Ribonucleoprotein transport in Negative Strand RNA viruses
Cédric Diot
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Search for more papers by this authorGina Cosentino
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Search for more papers by this authorCorresponding Author
Marie-Anne Rameix-Welti
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
Correspondence
Marie-Anne Rameix-Welti, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, Fran.
Email: [email protected]
Search for more papers by this authorCédric Diot
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Search for more papers by this authorGina Cosentino
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Search for more papers by this authorCorresponding Author
Marie-Anne Rameix-Welti
Université Paris-Saclay – Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
Correspondence
Marie-Anne Rameix-Welti, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, Fran.
Email: [email protected]
Search for more papers by this authorAbstract
Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These “organelles” usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries.
In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.
CONFLICT OF INTEREST
The authors have no competing interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
boc202200059-sup-0001-figureS1.pdf715.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Adu-Gyamfi, E., Digman, M.A., Gratton, E. & Stahelin, R.V. (2012) Single-particle tracking demonstrates that actin coordinates the movement of the Ebola virus matrix protein. Biophysical Journal, 103(9), L41-3. https://doi.org/10.1016/j.bpj.2012.09.026
- Alenquer, M., Vale-Costa, S., Etibor, T.A., Ferreira, F., Sousa, A.L. & Amorim, M.J. (2019) Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nature Communications, 10(1), 1629. https://doi.org/10.1038/s41467-019-09549-4
- Amorim, M.J. (2019) A comprehensive review on the interaction between the host GTPase Rab11 and influenza A virus. Frontiers in Cell and Developmental Biology, 6, 176. https://doi.org/10.3389/fcell.2018.00176
- Amorim, M.J., Bruce, EA., Read, E.K.C., Foeglein, Á., Mahen, R., Stuart, A.D. & Digard, P. (2011) A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. Journal of Virology, 85(9), 4143–4156. https://doi.org/10.1128/jvi.02606-10
- Avilov, S.V., Moisy, D., Naffakh, N. & Cusack, S. (2012). Influenza A virus progeny VRNP trafficking in live infected cells studied with the virus-encoded fluorescently tagged PB2 protein. Vaccine, 30(51), 7411–7417. https://doi.org/10.1016/j.vaccine.2012.09.077
- Bauer, A., Nolden, T., Nemitz, S., Perlson, E. & Finke, S. (2015). A dynein light chain 1 binding motif in rabies virus polymerase L protein plays a role in microtubule reorganization and viral primary transcription. Journal of Virology, 89(18), 9591–9600. https://doi.org/10.1128/JVI.01298-15
- Bauer, A., Nolden, T., Schröter, J., Römer-Oberdörfer, A., Gluska, S., Perlson, E. & Finke, S. (2014). Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons. Journal of Virology, 88(24), 14172–14183. https://doi.org/10.1128/JVI.02254-14
- Berg, J.S. & Cheney, R.E. (2002) Myosin-X Is an unconventional myosin that undergoes intrafilopodial motility. Nature Cell Biology, 4(3), 246–250. https://doi.org/10.1038/ncb762
- Bhagwat, AR., Sage, VLe, Nturibi, E., Kulej, K., Jones, J., Guo, M., Kim, E.T., et al. (2020) Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nature Communications, 11(1), 23. https://doi.org/10.1038/s41467-019-13838-3
- Le Blanc, I., Luyet, P.-P., Pons, V., Ferguson, C., Emans, N., Petiot, A., Mayran, N., et al. (2005) Endosome-to-cytosol transport of viral nucleocapsids. Nature Cell Biology, 7(7), 653–664. https://doi.org/10.1038/ncb1269
- Blau, D.M. & Compans, R.W. (1995) Entry and release of measles virus are polarized in epithelial cells. Virology, 210(1), 91–99. https://doi.org/10.1006/viro.1995.1320
- Brock, S.C., Goldenring, J.R. & Crowe, J.E. (2003) Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15143–15148. https://doi.org/10.1073/pnas.2434327100
- Bruce, E.A., Digard, P. & Stuart, A.D. (2010) The Rab11 pathway is required for influenza A virus budding and filament formation. Journal of Virology, 84(12), 5848–5859. https://doi.org/10.1128/jvi.00307-10
- Fernández-de-Castro, I. & Risco, C. (2014) Imaging RNA virus replication assemblies: Bunyaviruses and reoviruses. Future Virology, 9(12). https://doi.org/10.2217/fvl.14.95
- de Castro Martin, I.F., Fournier, G., Sachse, M., Pizarro-Cerda, J., Risco, C. & Naffakh, N. (2017) Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nature Communications, 8(1), 1396. https://doi.org/10.1038/s41467-017-01557-6
- Ceccaldi, P.E., Gillet, J.P. & Tsiang, H. (1989) Inhibition of the transport of rabies virus in the central nervous system. Journal of Neuropathology and Experimental Neurology, 48(6), 620–630. https://doi.org/10.1097/00005072-198911000-00004
- Chambers, R. & Takimoto, T. (2010) Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles. PLoS ONE, 5(6), e10994. https://doi.org/10.1371/journal.pone.0010994
- Charlier, C.M., Wu, Y.-J., Allart, S., Malnou, C.E., Schwemmle, M. & Gonzalez-Dunia, D. (2013) Analysis of Borna disease virus trafficking in live infected cells by using a virus encoding a tetracysteine-tagged P protein. Journal of Virology, 87(22), 12339–12348. https://doi.org/10.1128/jvi.01127-13
- Chiu, Y.-F., Huang, Y.-W., Chen, C.-Y., Chen, Y.-C., Gong, Y.-N., Kuo, R.L., Huang, C.G. & Shih, S.-R. (2022) Visualizing influenza A vrus VRNA replication. Frontiers in Microbiology, 0(June), 1483. https://doi.org/10.3389/FMICB.2022.812711
- Chou, Y. & Lionnet, T. (2018) Single-molecule sensitivity RNA FISH analysis of influenza virus genome trafficking. Methods in Molecular Biology, 1836, 195–211. https://doi.org/10.1007/978-1-4939-8678-1_10
- Cifuentes-Muñoz, N., Branttie, J., Slaughter, K.B. & Dutch, R.E. (2017) Human metapneumovirus induces formation of inclusion bodies for efficient genome replication and transcription. Journal of Virology, 91(24), e01282-17. https://doi.org/10.1128/jvi.01282-17
- Cosentino, G., Marougka, K., Desquesnes, A., Welti, N., Sitterlin, D., Gault, E. & Rameix-Welti, M.A. (2022) Respiratory syncytial virus ribonucleoproteins hijack microtubule Rab11 dependent transport for intracellular trafficking. PLOS Pathogens, 18(7), e1010619. https://doi.org/10.1371/JOURNAL.PPAT.1010619
- Das, S.C., Nayak, D., Zhou, Y. & Pattnaik, A.K. (2006) Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells. Journal of Virology. https://doi.org/10.1128/jvi.00211-06
- Das, S.C., Panda, D., Nayak, D. & Pattnaik, A.K. (2009) Biarsenical labeling of vesicular stomatitis virus encoding tetracysteine-tagged M protein allows dynamic imaging of M protein and virus uncoating in infected cells. Journal of Virology, 83(6), 2611–2622. https://doi.org/10.1128/JVI.01668-08
- Dietzel, E., Kolesnikova, L. & Maisner, A. (2013) Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virology Journal. 10, 249. https://doi.org/10.1186/1743-422X-10-249
- Dolnik, O., Stevermann, L., Kolesnikova, L. & Becker, S. (2015) Marburg virus inclusions: a virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. European Journal of Cell Biology, 94(7-9), 323–331. https://doi.org/10.1016/j.ejcb.2015.05.006
- Eisfeld, A.J., Kawakami, E., Watanabe, T., Neumann, G. & Kawaoka, Y. (2011) RAB11A is essential for transport of the influenza virus genome to the plasma membrane. Journal of Virology, 85(13), 6117–6126. https://doi.org/10.1128/jvi.00378-11
- Elton, D., Simpson-Holley, M., Archer, K., Medcalf, L., Hallam, R., McCauley, J. & Digard, P. (2001) Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. Journal of Virology, 75(1), 408–419. https://doi.org/10.1128/JVI.75.1.408-419.2001
- Fehling, S.K., Noda, T., Maisner, A., Lamp, B., Conzelmann, K.-K., Kawaoka, Y., Klenk, H.-D., Garten, W. & Strecker, T. (2013) The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z. Cellular Microbiology, 15(2), 315–334. https://doi.org/10.1111/cmi.12095
- Goldsmith, C.S., Elliott, L.H., Peters, C.J. & Zaki, S.R. (1995) Ultrastructural characteristics of sin nombre virus, causative agent of hantavirus pulmonary syndrome. Archives of Virology, 140(12), 2107–2122. https://doi.org/10.1007/BF01323234
- Grant, BD. & Donaldson, JG. (2009) Pathways and mechanisms of endocytic recycling. Nature Reviews Molecular Cell Biology, 10(9), 597–608. https://doi.org/10.1038/nrm2755
- Grikscheit, K., Dolnik, O., Takamatsu, Y., Pereira, A.R. & Becker, S. (2020) Ebola virus nucleocapsid-like structures utilize Arp2/3 signaling for intracellular long-distance transport. Cells, 9(7), 1728. https://doi.org/10.3390/cells9071728
- Heinrich, B.S., Cureton, D.K., Rahmeh, A.A. & Whelan, S.P.J. (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathogens, 6(6), e1000958. https://doi.org/10.1371/journal.ppat.1000958
- Hirai, Y., Tomonaga, K. & Horie, M. (2021) Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. International Journal of Biological Macromolecules, 192, 55–63. https://doi.org/10.1016/j.ijbiomac.2021.09.153
- Honda, T. & Tomonaga, K. (2013) Nucleocytoplasmic shuttling of viral proteins in Borna disease virus infection. Viruses, 5(8), 1978–1990. https://doi.org/10.3390/v5081978
- Iwasaki, M., Takeda, M., Shirogane, Y., Nakatsu, Y., Nakamura, T. & Yanagi, Y. (2009) The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. Journal of Virology, 83(20), 10374–10383. https://doi.org/10.1128/jvi.01056-09
- Jo, S., Kawaguchi, A., Takizawa, N., Morikawa, Y., Momose, F. & Nagata, K. (2010) Involvement of vesicular trafficking system in membrane targeting of the progeny influenza virus genome. Microbes and Infection, 12(12-13), 1079–1084. https://doi.org/10.1016/j.micinf.2010.06.011
- Kaksonen, M., Toret, C.P. & Drubin, D.G. (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 7(6), 404–414. https://doi.org/10.1038/nrm1940
- Kallewaard, N.L., Bowen, A.L. & Crowe, J.E. (2005) Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology, 331(1), 73–81. https://doi.org/10.1016/j.virol.2004.10.010
- Katoh, H., Nakatsu, Y., Kubota, T., Sakata, M., Takeda, M. & Kidokoro, M. (2015) Mumps virus is released from the apical surface of polarized epithelial cells, and the release is facilitated by a Rab11-mediated transport system. Journal of Virology, 89(23), 12026–12034. https://doi.org/10.1128/jvi.02048-15
- Kawaguchi, A., Hirohama, M., Harada, Y., Osari, S. & Nagata, K. (2015) Influenza virus induces cholesterol-enriched endocytic recycling compartments for budozone formation via cell cycle-independent centrosome maturation. PLoS Pathogens, 11(11), e1005284. https://doi.org/10.1371/journal.ppat.1005284
- Lahaye, X., Vidy, A., Pomier, C., Obiang, L., Harper, F., Gaudin, Y. & Blondel, D. (2009) Functional characterization of Negri Bodies (NBs) in rabies virus-infected cells: Evidence that NBs are sites of viral transcription and replication. Journal of Virology, 83(16), 7948–7958. https://doi.org/10.1128/jvi.00554-09
- Lakdawala, S.S., Wu, Y., Wawrzusin, P., Kabat, J., Broadbent, A.J., Lamirande, E.W., Fodor, E., Altan-Bonnet, N., Shroff, H. & Subbarao, K. (2014) Influenza A virus assembly intermediates fuse in the cytoplasm. PLoS Pathogens, 10(3), e1003971. https://doi.org/10.1371/journal.ppat.1003971
- Lu, J., Qu, Y., Liu, Y., Jambusaria, R., Han, Z., Ruthel, G., Freedman, B.D. & Harty, R.N. (2013) Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. Journal of Virology, 87(13), 7777–7780. https://doi.org/10.1128/jvi.00470-13
- Luby-Phelps, K. (1999) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. International Review of Cytology. 192, 189–221. https://doi.org/10.1016/s0074-7696(08)60527-6
- Lycke, E. & Tsiang, H. (1987) Rabies virus infection of cultured rat sensory neurons. Journal of Virology, 61(9), 2733–2741. https://doi.org/10.1128/jvi.61.9.2733-2741.1987
- Maday, S., Twelvetrees, A.E., Moughamian, A.J. & Holzbaur, E.L.F. (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron, 84(2), 292–309. https://doi.org/10.1016/j.neuron.2014.10.019
- Matsumoto, Y., Hayashi, Y., Omori, H., Honda, T., Daito, T., Horie, M., Ikuta, K., et al. (2012) Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection. Cell Host and Microbe, 11(5), 492–503. https://doi.org/10.1016/j.chom.2012.04.009
- Momose, F., Kikuchi, Y., Komase, K. & Morikawa, Y. (2007) Visualization of microtubule-mediated transport of influenza viral progeny ribonucleoprotein. Microbes and Infection, 9(12–13), 1422–1433. https://doi.org/10.1016/j.micinf.2007.07.007
- Momose, F., Sekimoto, T., Ohkura, T., Jo, S., Kawaguchi, A., Nagata, K. & Morikawa, Y. (2011) Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021123
- Morris, R.L. & Hollenbeck, P.J. (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. Journal of Cell Biology 131(5), 1315–1326. https://doi.org/10.1083/jcb.131.5.1315
- Myers, K.N., Barone, G., Ganesh, A., Staples, C.J., Howard, A.E., Beveridge, R.D., Maslen, S., Mark Skehel, J. & Collis, S.J. (2016) The Bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Scientific Reports, 6, 35548. https://doi.org/10.1038/srep35548
- Nakatsu, Y., Ma, X., Seki, F., Suzuki, T., Iwasaki, M., Yanagi, Y., Komase, K. & Takeda, M. (2013) Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. Journal of Virology, 87(8), 4683–4693. https://doi.org/10.1128/jvi.02189-12
- Neumann, G., Hughes, M.T. & Kawaoka, Y. (2000) Influenza A virus NS2 protein mediates VRNP nuclear export through NES-independent interaction with HCRM1. EMBO Journal, 19(24), 6751–6758. https://doi.org/10.1093/emboj/19.24.6751
- Piccinotti, S., Kirchhausen, T. & Whelan, S.P.J. (2013) Uptake of rabies virus into epithelial cells by clathrin-mediated endocytosis depends upon actin. Journal of Virology, 87(21), 11637–11647. https://doi.org/10.1128/jvi.01648-13
- Piccinotti, S. & Whelan, S.P.J. (2016) Rabies internalizes into primary peripheral neurons via clathrin coated pits and requires fusion at the cell body. PLoS Pathogens, 12(7), e1005753. https://doi.org/10.1371/journal.ppat.1005753
- Ravkov, E.V., Nichol, S.T. & Compans, R.W. (1997) Polarized entry and release in epithelial cells of Black Creek Canal Virus, a New World Hantavirus. Journal of Virology, 71(2), 1147–1154. https://doi.org/10.1128/jvi.71.2.1147-1154.1997
- Riedl, P., Moll, M., Klenk, H.D. & Maisner, A. (2002) Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Research, 83(1-2), 1–12. https://doi.org/10.1016/S0168-1702(01)00379-3
- Rincheval, V., Lelek, M., Gault, E., Bouillier, C., Sitterlin, D., Blouquit-Laye, S., Galloux, M., Zimmer, C., Eleouet, J.F. & Rameix-Welti, M.A. (2017) Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nature Communications, 8(1), 563. https://doi.org/10.1038/s41467-017-00655-9
- Rowe, R.K., Suszko, J.W. & Pekosz, A. (2008) Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology, 382(2), 239–249. https://doi.org/10.1016/j.virol.2008.09.021
- Schudt, G., Dolnik, O., Kolesnikova, L., Biedenkopf, N., Herwig, A. & Becker, S. (2015) Transport of Ebolavirus nucleocapsids is dependent on actin polymerization: live-cell imaging analysis of Ebolavirus-infected cells. Journal of Infectious Diseases, 212(Suppl 2), S160–S166. https://doi.org/10.1093/infdis/jiv083
- Schudt, G., Kolesnikova, L., Dolnik, O., Sodeik, B. & Becker, S. (2013) Live-cell imaging of marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14402–14407. https://doi.org/10.1073/pnas.1307681110
- Stone, R., Hayashi, T., Bajimaya, S., Hodges, E. & Takimoto, T. (2016) Critical role of Rab11a-mediated recycling endosomes in the assembly of Type I parainfluenza viruses. Virology, 487, 11–18. https://doi.org/10.1016/j.virol.2015.10.008
- Szatmári, Z., Kis, V., Lippai, M., Hegedus, K., Faragó, T., Lorincz, P., Tanaka, T., Juhász, G. & Sass, M. (2014) Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of hook localization. Molecular Biology of the Cell, 25(4), 522–531. https://doi.org/10.1091/mbc.E13-10-0574
- Takamatsu, Y., Kolesnikova, L. & Becker, S. (2018) Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1075–1080. https://doi.org/10.1073/pnas.1712263115
- Tan, G.S., Preuss, M.A.R., Williams, J.C. & Schnell, M.J. (2007) The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7229–7234. https://doi.org/10.1073/pnas.0701397104
- Ugolini, G. (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. The Journal of Comparative Neurology 356(3), 457–80. https://doi.org/10.1002/cne.903560312
- Urbé, S., Huber, L.A., Zerial, M., Tooze, S.A. & Parton, R.G. (1993) Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 334(2), 175–182. https://doi.org/10.1016/0014-5793(93)81707-7
- Utley, T.J., Ducharme, N.A., Varthakavi, V., Shepherd, B.E., Santangelo, P.J., Lindquist, M.E., Goldenring, J.R. & Crowe, J.E. (2008) Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10209–10214. https://doi.org/10.1073/pnas.0712144105
- Vale-costa, S., Alenquer, M., Sousa, A.L., Kellen, B. & Ramalho, J. (2016) Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors. Journal of Cell Science, 129(March), 1697–1710. https://doi.org/10.1242/jcs.188409
- Vale-Costa, S. & Amorim, M.J. (2017) Clustering of Rab11 vesicles in influenza A virus infected cells creates hotspots containing the 8 viral ribonucleoproteins. Small GTPases, 8(2), 71–77. https://doi.org/10.1080/21541248.2016.1199190
- Vanover, D., Smith, D.V., Blanchard, E.L., Alonas, E., Kirschman, J.L., Lifland, A.W., Zurla, C. & Santangelo, P.J. (2017) RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane. Nature Communications, 8(1), 667. https://doi.org/10.1038/s41467-017-00732-z
- Veler, H., Fan, H., Keown, J.R., Sharps, J., Fournier, M., Grimes, J.M. & Fodor, E. (2022) The C-terminal domains of the PB2 subunit of the influenza A virus RNA polymerase directly interact with cellular GTPase Rab11a. Journal of Virology, 96(5), e0197921. https://doi.org/10.1128/jvi.01979-21
- Watanabe, K., Takizawa, N., Katoh, M., Hoshida, K., Kobayashi, N. & Nagata, K. (2001) Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus Research, 77(1), 31–42. https://doi.org/10.1016/S0168-1702(01)00263-5
- Welz, T., Wellbourne-Wood, J. & Kerkhoff, E. (2014) Orchestration of cell surface proteins by Rab11. Trends in Cell Biology, 24(7), 407–415. https://doi.org/10.1016/j.tcb.2014.02.004
- Xu, H., Hao, X., Wang, S., Wang, Z., Cai, M., Jiang, J., Qin, Q., Zhang, M. & Wang, H. (2015) Real-time imaging of rabies virus entry into living vero cells. Scientific Reports, 5, 11753. https://doi.org/10.1038/srep11753
- Xu, J., Gao, J., Zhang, M., Zhang, D., Duan, M., Guan, Z. & Guo, Y. (2021) Dynein- and kinesin- mediated intracellular transport on microtubules facilitates RABV infection. Veterinary Microbiology, 262, 109241. https://doi.org/10.1016/j.vetmic.2021.109241
- Yacovone, S.K., Smelser, A.M., Macosko, J.C., Holzwarth, G., Ornelles, D.A. & Lyles, D.S. (2016) Migration of nucleocapsids in vesicular stomatitis virus-infected cells is dependent on both microtubules and actin filaments. Journal of Virology, 90(13), 6159–6170. https://doi.org/10.1128/jvi.00488-16
- Zan, J., Liu, S., Sun, D.N., Mo, K.K., Yan, Y., Liu, J., Hu, BoLi, Gu, J.Y., Liao, M. & Zhou, J.Y. (2017) Rabies virus infection induces microtubule depolymerization to facilitate viral RNA synthesis by upregulating HDAC6. Frontiers in Cellular and Infection Microbiology, 7, 146. https://doi.org/10.3389/fcimb.2017.00146