Online Global Non-rigid Registration for 3D Object Reconstruction Using Consumer-level Depth Cameras
Corresponding Author
Weiwei Xu
State Key Lab of CAD&CG, Zhejiang University
Corresponding author: Weiwei Xu ([email protected])Search for more papers by this authorCorresponding Author
Weiwei Xu
State Key Lab of CAD&CG, Zhejiang University
Corresponding author: Weiwei Xu ([email protected])Search for more papers by this authorAbstract
We investigate how to obtain high-quality 360-degree 3D reconstructions of small objects using consumer-level depth cameras. For many homeware objects such as shoes and toys with dimensions around 0.06 – 0.4 meters, their whole projections, in the hand-held scanning process, occupy fewer than 20% pixels of the camera's image. We observe that existing 3D reconstruction algorithms like KinectFusion and other similar methods often fail in such cases even under the close-range depth setting. To achieve high-quality 3D object reconstruction results at this scale, our algorithm relies on an online global non-rigid registration, where embedded deformation graph is employed to handle the drifting of camera tracking and the possible nonlinear distortion in the captured depth data. We perform an automatic target object extraction from RGBD frames to remove the unrelated depth data so that the registration algorithm can focus on minimizing the geometric and photogrammetric distances of the RGBD data of target objects. Our algorithm is implemented using CUDA for a fast non-rigid registration. The experimental results show that the proposed method can reconstruct high-quality 3D shapes of various small objects with textures.
Supporting Information
Filename | Description |
---|---|
cgf13542-sup-0001-S1.mp445.7 MB | Supplement Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Bay H., Ess A., Tuytelaars T., Gool L. J. V.: Speededup robust features (SURF). Computer Vision and Image Understanding, CVIU, 110, 3 (2008), 346–359. 2
- Beck S., Fröhlich B.: Volumetric calibration and registration of multiple rgbd-sensors into a joint coordinate system. In IEEE Symposium on 3D User Interfaces, 3DUI, (2015), pp. 89–96. 1
- Bornik A., Karner K. F., Bauer J., Leberl F., Mayer H.: High-quality texture reconstruction from multiple views. Journal of Visualization and Computer Animation, JVCA, 12, 5 (2001), 263–276. 3
- Bi S., Kalantari N. K., Ramamoorthi R.: Patch-based optimization for image-based texture mapping. ACM Transactions on Graphics, TOG, 36, 4 (2017), 106: 1–106:11. 3
- Bian J., Lin W., Matsushita Y., Yeung S., Nguyen T., Cheng M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, (2017), pp. 2828–2837. 4, 9
- Besl P. J., McKay N. D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 14, 2 (1992), 239–256. 2
- Brown B. J., Rusinkiewicz S.: Non-rigid range-scan alignment using thin-plate splines. In International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT, (Sept 2004), pp. 759–765. 3
- Brown B. J., Rusinkiewicz S.: Global non-rigid alignment of 3-d scans. ACM Transactions on Graphics, TOG, 26, 3 (2007), 21. 3
- From 3d reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage 11, 1 (2010), 42–49. 1
- Corsini M., Dellepiane M., Ganovelli F., Gherardi R., Fusiello A., Scopigno R.: Fully automatic registration of image sets on approximate geometry. International Journal of Computer Vision, IJCV, 102, 1–3 (2013), 91–111. 3
- Crete F., Dolmiere T., Ladret P., Nicolas M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. 64920i. 4
- Corsini M., Dellepiane M., Ponchio F., Scopigno R.: Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Computer Graphics Forum, CGF, 28, 7 (2009), 1755–1764. 3
- Chen Y., Medioni G.: Object modeling by registration of multiple range images. In IEEE International Conference on Robotics and Automation, ICRA, (1991), pp. 2724–2729 vol.3. 2
- Choi S., Zhou Q. Y., Koltun V.: Robust reconstruction of indoor scenes. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, (June 2015), pp. 5556–5565. 2
- Dou M., Khamis S., Degtyarev Y., Davidson P. L., Fanello S. R., Kowdle A., Orts-Escolano S., Rhemann C., Kim D., Taylor J., Kohli P., Tankovich V., Izadi S.: Fusion4d: real-time performance capture of challenging scenes. ACM Transactions on Graphics, TOG, 35, 4 (2016), 114: 1–114:13. 3, 7
- Dai A., Niessner M., Zollhöfer M., Izadi S., Theobalt C.: Bundlefusion: real-time globally consistent 3d reconstruction using on-the-fly surface re-integration. ACM Transactions on Graphics, TOG, 36, 4 (2017). 2, 3
- Endres F., Hess J., Engelhard N., Sturm J., Cremers D., Burgard W.: An evaluation of the RGB-D SLAM system. In International Conference on Robotics and Automation, ICRA, (2012), pp. 1691–1696. 2
- Guo K., Xu F., Wang Y., Liu Y., Dai Q.: Robust nonrigid motion tracking and surface reconstruction using l0 regularization. IEEE Transactions on Visualization and Computer Graphics, TVCG, 24, 5 (2018), 1770–1783. 3
- Henry P., Krainin M., Herbst E., Ren X., Fox D.: RGB-D mapping: Using depth cameras for dense 3d modeling of indoor environments. In International Symposium on Experimental Robotics, ISER (2010), pp. 477–491. 2
- Harltey A., Zisserman A.: Multiple view geometry in computer vision ( 2. ed.). Cambridge University Press, 2006. 2
- Kazhdan M. M., Bolitho M., Hoppe H.: Poisson surface reconstruction. In Eurographics Symposium on Geometry Processing, SGP, (2006), pp. 61–70. 4
- Kähler O., Prisacariu V. A., Murray D. W.: Real-time large-scale dense 3d reconstruction with loop closure. In European Conference on Computer Vision, ECCV, (2016), pp. 500–516. 2
- Kerl C., Sturm J., Cremers D.: Dense visual slam for rgb-d cameras. In International Conference on Intelligent Robots and Systems, IROS, (Nov 2013), pp. 2100–2106. 2
- Kerl C., Sturm J., Cremers D.: Robust odometry estimation for rgb-d cameras. In IEEE International Conference on Robotics and Automation, ICRA, (May 2013), pp. 3748–3754. 2
- Lempitsky V., Ivanov D.: Seamless mosaicing of image-based texture maps. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, (June 2007), pp. 1–6. 3
- Lowe D. G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, IJCV, 60, 2 (2004), 91–110. 2
- Levoy M., Pulli K., Curless B., Rusinkiewicz S., Koller D., Pereira L., Ginzton M., Anderson S., Davis J., Ginsberg J., Shade J., Fulk D.: The digital michelangelo project: 3d scanning of large statues. In ACM SIG International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, (2000), pp. 131–144. 3
- Newcombe R. A., Fox D., Seitz S. M.: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, (2015), pp. 343–352. 3, 7, 9
- Newcombe R. A., Izadi S., Hilliges O., Molyneaux D., Kim D., Davison A. J., Kohi P., Shotton J., Hodges S., Fitzgibbon A.: Kinectfusion: Real-time dense surface mapping and tracking. In International Symposium on Mixed and Augmented Reality, ISMAR, (2011), pp. 127–136. 1, 2, 7, 8
- Niessner M., Zollhöfer M., Izadi S., Stamminger M.: Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics, TOG, 32, 6 (2013), 169: 1–169:11. 1, 2
- Rusu R. B., Blodow N., Beetz M.: Fast point feature histograms (FPFH) for 3d registration. In International Conference on Robotics and Automation, ICRA, (2009), pp. 3212–3217. 2, 7
- Rublee E., Rabaud V., Konolige K., Bradski G. R.: ORB: an efficient alternative to SIFT or SURF. In IEEE International Conference on Computer Vision, ICCV, (2011), pp. 2564–2571. 2, 7
- Roth H., Vona M.: Moving volume kinectfusion. In British Machine Vision Conference, BMVC, (2012), pp. 1–11. 2
- Reitinger B., Zach C., Schmalstieg D.: Augmented reality scouting for interactive 3d reconstruction. In IEEE Virtual Reality, VR, (2007), pp. 219–222. 1
- Sorkine O., Alexa M.: As-rigid-as-possible surface modeling. In Eurographics Symposium on Geometry Processing, (2007), pp. 109–116. 3
- Sheng Y., Kang C., Minghua L., Hongbo F., ShiŘĂŘMin H.: Salienc-aware real-time volumetric fusion for object reconstruction. Computer Graphics Forum 36, 7 (2017), 167–174. 2
- Sumner R. W., Schmid J., Pauly M.: Embedded deformation for shape manipulation. ACM Transactions on Graphics, TOG, 26, 3 (2007), 80. 2, 3, 5, 6
- Wikipedia: Structured-light 3d scanner. https://en.wikipedia.org/wiki/Structured-light_3D_scanner. 2
- Whelan T., Kaess M., Fallon M., Johannsson H., Leonard J., McDonald J.: Kintinuous: Spatially extended kinectfusion. p. 7. 2
- Whelan T., Leutenegger S., Salas-Moreno R. F., Glocker B., Davison A. J.: Elasticfusion: Dense SLAM without A pose graph. In Robotics: Science and Systems XI, Sapienza University of Rome, (2015). 1, 2, 3, 7, 8
- Waechter M., Moehrle N., Goesele M.: Let there be color! large-scale texturing of 3d reconstructions. In European Conference on Computer Vision, ECCV, (2014), pp. 836–850. 3, 4
- Weise T., Wismer T., Leibe B., Gool L. V.: In-hand scanning with online loop closure. In International Conference on Computer Vision Workshops, ICCV Workshops (2009), pp. 1630–1637. 2, 3
- Wang K., Zhang G., Bao H.: Robust 3d reconstruction with an RGB-D camera. IEEE Transactions on Image Processing, TIP, 23, 11 (2014), 4893–4906. 1
- Yang L., Yan Q., Fu Y., Xiao C.: Surface reconstruction via fusing sparse-sequence of depth images. IEEE Transactions on Visualization and Computer Graphics 24, 2 (2018), 1190–1203. 2
- Zhou Q., Koltun V.: Color map optimization for 3d reconstruction with consumer depth cameras. ACM Transactions on Graphics, TOG, 33, 4 (2014), 155: 1–155:10. 3
- Zhou Q., Koltun V.: Depth camera tracking with contour cues. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, (2015), pp. 632–638. 2
- Zhou Q., Miller S., Koltun V.: Elastic fragments for dense scene reconstruction. In International Conference on Computer Vision, ICCV, (2013), pp. 473–480. 2, 3, 8, 9
- Zollhöfer M., Niessner M., Izadi S., Rhemann C., Zach C., Fisher M., Wu C., Fitzgibbon A. W., Loop C. T., Theobalt C., Stamminger M.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Transactions on Graphics, TOG, 33, 4 (2014), 156: 1–156:12. 3
- Zhou Q., Park J., Koltun V.: Fast global registration. In European Conference on Computer Vision, ECCV, (2016), pp. 766–782. 2
- Zeng M., Zhao F., Zheng J., Liu X.: A memory-efficient kinectfusion using octree. In Proceedings of the First International Conference on Computational Visual Media(2012), International conference on Computational Visual Media, CVM, Springer-Verlag, pp. 234–241. 2