Volume 32, Issue 3pt4 pp. 481-490

Interactive Ray Casting of Geodesic Grids

Jinrong Xie

Jinrong Xie

University of California-Davis, USA

Search for more papers by this author
Hongfeng Yu

Hongfeng Yu

University of Nebraska-Lincoln, USA

Search for more papers by this author
Kwan-Liu Ma

Kwan-Liu Ma

University of California-Davis, USA

Search for more papers by this author
First published: 01 July 2013
Citations: 9

Abstract

Geodesic grids are commonly used to model the surface of a sphere and are widely applied in numerical simulations of geoscience applications. These applications range from biodiversity, to climate change and to ocean circulation. Direct volume rendering of scalar fields defined on a geodesic grid facilitates scientists in visually understanding their large scale data. Previous solutions requiring to first transform the geodesic grid into another grid structure (e.g., hexahedral or tetrahedral grid) for using graphics hardware are not acceptable for large data, because such approaches incur significant computing and storage overhead. In this paper, we present a new method for efficient ray casting of geodesic girds by leveraging the power of Graphics Processing Units (GPUs). A geodesic grid can be directly fetched from storage or streamed from simulations to the rendering stage without the need of any intermediate grid transformation. We have designed and implemented a new analytic scheme to efficiently perform value interpolation for ray integration and gradient calculations for lighting. This scheme offers a more cost-effective rendering solution over the existing direct rendering approach. We demonstrate the effectiveness of our rendering solution using real-world geoscience data.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.