Reformulating Hyperelastic Materials with Peridynamic Modeling
Abstract
Peridynamics is a formulation of the classical elastic theory that is targeted at simulating deformable objects with discontinuities, especially fractures. Till now, there are few studies that have been focused on how to model general hyperelastic materials with peridynamics. In this paper, we target at proposing a general strain energy function of hyperelastic materials for peridynamics. To get an intuitive model that can be easily controlled, we formulate the strain energy density function as a function parameterized by the dilatation and bond stretches, which can be decomposed into multiple one-dimensional functions independently. To account for nonlinear material behaviors, we also propose a set of nonlinear basis functions to help design a nonlinear strain energy function more easily. For an anisotropic material, we additionally introduce an anisotropic kernel to control the elastic behavior for each bond independently. Experiments show that our model is flexible enough to approximately regenerate various hyperelastic materials in classical elastic theory, including St. Venant-Kirchhoff and Neo-Hookean materials.
References
- Bickel B., Bächer M., Otaduy M. A., Matusik W., Pfister H., Gross M.: Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics (TOG) 28, 3 (2009), 89. 2
- Bourguignon D., Cani M.-P.: Controlling anisotropy in mass-spring systems. In Computer animation and simulation (2000), vol. 2000, Springer, pp. 113–123. 2
- Becker M., Ihmsen M., Teschner M.: Corotated SPH for deformable solids. In Eurographics Workshop on Natural Phenomena (2009), Citeseer, pp. 27–34. 2
- Barbič J., James D. L.: Real-time subspace integration for st. venant-kirchhoff deformable models. 982–990. 2
- Bouaziz S., Martin S., Liu T., Kavan L., Pauly M.: Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014), 154: 1–154:11. 2
- Bender J., Müller M., Macklin M.: Position-based simulation methods in computer graphics. EUROGRAPHICS Tutorial Notes (2015). 7
- Chen D., Levin D. I., Sueda S., Matusik W.: Data-driven finite elements for geometry and material design. ACM Transactions on Graphics (TOG) 34, 4 (2015), 74. 2
- Chu M., Thuerey N.: Data-driven synthesis of smoke flows with cnn-based feature descriptors. arXiv preprint arXiv:1705.01425 (2017). 9
- Chen W., Zhu F., Zhao J., Li S., Wang G.: Peridynamics-based fracture animation for elastoplastic solids. Computer Graphics Forum 37, 1 (2017), 112–124. 3
- Desbrun M., Gascuel M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. Springer, 1996. 2
- Goldenthal R., Harmon D., Fattal R., Bercovier M., Grinspun E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (July 2007). 2
- Gibson S. F., Mirtich B.: A survey of deformable modeling in computer graphics. Tech. rep., Technical Report, Mitsubishi Electric Research Laboratories, 1997. 2
- Gerstle W., Sau N., Silling S.: Peridynamic modeling of concrete structures. Nuclear engineering and design 237, 12–13 (2007), 1250–1258. 1
- Hu W., Ha Y. D., Bobaru F., Silling S. A.: The formulation and computation of the nonlocal j-integral in bond-based peridynamics. International journal of fracture 176, 2 (2012), 195–206. 1
- He X., Wang H., Wu E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE transactions on visualization and computer graphics (2017). 2, 3, 6
- Jung S., Ghaboussi J.: Neural network constitutive model for rate-dependent materials. Computers & Structures 84, 15 (2006), 955–963. 9
- Jones B., Ward S., Jallepalli A., Perenia J., Bargteil A. W.: Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33, 2 (2014), 21. 2
- Kharevych L., Mullen P., Owhadi H., Desbrun M.: Numerical coarsening of inhomogeneous elastic materials. ACM Transactions on Graphics (TOG) 28, 3 (2009), 51. 2
- Li Y., Barbič J.: Stable orthotropic materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2014), Eurographics Association, pp. 41–46. 2
- Li Y., Barbič J.: Stable anisotropic materials. IEEE transactions on visualization and computer graphics 21, 10 (2015), 1129–1137. 2
- Levine J. A., Bargteil A. W., Corsi C., Tessendorf J., Geist R.: A peridynamic perspective on spring-mass fracture. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2014), Eurographics Association, pp. 47–55. 2, 3
- Liu T., Bouaziz S., Kavan L.: Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36 (2017). 2, 6
- Liu T., Bargteil A. W., O'Brien J. F., Kavan L.: Fast simulation of mass-spring systems. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6 (Nov. 2013), 214: 1–214:7. 2
- Müller M., Chentanez N.: Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July 2011), 92: 1–92:10. 2
- Müller M., Gross M.: Interactive virtual materials. In Proceedings of Graphics Interface 2004 (2004), Canadian Human-Computer Communications Society, pp. 239–246. 2
- Müller M., Heidelberger B., Hennix M., Ratcliff J.: Position based dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr. 2007), 109–118. 2
- Macklin M., Müller M., Chentanez N., Kim T.-Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (SIGGRAPH) 33, 4 (2014), 153. 2
- McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Transactions on Graphics (TOG) (2011), Vol. 30, ACM, p. 37. 2
- Narain R., Overby M., Brown G. E.: Admm ⊇ projective dynamics: fast simulation of general constitutive models. In Symposium on Computer Animation (2016), pp. 21–28. 2
- O'brien J. F., Hodgins J. K.: Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM Press/Addison-Wesley Publishing Co., pp. 137–146. 2
- Picinbono G., Delingette H., Ayache N.: Nonlinear and anisotropic elastic soft tissue models for medical simulation. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on (2001), Vol. 2, IEEE, pp. 1370–1375. 2
- Rivers A. R., James D. L.: Fastlsm: fast lattice shape matching for robust real-time deformation. 82. 2
- Silling S. A., Askari E.: A meshfree method based on the peridynamic model of solid mechanics. Computers & structures 83, 17–18 (2005), 1526–1535. 7, 9
- Silling S. A., Bobaru F.: Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics 40, 2–3 (2005), 395–409. 1
- Silling S. A., Epton M., Weckner O., Xu J., Askari E.: Peridynamic states and constitutive modeling. Journal of Elasticity 88, 2 (2007), 151–184. 3
- Silling S. A.: Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids 48, 1 (2000), 175–209. 1, 3
- Silling S. A., Lehoucq R. B.: Convergence of peridynamics to classical elasticity theory. Journal of Elasticity 93, 1 (2008), 13. 1
- Schumacher C., Thomaszewski B., Coros S., Martin S., Sumner R., Gross M.: Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (2012), Eurographics Association, pp. 1–8. 2
- Unger J. F., Könke C.: Neural networks as material models within a multiscale approach. Computers & Structures 87, 19 (2009), 1177–1186. 9
- Volino P., Magnenat-Thalmann N., Faure F.: A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Transactions on Graphics 28, 4 (2009), Article–No. 2
- Wu X., Downes M. S., Goktekin T., Tendick F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In Computer Graphics Forum (2001), Vol. 20, Wiley Online Library, pp. 349–358. 2
- Wang H., Yang Y.: Descent methods for elastic body simulation on the gpu. ACM Transactions on Graphics (TOG) 35, 6 (2016), 212. 2
- Xu H., Sin F., Zhu Y., Barbič J.: Nonlinear material design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015), 75. 2, 4, 5