Effects of Orthostatism and Hemodialysis on Mean Heart Period and Fractal Heart Rate Properties of Chronic Renal Failure Patients
Juan C. Echeverría
Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa
Search for more papers by this authorOscar Infante
Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Search for more papers by this authorHéctor Pérez-Grovas
Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Search for more papers by this authorHortensia González
Laboratorio de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán
Search for more papers by this authorMarco V. José
Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
Search for more papers by this authorCorresponding Author
Claudia Lerma
Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Address correspondence and reprint requests to Claudia Lerma, Ph.D., Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección 16, Tlalpan D.F. 14080, México. E-mail: [email protected]Search for more papers by this authorJuan C. Echeverría
Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa
Search for more papers by this authorOscar Infante
Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Search for more papers by this authorHéctor Pérez-Grovas
Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Search for more papers by this authorHortensia González
Laboratorio de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán
Search for more papers by this authorMarco V. José
Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
Search for more papers by this authorCorresponding Author
Claudia Lerma
Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan
Address correspondence and reprint requests to Claudia Lerma, Ph.D., Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección 16, Tlalpan D.F. 14080, México. E-mail: [email protected]Search for more papers by this authorAbstract
The aim of this work was to evaluate the short-term fractal index (α1) of heart rate variability (HRV) in chronic renal failure (CRF) patients by identifying the effects of orthostatism and hemodialysis (HD), and by evaluating the correlation between α1 and the mean RR interval from sinus beats (meanNN). HRV time series were derived from ECG data of 19 CRF patients and 20 age-matched healthy subjects obtained at supine and orthostatic positions (lasting 5 min each). Data from CRF patients were collected before and after HD. α1 was calculated from each time series and compared by analysis of variance. Pearson's correlations between meanNN and α1 were calculated using the data from both positions by considering three groups: healthy subjects, CRF before HD and CRF after HD. At supine position, α1 of CRF patients after HD (1.17 ± 0.30) was larger (P < 0.05) than in healthy subjects (0.89 ± 0.28) but not before HD (1.10 ± 0.34). α1 increased (P < 0.05) in response to orthostatism in healthy subjects (1.29 ± 0.26) and CRF patients after HD (1.34 ± 0.31), but not before HD (1.25 ± 0.37). Whereas α1 was correlated (P < 0.05) with the meanNN of healthy subjects (r = −0.562) and CRF patients after HD (r = −0.388), no significance in CRF patients before HD was identified (r = 0.003). Multiple regression analysis confirmed that α1 was mainly predicted by the orthostatic position (in all groups) and meanNN (healthy subjects and patients after HD), showing no association with the renal disease condition in itself. In conclusion, as in healthy subjects, α1 of CRF patients correlates with meanNN after HD (indicating a more irregular-like HRV behavior at slower heart rates). This suggests that CRF patients with stable blood pressure preserve a regulatory adaptability despite a shifted setting point of the heart period (i.e., higher heart rate) in comparison with healthy subjects.
References
- 1 de Jager DJ, Grootendorst DC, Jager KJ, et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 2009; 302: 1782–9.
- 2 Rubinger D, Backenroth R, Sapoznikov D. Sympathetic nervous system function and dysfunction in chronic hemodialysis patients. Semin Dial 2013; 26: 333–43.
- 3 Rump LC, Amann K, Orth S, Ritz E. Sympathetic overactivity in renal disease: a window to understand progression and cardiovascular complications of uraemia? Nephrol Dial Transplant 2000; 15: 1735–8.
- 4 Lerma C, Gonzalez H, Perez-Grovas H, Jose MV, Infante O. Preserved autonomic heart rate modulation in chronic renal failure patients in response to hemodialysis and orthostatism. Clin Exp Nephrol 2015; 19: 309–18.
- 5 Ranpuria R, Hall M, Chan CT, Unruh M. Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrol Dial Transplant 2008; 23: 444–9.
- 6 Cavalcanti S, Severi S, Enzmann G. Analysis of oscillatory components of short-term heart rate variability in hemodynamically stable and unstable patients during hemodialysis. Artif Organs 1998; 22: 98–106.
- 7 Lerma C, Minzoni A, Infante O, José MV. A mathematical analysis for the cardiovascular control adaptations in chronic renal failure. Artif Organs 2004; 28: 398–409.
- 8 Bialostozky D, Leyva M, Villarreal T, et al. Myocardial perfusion and ventricular function assessed by SPECT and Gated-SPECT in end-stage renal disease patients before and after renal transplant. Arch Med Res 2007; 38: 227–33.
- 9 Rubinger D, Backenroth R, Sapoznikov D. Restoration of baroreflex function in patients with end-stage renal disease after renal transplantation. Nephrol Dial Transplant 2009; 24: 1305–13.
- 10 Sacha J, Pluta W. Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate. J Electrocardiol 2005; 38: 47–53.
- 11 Monfredi O, Lyashkov AE, Johnsen AB, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension 2014; 64: 1334–43.
- 12 Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 82–7.
- 13 Sassi R, Cerutti S, Lombardi F, et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015; 17: 1341–53.
- 14 Chiang JY, Huang JW, Lin LY, et al. Detrended fluctuation analysis of heart rate dynamics is an important prognostic factor in patients with end-stage renal disease receiving peritoneal dialysis. PLoS One 2016; 11: e0147282.
- 15 Suzuki M, Hiroshi T, Aoyama T, et al. Nonlinear measures of heart rate variability and mortality risk in hemodialysis patients. Clin J Am Soc Nephrol 2012; 7: 1454–60.
- 16 Tulppo MP, Makikallio TH, Seppanen T, et al. Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin Physiol 2001; 21: 515–23.
- 17 Tulppo MP, Hughson RL, Makikallio TH, Airaksinen KE, Seppanen T, Huikuri HV. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Heart Circ Physiol 2001; 280: H1081–7.
- 18 Penttila J, Helminen A, Jartti T, et al. Effect of cardiac vagal outflow on complexity and fractal correlation properties of heart rate dynamics. Auton Autacoid Pharmacol 2003; 23: 173–9.
- 19 Perkiomaki JS, Zareba W, Badilini F, Moss AJ. Influence of atropine on fractal and complexity measures of heart rate variability. Ann Noninvasive Electrocardiol 2002; 7: 326–31.
- 20 Charra B. Fluid balance, dry weight, and blood pressure in dialysis. Hemodial Int 2007; 11: 21–31.
- 21 Gonzalez H, Infante O, Perez-Grovas H, Jose MV, Lerma C. Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: recurrence analysis approach. Med Eng Phys 2013; 35: 178–87.
- 22 Lerma C, Infante O, Perez-Grovas H, José MV. A system for analysis of heart rate variability. Electro 2000; 22: 63–7.
- 23 Infante O, Rodriguez G, Perez J, Espinoza L, Valenzuela F, Rojas M. Electrocardiographic terminal. Rev Mex Ing Biomed 1988; 9: 87–95.
- 24 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043–65.
- 25 Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed 2014; 113: 210–20.
- 26 Pena MA, Echeverria JC, Garcia MT, Gonzalez-Camarena R. Applying fractal analysis to short sets of heart rate variability data. Med Biol Eng Comput 2009; 47: 709–17.
- 27 Oikawa K, Ishihara R, Maeda T, et al. Prognostic value of heart rate variability in patients with renal failure on hemodialysis. Int J Cardiol 2009; 131: 370–7.
- 28 Chen SC, Huang JC, Tsai YC, et al. Heart rate variability change before and after hemodialysis is associated with overall and cardiovascular mortality in hemodialysis. Sci Rep 2016; 6: 20597.
- 29 Berdeaux A, Duranteau J, Pussard E, Edouard A, Giudicelli JF. Baroreflex control of regional vascular resistances during simulated orthostatism. Kidney Int Suppl 1992; 37: S29–33.
- 30 Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KU, Eckberg DL. Human responses to upright tilt: a window on central autonomic integration. J Physiol 1999; 517(Pt2): 617–28.
- 31 Kotani K, Struzik ZR, Takamasu K, Stanley HE, Yamamoto Y. Model for complex heart rate dynamics in health and diseases. Phys Rev E Stat Nonlin Soft Matter Phys 2005; 72: 041904.
- 32 Struzik ZR, Hayano J, Sakata S, Kwak S, Yamamoto Y. 1/f scaling in heart rate requires antagonistic autonomic control. Phys Rev E Stat Nonlin Soft Matter Phys 2004; 70: 050901.
- 33 Yamamoto Y, Nakamura Y, Sato H, Yamamoto M, Kato K, Hughson RL. On the fractal nature of heart rate variability in humans: effects of vagal blockade. Am J Physiol 1995; 269: R830–7.
- 34 Billman GE, Huikuri HV, Sacha J, Trimmel K. An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol 2015; 6: 55.
- 35 Sacha J. Interaction between heart rate and heart rate variability. Ann Noninvasive Electrocardiol 2014; 19: 207–16.
- 36 Stauss HM. Heart rate variability: just a surrogate for mean heart rate? Hypertension 2014; 64: 1184–6.
- 37 Ozkahya M, Ok E, Toz H, et al. Long-term survival rates in haemodialysis patients treated with strict volume control. Nephrol Dial Transplant 2006; 21: 3506–13.
- 38 Tentori F. Focus on: physical exercise in hemodialysis patients. J Nephrol 2008; 21: 808–12.
- 39 Charra B, Calemard M, Laurent G. Importance of treatment time and blood pressure control in achieving long-term survival on dialysis. Am J Nephrol 1996; 16: 35–44.
- 40 Coquet I, Mousson C, Rifle G, et al. Influence of ischemia on heart-rate variability in chronic hemodialysis patients. Ren Fail 2005; 27: 7–12.
- 41 Couto CI. Exercise training improves cardiovascular fitness in people receiving haemodialysis for chronic renal disease. J Physiother 2012; 58: 130.
- 42 Mustata S, Chan C, Lai V, Miller JA. Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients. J Am Soc Nephrol 2004; 15: 2713–8.
- 43 Tekce H, Kursat S, Bahadir CH, Aktas G. Effects of nutritional parameters on nocturnal blood pressure in patients undergoing hemodialysis. Ren Fail 2013; 35: 946–50.
- 44 Wallin CJ, Jacobson SH, Leksell LG. Subclinical pulmonary oedema and intermittent haemodialysis. Nephrol Dial Transplant 1996; 11: 2269–75.
- 45 Ferrario M, Moissl U, Garzotto F, et al. Effects of fluid overload on heart rate variability in chronic kidney disease patients on hemodialysis. BMC Nephrol 2014; 15: 26.
- 46 Ahmed J, Weisberg LS, Hyperkalemia in dialysis patients. Semin Dial 2001; 14: 348–56.
- 47 Morikawa M, Aizawa Y, Murata M, Shibata A, Suzuki M, Hirasawa Y. Effects of moderate hyperkalemia on the sinus node. Evaluation in anesthetized dogs. ASAIO Trans 1990; 36: 40–2.
- 48 Rodriguez-Fernandez R, Infante O, Perez-Grovas H, et al. Visual three-dimensional representation of beat-to-beat electrocardiogram traces during hemodiafiltration. Artif Organs 2012; 36: 543–51.