Mumford-Shah Mesh Processing using the Ambrosio-Tortorelli Functional
Jacques-Olivier Lachaud
Université Savoie Mont Blanc
*joint first authors
Search for more papers by this authorJacques-Olivier Lachaud
Université Savoie Mont Blanc
*joint first authors
Search for more papers by this authorAbstract
The Mumford-Shah functional approximates a function by a piecewise smooth function. Its versatility makes it ideal for tasks such as image segmentation or restoration, and it is now a widespread tool of image processing. Recent work has started to investigate its use for mesh segmentation and feature lines detection, but we take the stance that the power of this functional could reach far beyond these tasks and integrate the everyday mesh processing toolbox. In this paper, we discretize an Ambrosio-Tortorelli approximation via a Discrete Exterior Calculus formulation. We show that, combined with a new shape optimization routine, several mesh processing problems can be readily tackled within the same framework. In particular, we illustrate applications in mesh denoising, normal map embossing, mesh inpainting and mesh segmentation.
Supporting Information
Filename | Description |
---|---|
cgf13549-sup-0001-S1.zip122 MB | Supplement Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Attene M., Katz S., Mortara M., Patané G., Spagnuolo M., Tal A.: Mesh segmentation-a comparative study. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on (2006), IEEE, pp. 7–7. 5
- Ambrosio L., Tortorelli V. M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Comm. Pure and App. Math. 43, 8 (1990). 2, 3
- Ben-Ari R., Sochen N.: Stereo matching with Mumford-Shah regularization and occlusion handling. IEEE Trans. on Pattern Analysis and Machine Intelligence 32, 11 (2010), 2071–2084. 1, 3
- Bourdin B., Chambolle A.: Implementation of an adaptive finite-element approximation of the mumford-shah functional. Numerische Mathematik 85 (2000), 609–646. 2
- Bouaziz S., Deuss M., Schwartzburg Y., Weise T., Pauly M.: Shape-up: Shaping discrete geometry with projections. In Computer Graphics Forum (2012), Vol. 31, Wiley Online Library, pp. 1657–1667. 4
- Bertsekas D. P.: Nonlinear programming, 2nd ed. Athena scientific, 1999. 4
- Bar L., Sochen N., Kiryati N.: Semi-blind image restoration via mumford-shah regularization. IEEE Trans. on Image Proc. 15, 2 (2006). 1, 3
- Crane K., deGoes F., Desbrun M., SchrÃűder P.: Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 courses (2013). 4, 7
- Chambolle A., Dal Maso G.: Discrete approximation of the mumford-shah functional in dimension two. Mathematical Modelling and Numerical Analysis 33, 4 (1999), 651–672. 2
- Chan T. F., Esedoglu S., Nikolova M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics 66, 5 (2006), 1632–1648. 2
- Coeurjolly D., Foare M., Gueth P., Lachaud J.: Piecewise smooth reconstruction of normal vector field on digital data. Comput. Graph. Forum (Pacific Graphics) 35, 7 (2016), 157–167. 2, 3
- Chen X., Golovinskiy A., Funkhouser T.: A benchmark for 3d mesh segmentation. In ACM Trans. Graph. (2009), Vol. 28, ACM, p. 73. 5, 6
- Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approximation. ACM Trans. Graph. (SIGGRAPH) (2004). 3
- Esedoglu S., Shen J.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13 (2002), 353–370. 1, 2
- Fleishman S., Drori I., Cohen-Or D.: Bilateral mesh denoising. In ACM Trans. Graph. (2003), vol. 22. 4, 6, 8
- Focardi M., Iurlano F.: Asymptotic analysis of ambrosio–tortorelli energies in linearized elasticity. SIAM Journal on Mathematical Analysis 46, 4 (2014), 2936–2955. 2, 3
- Foare M., Lachaud J.-O., Talbot H.: Image restoration and segmentation using the ambrosio-tortorelli functional and discrete calculus. In Pattern Recognition (ICPR), 2016 23rd International Conference on (2016), IEEE, pp. 1418–1423. 2
- Fabri A., Pion S.: Cgal: The computational geometry algorithms library. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems (2009), ACM, pp. 538–539. 6
- Golovinskiy A., Funkhouser T.: Randomized cuts for 3d mesh analysis. In ACM Trans. Graph. (2008), Vol. 27, p. 145. 9
- Guennebaud G., Jacob B., et al.: Eigen v3. http://eigen.tuxfamily.org, 2010. 7
- Hirani A. N.: Discrete Exterior Calculus. PhD thesis, Pasadena, CA, USA, 2003. AAI3086864. 2
- He L., Schaefer S.: Mesh denoising via 1 0 minimization. ACM Transactions on Graphics (TOG) 32, 4 (2013), 64. 6, 8
- Kalogerakis E., Averkiou M., Maji S., Chaudhuri S.: 3d shape segmentation with projective convolutional networks. Proc. CVPR, IEEE 2 (2017). 9
- Keuper M., Levinkov E., Bonneel N., Lavoué G., Brox T., Andres B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1751–1759. 5, 9
- Lavoué G., Gelasca E. D., Dupont F., Baskurt A., Ebrahimi T.: Perceptually driven 3d distance metrics with application to watermarking. In SPIE Optics+ Photonics (2006), International Society for Optics and Photonics, pp. 63120L-63120L. 8
- Lai Y.-K., Hu S.-M., Martin R. R., Rosin P. L.: Fast mesh segmentation using random walks. In Proc. ACM Symp. on Solid and Physical Modeling (2008), pp. 183–191. 9
- Liepa P.: Filling holes in meshes. In Eurographics/ACM SIGGRAPH Symp. on Geometry Proc. (2003), pp. 200–205. 6
- Mumford D., Shah J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Applied Mathematics (1989), 577–685. 1, 2
- Nivoliers V., Lévy B., Geuzaine C.: Anisotropic and feature sensitive triangular remeshing using normal lifting. Journal of Computational and Applied Mathematics 289 (2015), 225–240. 9
- Pottman H., Asperl A., Hofer M., Kilian A., Bentley D.: Architectural geometry, vol. 724. Bentley Institute Press Exton, 2007. 4
- Pokrass J., Bronstein A. M., Bronstein M. M.: A correspondence-less approach to matching of deformable shapes. In Int. Conf. Scale Space and Variational Meth. in Comp. Vis. (2011). 2
- Ray N., Nivoliers V., Lefebvre S., Lévy B.: Invisible seams. In Comp. Graph. Forum (2010), vol. 29. 5
- Sharf A., Blumenkrants M., Shamir A., Cohen-Or D.: Snappaste: an interactive technique for easy mesh composition. The Visual Computer 22, 9 (2006), 835–844. 9
- Schüssler V., Heitz E., Hanika J., Dachsbacher C.: Microfacet-based normal mapping for robust Monte Carlo path tracing. ACM Trans. Graph. (SIGGRAPH Asia) 36, 6 (2017). 7
- Sun X., Rosin P., Martin R., Langbein F.: Fast and effective feature-preserving mesh denoising. IEEE transactions on visualization and computer graphics 13, 5 (2007). 4, 6, 8
- Shapira L., Shamir A., Cohen-Or D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24, 4 (2008), 249. 9
- Taubin G.: Linear anisotropic mesh filtering. Res. Rep. RC2213 IBM 1, 4 (2001). 4
- Tong W., Tai X.: A variational approach for detecting feature lines on meshes. J. of Comp. Math. 34, 1 (2016). 1, 2, 3, 4, 5, 7
- Tsai A., Yezzi A., Willsky A. S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10, 8 (2001), 1169–1186. 1, 2, 3, 9
- Vese L. A., Chan T. F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50, 3 (Dec 2002), 271–293. 1, 2
- Veach E.: Robust Monte Carlo methods for light transport simulation. Stanford University Stanford, 1998. 7
- Wang P.-S., Fu X.-M., Liu Y., Tong X., Liu S.-L., Guo B.: Rolling guidance normal filter for geometric processing. ACM Transactions on Graphics (TOG) 34, 6 (2015), 173. 9
- Yu Y., Zhou K., Xu D., Shi X., Bao H., Guo B., Shum H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23, 3 (Aug. 2004), 644–651. 3
- Zhang J., Deng B., Hong Y., Peng Y., Qin W., Liu L.: Static/dynamic filtering for mesh geometry. IEEE Transactions on Visualization & Computer Graphics, 1, 1–1. 9
- Zhang W., Deng B., Zhang J., Bouaziz S., Liu L.: Guided mesh normal filtering. Computer Graphics Forum (Pacific Graphics) 34 (2015). 6, 8
- Zheng Y., Fu H., Au O. K.-C., Tai C.-L.: Bilateral normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer Graphics 17, 10 (2011), 1521–1530. 6, 8
- Zorin D.: Curvature-based energy for simulation and variational modeling. In International Conference on Shape Modeling and Applications 2005 (SMI’ 05) (June 2005), pp. 196–204. 3
- Zhang H., Wu C., Zhang J., Deng J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE transactions on visualization and computer graphics 21, 7 (2015), 873–886. 3
- Zhang J., Zheng J., Wu C., Cai J.: Variational mesh decomposition. ACM Trans. Graph. 31, 3 (2012), 21: 1–21:14. 1, 2, 3