TrajectoryLenses – A Set-based Filtering and Exploration Technique for Long-term Trajectory Data
Robert Krüger
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorDennis Thom
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorMichael Wörner
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorHarald Bosch
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorThomas Ertl
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorRobert Krüger
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorDennis Thom
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorMichael Wörner
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorHarald Bosch
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorThomas Ertl
Institute for Visualization and Interactive Systems, University of Stuttgart, Germany
Search for more papers by this authorAbstract
The visual analysis of spatiotemporal movement is a challenging task. There may be millions of routes of different length and shape with different origin and destination, extending over a long time span. Furthermore there can be various correlated attributes depending on the data domain, e.g. engine measurements for mobility data or sensor data for animal tracking. Visualizing such data tends to produce cluttered and incomprehensible images that need to be accompanied by sophisticated filtering methods. We present TrajectoryLenses, an interaction technique that extends the exploration lens metaphor to support complex filter expressions and the analysis of long time periods. Analysts might be interested only in movements that occur in a given time range, traverse a certain region, or end at a given area of interest (AOI). Our lenses can be placed on an interactive map to identify such geospatial AOIs. They can be grouped with set operations to create powerful geospatial queries. For each group of lenses, users can access aggregated data for different attributes like the number of matching movements, covered time, or vehicle performance. We demonstrate the applicability of our technique on a large, real-world dataset of electric scooter tracks spanning a 2-year period.
Supporting Information
Please note: Wiley-Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.
Filename | Description |
---|---|
CGF_12132_sm_0262-file1.wmv26.5 MB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- [AABW12] Andrienko G., Andrienko N., Burch M., Weiskopf D.: Visual analytics methodology for eye movement studies. IEEE Trans. Visualization and Computer Graphics 18, 12 (2012), 2889–2898. 3.
- [AAJ*07] Andrienko G., Andrienko N., Jankowski P., Keim D., Kraak M., MacEachren A., Wrobel S.: Geovisual analytics for spatial decision support: Setting the research agenda. International Journal of Geographical Information Science 21, 8 (2007), 839–857. 3.
- [AF06] Appert C., Fekete J. D.: OrthoZoom scroller: 1D multi-scale navigation. In Proc SIGCHI Conf Human Factors in Computing Systems (2006), pp. 21–30. 6.
- [AS94] Ahlberg C., Shneiderman B.: The alphaslider: a compact and rapid selector. In Proc SIGCHI Conf Human Factors in Computing Systems: Celebrating Interdependence (1994), pp. 365–371. 6.
- [BDW*08] Butkiewicz T., Dou W., Wartell Z., Ribarsky W., Chang R.: Multi-focused geospatial analysis using probes. IEEE Trans. Visualization and Computer Graphics 14, 6 (2008), 1165–1172. 2.
- [BHM*09] Bosch H., Heinrich J., Müller C., Höferlin B., Reina G., Höferlin M., Wörner M., Koch S.: Innovative filtering techniques and customized analytic tools. In IEEE Symp. Visual Analytics Science and Technology (VAST) (2009), pp. 269–270. 3.
- [BSP*93] Bier E. A., Stone M. C., Pier K., Buxton W., DeRose T. D.: Toolglass and Magic Lenses: The See-Through Interface. In Proc 20th Annual Conf Computer Graphics and Interactive Techniques (1993), ACM, pp. 73–80. 2.
- [BSP97] Bier E., Stone M., Pier K.: Enhanced illustration using magic lens filters. IEEE Computer Graphics and Applications 17, 6 (1997), 62–70. 2.
- [CKB09] Cockburn A., Karlson A., Bederson B. B.: A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 41, 1 (Jan 2009), 2:1–2:31. 2.
- [DGH03] Doleisch H., Gasser M., Hauser H.: Interactive feature specification for focus+context visualization of complex simulation data. In VisSym (2003), Eurographics Association. 3.
- [EDF08] Elmqvist N., Dragicevic P., Fekete J.-D.: Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Visualization and Computer Graphics 14, 6 (nov.dec. 2008), 1539–1148. 3.
- [EKHW07] Eccles R., Kapler T., Harper R., Wright W.: Stories in geotime. In IEEE Symp Visual Analytics Science and Technology (VAST) (30 2007–nov. 1 2007), pp. 19–26. 3.
- [EnB10a] EnBW Energie Baden-Württemberg AG: Mission E-Mobilitaet – Elektronauten in Stuttgart, 2010. URL: https://www.enbw.com/elektronauten/. 1.
- [EnB10b] EnBW Energie Baden-Württemberg AG: President of the E-Mobility Federal Association in Berlin: EnBW starts Germany's largest electric fleet, February 2010. URL: http://www.enbw.com/content/en/press/press_releases/2010/02/pm_20100219_cu_si/. 1.
- [EST08] Elmqvist N., Stasko J., Tsigas P.: Datameadow: A visual canvas for analysis of large-scale multivariate data. Information Visualization 7, 1 (2008), 18–33. 3.
- [FLF*11] Ferreira N., Lins L., Fink D., Kelling S., Wood C., Freire J., Silva C.: Birdvis: Visualizing and understanding bird populations. IEEE Trans. Visualization and Computer Graphics 17, 12 (dec 2011), 2374–2383. 3.
- [Fur86] Furnas G. W.: Generalized fisheye views. In Proc SIGCHI Conf Human Factors in Computing Systems ( Boston , Massachusetts , United States , 1986), ACM, pp. 16–23. 2.
- [Fur06]
Furnas G. W.: A fisheye follow-up: further reflections on focus + context. In
Proc SIGCHI Conf Human Factors in Computing Systems (
Montréal
,
Québec
,
Canada
, 2006), ACM, pp.
999–1008. 2.
10.1145/1124772.1124921 Google Scholar
- [HHWH11] Höferlin M., Höferlin B., Weiskopf D., Heidemann G.: Interactive schematic summaries for exploration of surveillance video. In Proc of the ACM International Conference on Multimedia Retrieval (ICMR '11) (2011), ACM, pp. 9:1–9:8. 3.
- [HS04]
Hochheiser H.,
Shneiderman B.: Dynamic query tools for time series data sets: timebox widgets for interactive exploration.
Information Visualization
3, 1 (Mar 2004), 1–18. 3.
10.1057/palgrave.ivs.9500061 Google Scholar
- [HTC09] Hurter C., Tissoires B., Conversy S.: From-DaDy: Spreading aircraft trajectories across views to support iterative queries. IEEE Transactions on Visualization and Computer Graphics (Proceedings InfoVis) 15, 6 (2009), 1017–1024. 3.
- [IBDF11] Isenberg P., Bezerianos A., Dragicevic P., Fekete J.-D.: A study on dual-scale data charts. IEEE Trans. Visualization and Computer Graphics 17, 12 (dec 2011), 2469–2478. 2.
- [KBGE11] Koch S., Bosch H., Giereth M., Ertl T.: Iterative integration of visual insights during scalable patent search and analysis. IEEE Trans. Visualization and Computer Graphics 17, 5 (2011), 557–569. 3.
- [KO10] Kuijpers B., Othman W.: Trajectory databases: Data models, uncertainty and complete query languages. Journal of Computer and System Sciences 76, 7 (2010), 538–560. 3.
- [LGB07]
Looser J.,
Grasset R.,
Billinghurst M.: A 3d flexible and tangible magic lens in augmented reality. In
Proc 6th IEEE and ACM Intl Symp Mixed and Augmented Reality (
Washington
,
DC
,
USA
, 2007), ISMAR '07, IEEE Computer Society, pp.
1–4. 2.
10.1109/ISMAR.2007.4538825 Google Scholar
- [LGL*11] Liu H., Gao Y., Lu L., Liu S., Qu H., Ni L.: Visual analysis of route diversity. In IEEE Conf. Visual Analytics Science and Technology (VAST) (oct. 2011), pp. 171–180. 3.
- [PBKE11] Panagiotidis A., Bosch H., Koch S., Ertl T.: Edgeanalyzer: Exploratory analysis through advanced edge interaction. In Hawaii International Conference on System Sciences (HICSS) (2011), vol. 44, IEEE Computer Society, pp. 1–10. 2.
- [RGE07] Rotard M., Giereth M., Ertl T.: Semantic Lenses: Seamless Augmentation of Web Pages with Context Information from Implicit Queries. Computers & Graphics 31, 3 (2007), 361–369. 2.
- [SBvLK09] Schreck T., Bernard J., Von Landesberger T., Kohlhammer J.: Visual cluster analysis of trajectory data with interactive kohonen maps. Information Visualization 8, 1 (2009), 14–29. 3.
- [SD10] Spindler M., Dachselt R.: Exploring information spaces by using tangible magic lenses in a tabletop environment. In CHI '10 Extended Abstracts on Human Factors in Computing Systems ( New York , NY , USA , 2010), CHI EA '10, ACM, pp. 4771–4776. 2.
- [Shn94] Shneiderman B.: Dynamic queries for visual information seeking. IEEE Software 11, 6 (1994), 70–77. 3.
- [Spo93] Spoerri A.: Infocrystal: a visual tool for information retrieval & management. In Proc 2nd Intl Conf Information and Knowledge Management ( New York , NY , USA , 1993), CIKM '93, ACM, pp. 11–20. 3.
- [ST11] Schumann H., Tominski C.: Analytical, visual and interactive concepts for geo-visual analytics. J. Vis. Lang. Comput. 22, 4 (Aug 2011), 257–267. 3.
- [SWvdW*11] Scheepens R., Willems N., Van De Wetering H., Andrienko G., Andrienko N., Van Wijk J.: Composite density maps for multivariate trajectories. IEEE Trans. Visualization and Computer Graphics 17, 12 (dec 2011), 2518–2527. 3.
- [TC05] J. J. Thomas, K. A. Cook (Eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Center, 2005. 2.
- [TK09] Thomas J., Kielman J.: Challenges for visual analytics. Information Visualization 8, 4 (2009), 309–314. 2.
- [TSAA12] Tominski C., Schumann H., Andrienko G., Andrienko N.: Stacking-based visualization of trajectory attribute data. IEEE Trans. Visualization and Computer Graphics 18, 12 (dec 2012), 2565–2574. 3.
- [WCG03] Wong N., Carpendale S., Greenberg S.: Edgelens: an interactive method for managing edge congestion in graphs. In IEEE Symp Information Visualization(INFOVIS) (2003), pp. 51–58. 2.
- [WDS10] Wood J., Dykes J., Slingsby A.: Visualisation of origins, destinations and flows with od maps. Cartographic Journal 47, 2 (2010), 117–129. 3.
- [WE11] Wörner M., Ertl T.: Multi-layer distorted 1d navigation. In Proc. Intl Conf Information Visualization Theory and Applications (2011), vol. 2011, pp. 198–203. 2, 6.
- [WSD11]
Wood J.,
Slingsby A.,
Dykes J.: Visualizing the dynamics of london's bicycle-hire scheme.
Cartographica
46, 4 (2011), 239–251. 3.
10.3138/carto.46.4.239 Google Scholar
- [YS93] Young D., Shneiderman B.: A graphical filter/flow representation of boolean queries: A prototype implementation and evaluation. Journal of the American Society of Information Science 44, 6 (1993), 327–339. 3.
- [ZCPB11] Zhao J., Chevalier F., Pietriga E., Balakrishnan R.: Exploratory analysis of time-series with chronolenses. IEEE Trans. Visualization and Computer Graphics 17, 12 (dec 2011), 2422–2431. 3.