Testicular inflammation and infertility: Could chlamydial infections be contributing?
Emily R. Bryan
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorJay Kim
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorKenneth W. Beagley
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorCorresponding Author
Alison J. Carey
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Correspondence
Alison J. Carey, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia.
Email: [email protected]
Search for more papers by this authorEmily R. Bryan
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorJay Kim
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorKenneth W. Beagley
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Search for more papers by this authorCorresponding Author
Alison J. Carey
School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
Correspondence
Alison J. Carey, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia.
Email: [email protected]
Search for more papers by this authorAbstract
Despite the global incidence of both male infertility and sexually transmitted infections rising each year, the relationship between the two is relatively unstudied. Chlamydia is the most common bacterial sexually transmitted pathogen; however, the majority of research remains focussed on women, while the role of infection and resulting immunopathology in male factor infertility is largely unknown. Chlamydia was found in testicular biopsies from asymptomatic men with idiopathic infertility, which highlights this potential role. In animal models, testicular Chlamydia, and potentially other bacterial and viral infections, cause histopathology that is likely to adversely affect spermatogenesis and fertility. This likely occurs through infiltration of inflammatory cells, functional dysregulation of immunosuppressive testicular macrophages and Sertoli cells and destruction of key testicular cell types including sperm progenitors. Here, testicular damage due to infection and/or inflammation is reviewed, as it represents a probable underestimated and unrecognized factor leading to male infertility.
CONFLICTS OF INTEREST
The authors have no conflicts of interest to declare.
REFERENCES
- 1Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018; 62: 2-10.
- 2Schuppe HC, Meinhardt A. Immune privilege and inflammation of the testis. Chem Immunol Allergy. 2005; 88: 1-14.
- 3Bhushan S, Schuppe H-C, Fijak M, et al. Testicular infection: microorganisms, clinical implications and host-pathogen interaction. J Reprod Immunol. 2009; 83(1–2): 164-167.
- 4 WHO. Sexually transmitted infections (STIs). Fact Sheets [Website]; 2019. http://www.who.int/mediacentre/factsheets/fs110/en/. Accessed June 14, 2019
- 5Chambers GM, Sullivan EA, Ishihara O, et al. The economic impact of assisted reproductive technology: a review of selected developed countries. Fertil Steril. 2009; 91(6): 2281-2294.
- 6Marieb EN. Essentials of Human Anatomy & Physiology, Global Edition. Always Learning, 11th edn. Harlow: Pearson; 2014.
- 7Skinner MK, Griswold MD. Sertoli Cell Biology. Massachusetts, USA: Academic Press; 2004.
- 8Mayerhofer A, Walenta L, Mayer C, Eubler K, Welter H. Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia. 2018; 50(11):e13055.
- 9Akhmerova L. [Leydig cell development]. Usp Fiziol Nauk. 2005; 37(1): 28-36.
- 10Haider SG. Cell biology of Leydig cells in the testis. Int Rev Cytol. 2004; 233: 181-241.
- 11van Beurden WM, Roodnat B, de Jong FH, Mulder E, van der Molen HJ. Hormonal regulation of lh stimulation of testosterone production in isolated leydig cells of immature rats: the effect of hypophysectomy, fsh, and estradiol-17β. Steroids. 1976; 28(6): 847-866.
- 12Benton L, Shan L-X, Hardy MP. Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol. 1995; 53(1): 61-68.
- 13Nieschlag E, Behre HM, Nieschlag S. Testosterone: Action, Deficiency, Substitution. Cambridge, UK: Cambridge University Press; 2012.
10.1017/CBO9781139003353 Google Scholar
- 14Oatley JM, Oatley MJ, Avarbock MR, et al. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development. 2009; 136(7): 1191-1199.
- 15Keeney DS, Mason JI. Expression of testicular 3 beta-hydroxysteroid dehydrogenase/delta 5––4-isomerase: regulation by luteinizing hormone and forskolin in Leydig cells of adult rats. Endocrinology. 1992; 130(4): 2007-2015.
- 16Gaytan F, Bellido C, Aguilar E, et al. Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil. 1994; 102(2): 393-399.
- 17Le Goffic R, Mouchel T, Ruffault A, et al. Mumps virus decreases testosterone production and gamma interferon-induced protein 10 secretion by human Leydig cells. J Virol. 2003; 77(5): 3297-3300.
- 18Allen JA, Diemer T, Janus P, et al. Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine. 2004; 25(3): 265-275.
- 19Prusty BK, Böhme L, Bergmann B, et al. Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection. PLoS One. 2012; 7(10):e47427.
- 20Winnall WR, Hedger MP. Phenotypic and functional heterogeneity of the testicular macrophage population: a new regulatory model. J Reprod Immunol. 2013; 97(2): 147-158.
- 21Winnall WR, Muir JA, Hedger MP. Rat resident testicular macrophages have an alternatively activated phenotype and constitutively produce interleukin-10 in vitro. J Leukoc Biol. 2011; 90(1): 133-143.
- 22DeFalco T, Bhattacharya I, Williams AV, et al. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci USA. 2014; 111(23): E2384-E2393.
- 23Mossadegh-Keller N, Gentek R, Gimenez G, et al. Developmental origin and maintenance of distinct testicular macrophage populations. J Exp Med. 2017; 214(10): 2829-2841.
- 24Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011; 32(6): 625-640.
- 25Bhushan S, Hossain H, Lu Y, et al. Uropathogenic E coli induce different immune response in testicular and peritoneal macrophages: implications for testicular immune privilege. PLoS One. 2011; 6(12):e28452.
- 26Fijak M, Iosub R, Schneider E, et al. Identification of immunodominant autoantigens in rat autoimmune orchitis. J Pathol. 2005; 207(2): 127-138.
- 27Liu Z, Zhao S, Chen Q, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015; 92(3): 63.
- 28Collins JA, Burrows EA, Yeo J, et al. Frequency and predictive value of antisperm antibodies among infertile couples. Hum Reprod. 1993; 8(4): 592-598.
- 29Steen Y, Forssman L, Lönnerstedt E, Jonasson K, Wassén AC, Lycke E. Anti-sperm IgA antibodies against the equatorial segment of the human spermatozoon are associated with impaired sperm penetration and subfertility. Int J Fertil Menopausal Stud. 1993; 39(1): 52-56.
- 30Madar J, Urbanek V, Chaloupkova A, Nouza K, Kinský R. Role of sperm antibodies and cellular autoimmunity to sperm in the pathogenesis of male infertility. Ceska Gynekol. 2002; 67(1): 3-7.
- 31Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol. 2002; 57(1): 3-18.
- 32Guazzone VA, Rival C, Denduchis B, Lustig L. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in experimental autoimmune orchitis. J Reprod Immunol. 2003; 60(2): 143-157.
- 33Gerdprasert O, O'Bryan MK, Nikolic-Paterson DJ, Sebire K, de Kretser DM, Hedger MP. Expression of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor in normal and inflamed rat testis. Mol Hum Repord. 2002; 8(6): 518-524.
- 34Hutson JC. Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res. 1992; 267(2): 385-389.
- 35Cohen PE, Chisholm O, Arceci RJ, Stanley ER, Pollard JW. Absence of colony-stimulating factor-1 in osteopetrotic (csfmop/csfmop) mice results in male fertility defects. Biol Reprod. 1996; 55(2): 310-317.
- 36DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B. Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep. 2015; 12(7): 1107-1119.
- 37Doyle TJ, Kaur G, Putrevu SM. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod. 2012; 86(1): 1-14.
- 38Mital P, Hinton BT, Dufour JM. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod. 2011; 84(5): 851-858.
- 39Smith BE, Braun RE. Germ cell migration across sertoli cell tight junctions. Science. 2012; 338(6108): 798-802.
- 40Shiratsuchi A, Kawasaki Y, Ikemoto M, et al. Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by sertoli cells. J Biol Chem. 1999; 274(9): 5901-5908.
- 41Nakanishi Y, Shiratsuchi A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol Pharm Bull. 2004; 27(1): 13-16.
- 42Zuck M, Ellis T, Venida A, Hybiske K. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol. 2017; 19(4). e12683
- 43Grootegoed JA, Oonk RB, Jansen R, et al. Metabolism of radiolabelled energy-yielding substrates by rat sertoli cells. J Reprod Fertil. 1986; 77(1): 109-118.
- 44Robertson KM, O'Donnell L, Jones MEE, et al. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci. 1999; 96(14): 7986-7991.
- 45Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA. 2004; 101(47): 16489-16494.
- 46Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci. 2003; 100(11): 6487-6492.
- 47de Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin Cell Biol. 1998; 10(6): 694-701.
- 48Katz DJ, Teloken P, Shoshany O. Male infertility – the other side of the equation. Aust Fam Physician. 2017; 46(9): 641-646.
- 49Bryan ER, McLachlan RI, Rombauts L, et al. Detection of chlamydia infection within human testicular biopsies. Hum Reprod. 2019; 34(10): 1891-1898.
- 50O'Bryan MK, Schlatt S, Phillips DJ, de Kretser DM, Hedger MP. Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology. 2000; 141(1): 238-246.
- 51Sadasivam M, Ramatchandirin B, Balakrishnan S, Prahalathan C. TNF-alpha-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm Res. 2015; 64(7): 549-556.
- 52Hong CY, Park JH, Ahn RS, et al. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol. 2004; 24(7): 2593-2604.
- 53Lin T, Wang D, Stocco DM. Interleukin-1 inhibits Leydig cell steroidogenesis without affecting steroidogenic acute regulatory protein messenger ribonucleic acid or protein levels. J Endocrinol. 1998; 156(3): 461-467.
- 54Lin T, Wang TL, Nagpal ML, Calkins JH, Chang WW, Chi R. Interleukin-1 inhibits cholesterol side-chain cleavage cytochrome P450 expression in primary cultures of Leydig cells. Endocrinology. 1991; 129(3): 1305-1311.
- 55O'Bryan MK, Gerdprasert O, Nikolic-Paterson DJ, et al. Cytokine profiles in the testes of rats treated with lipopolysaccharide reveal localized suppression of inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2005; 288(6): R1744-R1755.
- 56Del Punta K, Charreau EH, Pignataro OP. Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology. 1996; 137(12): 5337-5343.
- 57Elhija MA, Potashnik H, Lunenfeld E, et al. Testicular interleukin-6 response to systemic inflammation. Eur Cytokine Netw. 2005; 16(2): 167-172.
- 58Liew SH, Meachem SJ, Hedger MP. A stereological analysis of the response of spermatogenesis to an acute inflammatory episode in adult rats. J Androl. 2007; 28(1): 176-185.
- 59Bhushan S, Tchatalbachev S, Klug J, et al. Uropathogenic Escherichia coli block MyD88-dependent and activate MyD88-independent signaling pathways in rat testicular cells. J Immunol. 2008; 180(8): 5537-5547.
- 60Riccioli A, Starace D, Galli R, et al. Sertoli cells initiate testicular innate immune responses through TLR activation. J Immunol. 2006; 177(10): 7122-7130.
- 61Starace D, Galli R, Paone A, et al. Toll-like receptor 3 activation induces antiviral immune responses in mouse sertoli cells. Biol Reprod. 2008; 79(4): 766-775.
- 62Okuma Y, O’Connor AE, Muir JA, et al. Regulation of activin A and inhibin B secretion by inflammatory mediators in adult rat sertoli cell cultures. J Endocrinol. 2005; 187(1): 125-134.
- 63Stephan JP, Syed V, Jegou B. Regulation of sertoli cell IL-1 and IL-6 production in vitro. Mol Cell Endocrinol. 1997; 134(2): 109-118.
- 64Gerard N, Syed V, Bardin W, Genetet N, Jégou B. Sertoli cells are the site of interleukin-1 alpha synthesis in rat testis. Mol Cell Endocrinol. 1991; 82(1): R13-R16.
- 65Syed V, Stéphan JP, Gérard N, et al. Residual bodies activate sertoli cell interleukin-1 alpha (IL-1 alpha) release, which triggers IL-6 production by an autocrine mechanism, through the lipoxygenase pathway. Endocrinology. 1995; 136(7): 3070-3078.
- 66Wu H, Wang H, Xiong W, et al. Expression patterns and functions of toll-like receptors in mouse sertoli cells. Endocrinology. 2008; 149(9): 4402-4412.
- 67Winnall WR, Okuma Y, Saito K, Muir JA, Hedger MP. Regulation of interleukin 1alpha, activin and inhibin by lipopolysaccharide in Sertoli cells from prepubertal rats. Mol Cell Endocrinol. 2009; 307(1–2): 169-175.
- 68Winnall WR, Muir JA, Hedger MP. Differential responses of epithelial Sertoli cells of the rat testis to Toll-like receptor 2 and 4 ligands: implications for studies of testicular inflammation using bacterial lipopolysaccharides. Innate Immun. 2011; 17(2): 123-136.
- 69Zhang DC, Chen R, Cai Y-H, Wang J-J, Yin C, Zou K. Hyperactive reactive oxygen species impair function of porcine Sertoli cells via suppression of surface protein ITGB1 and connexin-43. Zool Res. 2020; 41(2): 203-207.
- 70Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017; 84(10): 1039-1052.
- 71Hosseinzadeh S, Brewis IA, Eley A, Pacey AA. Co-incubation of human spermatozoa with Chlamydia trachomatis serovar E causes premature sperm death. Hum Reprod. 2001; 16(2): 293-299.
- 72Segnini A, Camejo MI, Proverbio F Chlamydia trachomatis and sperm lipid peroxidation in infertile men. Asian J Androl. 2003; 5(1): 47-49.
- 73Ford WC. Regulation of sperm function by reactive oxygen species. Hum Reprod Update. 2004; 10(5): 387-399.
- 74Bryan ER, Redgrove KA, Mooney AR, et al. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development†. Biol Reprod. 2020; 102(4): 888-901.
- 75Hosseinzadeh S, Brewis IA, Pacey AA, et al. Coincubation of human spermatozoa with Chlamydia trachomatis in vitro causes increased tyrosine phosphorylation of sperm proteins. Infect Immun. 2000; 68(9): 4872-4876.
- 76Hayrabedyan S, Todorova K, Jabeen A, et al. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production. Sci Rep. 2016; 6:18896.
- 77Boekelheide K, Lee J, Shipp EB, et al. Expression of Fas system-related genes in the testis during development and after toxicant exposure. Toxicol Lett. 1998; 102–103: 503-508.
- 78Pentikainen V, Erkkilä K, Suomalainen L, et al. TNFalpha down-regulates the Fas ligand and inhibits germ cell apoptosis in the human testis. J Clin Endocrinol Metab. 2001; 86(9): 4480-4488.
- 79Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007; 55(5): 443-452.
- 80Hakovirta H, Syed V, Jégou B, et al. Function of interleukin-6 as an inhibitor of meiotic DNA synthesis in the rat seminiferous epithelium. Mol Cell Endocrinol. 1995; 108(1–2): 193-198.
- 81Filardo S, Skilton RJ, O’Neill CE, et al. Growth kinetics of Chlamydia trachomatis in primary human Sertoli cells. Sci Rep. 2019; 9(1): 5847.
- 82Bhushan S, Tchatalbachev S, Lu Y, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015; 194(11): 5455-5464.
- 83Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol. 2002; 168(3): 1435-1440.
- 84O'Connell CM, Ionova IA, Quayle AJ, Visintin A, Ingalls RR. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem. 2006; 281(3): 1652-1659.
- 85Gautam DK, Misro MM, Chaki SP, et al. H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis. 2006; 11(1): 39-46.
- 86Li Y, Su Y, Zhou T, et al. Activation of the NLRP3 inflammasome pathway by prokineticin 2 in testicular macrophages of uropathogenic Escherichia coli-induced orchitis. Front Immunol. 2019; 10. 1872
- 87Xie T, Chen H, Shen S, et al. Proteasome activator REGgamma promotes inflammation in Leydig cells via IkBepsilon signaling. Int J Mol Med. 2019; 43(5): 1961-1968.
- 88Li M-Y, Zhu X-L, Zhao B-X, et al. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis. 2019; 10(7): 489.
- 89Fava BEC, da Costa WL, Medeiros MLL, et al. Neoadjuvant intraperitoneal chemotherapy followed by radical surgery and HIPEC in patients with very advanced gastric cancer and peritoneal metastases: report of an initial experience in a western single center. World J Surg Oncol. 2018; 16(1): 62.
- 90Wang Y, Chen L, Xie L, et al. Interleukin 6 inhibits the differentiation of rat stem Leydig cells. Mol Cell Endocrinol. 2018; 472: 26-39.
- 91Rusz A, Pilatz A, Wagenlehner F, et al. Influence of urogenital infections and inflammation on semen quality and male fertility. World J Urol. 2012; 30(1): 23-30.
- 92Brookings C, Goldmeier D, Sadeghi-Nejad H. Sexually transmitted infections and sexual function in relation to male fertility. Korean J Urol. 2013; 54(3): 149-156.
- 93Bryan ER, Kollipara A, Trim LK, et al. Hematogenous dissemination of Chlamydia muridarum from the urethra in macrophages causes testicular infection and sperm DNA damage. Biol Reprod. 2019; 101: 748-759.
- 94Sobinoff AP, Dando SJ, Redgrove KA, et al. Chlamydia muridarum infection-induced destruction of male germ cells and sertoli cells is partially prevented by chlamydia major outer membrane protein-specific immune CD4 cells 1. Biol Reprod. 2015; 92(1): 1-13.
- 95Gallegos G, Ramos B, Santiso R, et al. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma. Fertil Steril. 2008; 90(2): 328-334.
- 96Moazenchi M, Totonchi M, Salman Yazdi R, et al. The impact of Chlamydia trachomatis infection on sperm parameters and male fertility: a comprehensive study. Int J STD AIDS. 2018; 29: 466-473.
- 97Veznik Z, Pospisil L, Svecova D, et al. Chlamydiae in the ejaculate: their influence on the quality and morphology of sperm. Acta Obstet Gynecol Scand. 2004; 83(7): 656-660.
- 98Vigil P, Morales P, Tapia A, et al. Chlamydia trachomatis infection in male partners of infertile couples: incidence and sperm function. Andrologia. 2002; 34(3): 155-161.
- 99Johnston SD, Deif HH, McKinnon A, Theilemann P, Griffith JE, Higgins DP. Orchitis and epididymitis in Koalas (Phascolarctos cinereus) infected with Chlamydia pecorum. Vet Pathol. 2015; 52(6): 1254-1257.
- 100Murthy AK, Li W, Ramsey KH. Immunopathogenesis of chlamydial infections. Curr Top Microbiol Immunol. 2018; 412: 183-215.
- 101Rival C, Theas MS, Suescun MO, et al. Functional and phenotypic characteristics of testicular macrophages in experimental autoimmune orchitis. J Pathol. 2008; 215(2): 108-117.
- 102Yule TD, Tung KS. Experimental autoimmune orchitis induced by testis and sperm antigen-specific T cell clones: an important pathogenic cytokine is tumor necrosis factor. Endocrinology. 1993; 133(3): 1098-1107.
- 103Motrich RD, Sanchez L, Maccioni M, et al. Male rat genital tract infection with Chlamydia muridarum has no significant consequence on male fertility. J Urol. 2012; 187(5): 1911-1917.
- 104Sanchez LR, Breser ML, Godoy GJ, et al. Chronic infection of the prostate by Chlamydia muridarum is accompanied by local inflammation and pelvic pain development. Prostate. 2017; 77(5): 517-529.
- 105Pilatz A, Kilb J, Kaplan H, et al. High prevalence of urogenital infection/inflammation in patients with azoospermia does not impede surgical sperm retrieval. Andrologia. 2019; 51(10):e13401.
- 106Harvie MC, Carey AJ, Armitage CW, et al. Chlamydia-infected macrophages are resistant to azithromycin treatment and are associated with chronic oviduct inflammation and hydrosalpinx development. Immunol Cell Biol. 2019; 97(10): 865-876.