-preserving denoising of height fields and bivariate data. Proc. Graph. Interface (2000), 145–152. 3
- Dong W., Shi G., Hu X., Ma Y.: Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE Trans. Image Proc. 23, 10 (2014), 4527–4538. 1
- Dong W., Shi G., Ma Y., Li X.: Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture. Int. J. Comp. Vision 114, 2–3 (2015), 217–232. 1
- Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh denoising. ACM Trans. on Graphics (SIGGRAPH) 22, 3 (2003), 950–953. 2, 3
- Fan H., Yu Y., Peng Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. & Comp. Graphics 16, 2 (2010), 312–324. 3
- Guo Q., Gao S., Zhang X., Yin Y., Zhang C.: Patch-based image inpainting via two-stage low rank approximation. IEEE Trans. Vis. & Comp. Graphics (2017). to appear. 1
- Gu S., Zhang L., Zuo W., Feng X.: Weighted nuclear norm minimization with application to image denoising. IEEE CVPR (2014), 2862–2869. 1, 7
- He L., Schaefer S.: Mesh denoising via L0 minimization. ACM Trans. on Graphics (SIGGRAPH) (2013), 64: 1–8. 1, 2, 8, 10
- Jones T., Durand F., Desbrun M.: Non-iterative feature preserving mesh smoothing. ACM Trans. on Graphics (SIGGRAPH) 22, 3 (2003), 943–949. 3
- Ji H., Liu C., Shen Z., Xu Y.: Robust video denoising using low rank matrix completion. IEEE CVPR (2010), 1791–1798. 1
- Karacan L., Erdem E., Erdem A.: Structure-preserving image smoothing via region covariances. ACM Trans. on Graphics (SIGGRAPH Asia) 32, 6 (2013), 176: 1–11. 3, 4
- Kang Z., Peng C., Cheng Q.: Robust PCA via nonconvex rank approximation. IEEE ICDM (2015), 211–220. 5, 6
- Lin Z., Chen M., Ma Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010). 5, 7
- Lu X., Chen W., Schaefer S.: Robust mesh denoising via vertex pre-filtering and L1-median normal filtering. Computer Aided Geometric Design 54 (2017), 49–60. 3
- Liu B., Cao J., Wang W., Ma N., Li B., Liu L., Liu X.: Propagated mesh normal filtering. Computers & Graphics (SMI) 74 (2018), 119–125. 3
- Lu X., Deng Z., Chen W.: A robust scheme for feature-preserving mesh denoising. IEEE Trans. Vis. & Comp. Graphics 22, 3 (2016), 1181–1194. 1, 3
- Lin Z., Ganesh A., Wright J., Wu L., Chen M., Ma Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 61, 6 (2009). 7
- Lu X., Liu X., Deng Z., Chen W.: An efficient approach for feature-preserving mesh denoising. Optics and Lasers in Engineering 90 (2017), 186–195. 3
- Lu X., Schaefer S., Luo J., Ma L., He Y.: Low rank matrix approximation for geometry filtering. arXiv preprint arXiv:1803.06783 (2018). 3
- Peng C., Kang Z., Li H., Cheng Q.: Subspace clustering using log-determinant rank approximation. ACM SIGKDD (2015), 925–934. 5
- Shen Y., Barner K. E.: Fuzzy vector median-based surface smoothing. IEEE Trans. Vis. & Comp. Graphics 10, 3 (2004), 252–265. 3
- Sun X., Rosin P., Martin R., Langbein F.: Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. & Comp. Graphics 13, 5 (2007), 925–938. 1, 2, 7, 8
- Tao P. D., An L. T. H.: Convex analysis approach to dc programming: Theory, algorithms and applications. Acta Mathematica Vietnamica 22, 1 (1997), 289–355. 6
- Taubin G.: A signal processing approach to fair surface design. Proc. of SIGGRAPH (1995), 351–358. 2
- Taubin G.: Linear anisotropic mesh filtering. IBM Research Report RC22213 (W0110-051), IBM T. J. Watson Research Center (2001). 2
- Visionair. [Online; accessed 11-August-2017]. 9, 10
- Tuzel O., Porikli F., Meer P.: Region covariance: A fast descriptor for detection and classification. ECCV (2006), 589–600. 3
- Tasdizen T., Whitaker R., Burchard P., Osher S.: Geometric surface processing via normal maps. ACM Trans. on Graphics 22, 4 (2003), 1012–1033. 3
- Vollmer J., Mencl R., Mueller H.: Improved Laplacian smoothing of noisy surface meshes. Computer Graphics Forum (Eurographics) 18, 3 (1999), 131–138. 2
- Wright J., Ganesh A., Rao S., Peng Y., Ma Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. NIPS (2009), 2080–2088. 5, 9
- Wang P.-S., Liu Y., Tong X.: Mesh denoising via cascaded normal regression. ACM Trans. on Graphics (SIGGRAPH Asia) 35, 6 (2016), 232: 1–12. 1, 2, 8, 9, 10
- Wang R., Yang Z., Liu L., Deng J., Chen F.: Decoupling noise and features via weighted L1-analysis compressed sensing. ACM Trans. on Graphics 33, 2 (2014), 18: 1–12. 1, 2
- Wei M., Yu J., Pang W.-M., Wang J., Qin J., Liu L., Heng P.-A.: Bi-normal filtering for mesh denoising. IEEE Trans. Vis. & Comp. Graphics 21, 1 (2015), 43–55. 1, 2, 3, 8
- Wu X., Zheng J., Cai Y., Fu C.-W.: Mesh denoising using extended ROF model with L1 fidelity. Computer Graphics Forum (Pacific Graphics) 34, 7 (2015), 35–45. 1, 2
- Xu L., Yan Q., Xia Y., Jia J.: Structure extraction from texture via relative total variation. ACM Trans. on Graphics (SIGGRAPH Asia) 31, 6 (2012), 139: 1–10. 5
- Yadav S. K., Reitebuch U., Polthier K.: Mesh denoising based on normal voting tensor and binary optimization. IEEE Trans. Vis. & Comp. Graphics (2017). to appear. 1, 2, 3, 8
- Yadav S. K., Reitebuch U., Polthier K.: Robust and high fidelity mesh denoising. IEEE Trans. Vis. & Comp. Graphics (2018). to appear. 1, 2, 3, 8
- Zhang W., Deng B., Zhang J., Bouaziz S., Liu L.: Guided mesh normal filtering. Computer Graphics Forum (Pacific Graphics) 34, 7 (2015), 23–34. 1, 2, 3, 7, 8, 10
- Zheng Y., Fu H., Au O. K.-C., Tai C.-L.: Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. & Comp. Graphics 17, 10 (2011), 1521–1530. 1, 2, 3, 4, 8, 10
- Zhu L., Fu C.-W., Brown M. S., Heng P.-A.: A nonlocal low-rank framework for ultrasound speckle reduction. In IEEE CVPR (2017), pp. 5650–5658. 1, 7
- Zhu L., Fu C.-W., Jin Y., Wei M., Qin J., Heng P.-A.: Non-local sparse and low-rank regularization for structure-preserving image smoothing. Computer Graphics Forum (Pacific Graphics) 35, 7 (2016), 217–226. 1, 5
- Zhang D., Hu Y., Ye J., Li X., He X.: Matrix completion by truncated nuclear norm regularization. IEEE CVPR (2012), 2192–2199. 5
- Zhao Y., Qin H., Zeng X., Xu J., Dong J.: Robust and effective mesh denoising using L0 sparse regularization. Computer-Aided Design 101 (2018), 82–97. 2
- Zheng Q., Sharf A., Wan G., Li Y., Mitra N. J., Cohen-Or D., Chen B.: Non-local scan consolidation for 3D urban scenes. ACM Trans. on Graphics (SIGGRAPH) 29, 4 (2010), 94: 1–9. 3
- Zhu L., Wei M., Yu J., Wang W., Qin J., Heng P.-A.: Coarse-to-fine normal filtering for feature-preserving mesh denoising based on isotropic subneighborhoods. Computer Graphics Forum (Pacific Graphics) 32, 7 (2013), 371–380. 1, 2, 3
- Zhang H., Wu C., Zhang J., Deng J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. & Comp. Graphics 21, 7 (2015), 873–886. 2
- Zhong S., Xie Z., Wang W., Liu Z., Liu L.: Mesh denoising via total variation and weighted laplacian regularizations. Computer Animation and Virtual Worlds (2018), e1827:1–e1827:12. 3