JNK modifies neuronal metabolism to promote proteostasis and longevity
Lifen Wang
The Buck Institute for Research on Aging, Novato, California
Genentech Inc., South San Francisco, California
Search for more papers by this authorSonnet S. Davis
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorMartin Borch Jensen
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorImilce A. Rodriguez-Fernandez
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorCagsar Apaydin
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorGabor Juhasz
Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Search for more papers by this authorBradford W. Gibson
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorBirgit Schilling
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorArvind Ramanathan
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorSina Ghaemmaghami
Department of Biology, University of Rochester, Rochester, New York
Search for more papers by this authorCorresponding Author
Heinrich Jasper
The Buck Institute for Research on Aging, Novato, California
Genentech Inc., South San Francisco, California
Correspondence
Heinrich Jasper, The Buck Institute for Research on Aging, Novato, CA.
Email: [email protected]
Search for more papers by this authorLifen Wang
The Buck Institute for Research on Aging, Novato, California
Genentech Inc., South San Francisco, California
Search for more papers by this authorSonnet S. Davis
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorMartin Borch Jensen
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorImilce A. Rodriguez-Fernandez
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorCagsar Apaydin
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorGabor Juhasz
Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
Search for more papers by this authorBradford W. Gibson
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorBirgit Schilling
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorArvind Ramanathan
The Buck Institute for Research on Aging, Novato, California
Search for more papers by this authorSina Ghaemmaghami
Department of Biology, University of Rochester, Rochester, New York
Search for more papers by this authorCorresponding Author
Heinrich Jasper
The Buck Institute for Research on Aging, Novato, California
Genentech Inc., South San Francisco, California
Correspondence
Heinrich Jasper, The Buck Institute for Research on Aging, Novato, CA.
Email: [email protected]
Search for more papers by this authorAbstract
Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants.
CONFLICT OF INTERESTS
The authors declare no competing interests.
Supporting Information
Filename | Description |
---|---|
acel12849-sup-0001-FigS1-S6.docxWord document, 7.2 MB | |
acel12849-sup-0002-TableS1.xlsxMS Excel, 16.1 MB | |
acel12849-sup-0003-TableS2.xlsxMS Excel, 1.2 MB | |
acel12849-sup-0004-TableS3.xlsxMS Excel, 45.1 KB | |
acel12849-sup-0005-TableS4.xlsxMS Excel, 53.9 KB | |
acel12849-sup-0006-TableS5.xlsxMS Excel, 2.1 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M., & Lithgow, G. J. (2011). Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature, 472(7342), 226–229. https://doi.org/10.1038/nature09873
- Avanesov, A. S., Ma, S., Pierce, K. A., Yim, S. H., Lee, B. C., Clish, C. B., & Gladyshev, V. N. (2014). Age- and diet-associated metabolome remodeling characterizes the aging process driven by damage accumulation. Elife, 3, e02077. https://doi.org/10.7554/eLife.02077
- Besson, M. T., Alegria, K., Garrido-Gerter, P., Barros, L. F., & Lievens, J. C. (2015). Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One, 10(3), e0118765. https://doi.org/10.1371/journal.pone.0118765
- Besson, M. T., Dupont, P., Fridell, Y. W., & Lievens, J. C. (2010). Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease. Human Molecular Genetics, 19(17), 3372–3382. https://doi.org/10.1093/hmg/ddq249
- Biteau, B., Karpac, J., Hwangbo, D., & Jasper, H. (2011). Regulation of Drosophila lifespan by JNK signaling. Experimental Gerontology, 46(5), 349–354. https://doi.org/10.1016/j.exger.2010.11.003
- Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., & Johansen, T. (2009). Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology, 452, 181–197. https://doi.org/10.1016/S0076-6879(08)03612-4
- Bolanos, J. P., & Almeida, A. (2010). The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 62(1), 14–18. https://doi.org/10.1002/iub.280
- Brooks, W. M., Lynch, P. J., Ingle, C. C., Hatton, A., Emson, P. C., Faull, R. L., & Starkey, M. P. (2007). Gene expression profiles of metabolic enzyme transcripts in Alzheimer's disease. Brain Research, 1127(1), 127–135. S0006-8993(06)02845-9[pii]
- Chandrasekaran, K., Giordano, T., Brady, D. R., Stoll, J., Martin, L. J., & Rapoport, S. I. (1994). Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Research. Molecular Brain Research, 24(1–4), 336–340. https://doi.org/10.1016/0169-328X(94)90147-3
- Chondrogianni, N., Georgila, K., Kourtis, N., Tavernarakis, N., & Gonos, E. S. (2015). 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB Journal, 29(2), 611–622. https://doi.org/10.1096/fj.14-252189
- Dahl, J. U., Gray, M. J., & Jakob, U. (2015). Protein quality control under oxidative stress conditions. Journal of Molecular Biology, 427(7), 1549–1563. https://doi.org/10.1016/j.jmb.2015.02.014
- Demontis, F., & Perrimon, N. (2010). FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell, 143(5), 813–825. https://doi.org/10.1016/j.cell.2010.10.007
- Garcia-Nogales, P., Almeida, A., & Bolanos, J. P. (2003). Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. Journal of Biological Chemistry, 278(2), 864–874. https://doi.org/10.1074/jbc.M206835200
- Gene Ontology Consortium (2015). Gene Ontology Consortium: going forward. Nucleic Acids Research, 43(Database issue), D1049–D1056. https://doi.org/10.1093/nar/gku1179
- Grimberg, K. B., Beskow, A., Lundin, D., Davis, M. M., & Young, P. (2011). Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome. Molecular and Cellular Biology, 31(4), 897–909. https://doi.org/10.1128/MCB.00799-10
- Gusarov, I., Pani, B., Gautier, L., Smolentseva, O., Eremina, S., Shamovsky, I., … Nudler, E. (2017). Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nature Communications, 8, 15868. https://doi.org/10.1038/ncomms15868
- Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S. J., & Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 6(1), 95–110. https://doi.org/10.1111/j.1474-9726.2006.00267.x
- Houtkooper, R. H., Williams, R. W., & Auwerx, J. (2010). Metabolic networks of longevity. Cell, 142(1), 9–14. https://doi.org/10.1016/j.cell.2010.06.029
- Huang da, W., Sherman, B. T., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2008). DAVID gene ID conversion tool. Bioinformation, 2(10), 428–430. https://doi.org/10.6026/97320630002428
- Juhasz, G., Erdi, B., Sass, M., & Neufeld, T. P. (2007). Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes & Development, 21(23), 3061–3066. https://doi.org/10.1101/gad.1600707
- Kapahi, P., Chen, D., Rogers, A. N., Katewa, S. D., Li, P. W., Thomas, E. L., & Kockel, L. (2010). With TOR, less is more: A key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metabolism, 11(6), 453–465. https://doi.org/10.1016/j.cmet.2010.05.001
- Karpac, J., Hull-Thompson, J., Falleur, M., & Jasper, H. (2009). JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell, 8(3), 288–295. https://doi.org/10.1111/j.1474-9726.2009.00476.x
- Karpac, J., & Jasper, H. (2009). Insulin and JNK: Optimizing metabolic homeostasis and lifespan. Trends in Endocrinology and Metabolism, 20(3), 100–106. https://doi.org/10.1016/j.tem.2008.11.004
- Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., … Sierra, F. (2014). Geroscience: Linking aging to chronic disease. Cell, 159(4), 709–713. https://doi.org/10.1016/j.cell.2014.10.039
- Kenyon, C. (2005). The plasticity of aging: Insights from long-lived mutants. Cell, 120(4), 449–460. https://doi.org/10.1016/j.cell.2005.02.002
- Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536. https://doi.org/10.1093/bioinformatics/btn323
- Labbadia, J., & Morimoto, R. I. (2015). The biology of proteostasis in aging and disease. Annual Review of Biochemistry, 84, 435–464. https://doi.org/10.1146/annurev-biochem-060614-033955
- Lebeau, J., Rainbolt, T. K., & Wiseman, R. L. (2018). Coordinating mitochondrial biology through the stress-responsive regulation of mitochondrial proteases. International Review of Cell and Molecular Biology, 340, 79–128. https://doi.org/10.1016/bs.ircmb.2018.05.003
- Legan, S. K., Rebrin, I., Mockett, R. J., Radyuk, S. N., Klichko, V. I., Sohal, R. S., & Orr, W. C. (2008). Overexpression of glucose-6-phosphate dehydrogenase extends the life span of Drosophila melanogaster. Journal of Biological Chemistry, 283(47), 32492–32499. https://doi.org/10.1074/jbc.M805832200
- Lewis, S. E., Goldspink, D. F., Phillips, J. G., Merry, B. J., & Holehan, A. M. (1985). The effects of aging and chronic dietary restriction on whole body growth and protein turnover in the rat. Experimental Gerontology, 20(5), 253–263. https://doi.org/10.1016/0531-5565(85)90050-6
- Libert, S., Chao, Y., Zwiener, J., & Pletcher, S. D. (2008). Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction. Molecular Immunology, 45(3), 810–817. https://doi.org/10.1016/j.molimm.2007.06.353
- Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- Luckinbill, L. S., Riha, V., Rhine, S., & Grudzien, T. A. (1990). The role of glucose-6-phosphate dehydrogenase in the evolution of longevity in Drosophila melanogaster. Heredity (Edinb), 65(Pt 1), 29–38. https://doi.org/10.1038/hdy.1990.66
- Mathur, D., Lopez-Rodas, G., Casanova, B., & Marti, M. B. (2014). Perturbed glucose metabolism: Insights into multiple sclerosis pathogenesis. Frontiers in Neurology, 5, 250. https://doi.org/10.3389/fneur.2014.00250
- Mazzola, J. L., & Sirover, M. A. (2001). Reduction of glyceraldehyde-3-phosphate dehydrogenase activity in Alzheimer's disease and in Huntington's disease fibroblasts. Journal of Neurochemistry, 76(2), 442–449. https://doi.org/10.1046/j.1471-4159.2001.00033.x
- McArdle, B., Mackenzie, I. C., & Webster, G. R. (1960). Studies on intermediate carbohydrate metabolism in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 23(2), 127–132. https://doi.org/10.1136/jnnp.23.2.127
- Nezis, I. P., Simonsen, A., Sagona, A. P., Finley, K., Gaumer, S., Contamine, D., … Brech, A. (2008). Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. Journal of Cell Biology, 180(6), 1065–1071. https://doi.org/10.1083/jcb.200711108
- O'Brien, D. M., Min, K. J., Larsen, T., & Tatar, M. (2008). Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Current Biology, 18(4), R155–R156. https://doi.org/10.1016/j.cub.2008.01.021
- Oh, S. W., Mukhopadhyay, A., Svrzikapa, N., Jiang, F., Davis, R. J., & Tissenbaum, H. A. (2005). JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proceedings of the National Academy of Sciences USA, 102(12), 4494–4499. https://doi.org/10.1073/pnas.0500749102
- Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. (2011). Ageing in Drosophila: The role of the insulin/Igf and TOR signalling network. Experimental Gerontology, 46(5), 376–381. https://doi.org/10.1016/j.exger.2010.09.003
- Pircs, K., Nagy, P., Varga, A., Venkei, Z., Erdi, B., Hegedus, K., & Juhasz, G. (2012). Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS One, 7(8), e44214. https://doi.org/10.1371/journal.pone.0044214
- Post, S., Karashchuk, G., Wade, J. D., Sajid, W., De Meyts, P., & Tatar, M. (2018). Drosophila insulin-like peptides DILP2 and DILP5 differentially stimulate cell signaling and glycogen phosphorylase to regulate longevity. Frontiers in Endocrinology, 9, 245. https://doi.org/10.3389/fendo.2018.00245
- Prasanna, H. R., & Lane, R. S. (1979). Protein degradation in aged nematodes (Turbatrix aceti). Biochemical and Biophysical Research Communications, 86(3), 552–559. https://doi.org/10.1016/0006-291X(79)91749-2
- Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., & Ghaemmaghami, S. (2010). Analysis of proteome dynamics in the mouse brain. Proceedings of the National Academy of Sciences USA, 107(32), 14508–14513. https://doi.org/10.1073/pnas.1006551107
- Rattan, S. I. (2010). Synthesis, modification and turnover of proteins during aging. Advances in Experimental Medicine and Biology, 694, 1–13.
- Regenold, W. T., Phatak, P., Makley, M. J., Stone, R. D., & Kling, M. A. (2008). Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. Journal of the Neurological Sciences, 275(1–2), 106–112. https://doi.org/10.1016/j.jns.2008.07.032
- Riera, C. E., & Dillin, A. (2015). Tipping the metabolic scales towards increased longevity in mammals. Nature Cell Biology, 17(3), 196–203. https://doi.org/10.1038/ncb3107
- Sarbassov, D. D., Ali, S. M., & Sabatini, D. M. (2005). Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 17(6), 596–603. https://doi.org/10.1016/j.ceb.2005.09.009
- Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., Hu, D., Fox, L. A., … Kaeberlein, M. (2008). Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell, 133(2), 292–302. https://doi.org/10.1016/j.cell.2008.02.037
- Syntichaki, P., Troulinaki, K., & Tavernarakis, N. (2007). eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature, 445(7130), 922–926. https://doi.org/10.1038/nature05603
- Taylor, R. C., & Dillin, A. (2011). Aging as an event of proteostasis collapse. Cold Spring Harbor Perspectives in Biology, 3(5), a004440. https://doi.org/10.1101/cshperspect.a004440
- Tower, J. (2011). Heat shock proteins and Drosophila aging. Experimental Gerontology, 46(5), 355–362. https://doi.org/10.1016/j.exger.2010.09.002
- Vilchez, D., Morantte, I., Liu, Z., Douglas, P. M., Merkwirth, C., Rodrigues, A. P., … Dillin, A. (2012). RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature, 489(7415), 263–268. https://doi.org/10.1038/nature11315
- Wamelink, M. M., Struys, E. A., & Jakobs, C. (2008). The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review. Journal of Inherited Metabolic Disease, 31(6), 703–717. https://doi.org/10.1007/s10545-008-1015-6
- Wang, M. C., Bohmann, D., & Jasper, H. (2003). JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Developmental Cell, 5(5), 811–816. https://doi.org/10.1016/S1534-5807(03)00323-X
- Wang, M. C., Bohmann, D., & Jasper, H. (2005). JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell, 121(1), 115–125. https://doi.org/10.1016/j.cell.2005.02.030
- Wang, C. T., Chen, Y. C., Wang, Y. Y., Huang, M. H., Yen, T. L., Li, H., … Wang, H. D. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell, 11(1), 93–103. https://doi.org/10.1111/j.1474-9726.2011.00762.x
- Wang, D., Cui, Y., Jiang, Z., & Xie, W. (2014). Knockdown expression of eukaryotic initiation factor 5 C-terminal domain containing protein extends lifespan in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 446(2), 465–469. https://doi.org/10.1016/j.bbrc.2014.02.133
- Wu, H., Wang, M. C., & Bohmann, D. (2009). JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mechanisms of Development, 126(8–9), 624–637. https://doi.org/10.1016/j.mod.2009.06.1082
- Xu, P., Das, M., Reilly, J., & Davis, R. J. (2011). JNK regulates FoxO-dependent autophagy in neurons. Genes & Development, 25(4), 310–322. https://doi.org/10.1101/gad.1984311
- Young, V. R., Steffee, W. P., Pencharz, P. B., Winterer, J. C., & Scrimshaw, N. S. (1975). Total human body protein synthesis in relation to protein requirements at various ages. Nature, 253(5488), 192–194.
- Zhang, T., Price, J. C., Nouri-Nigjeh, E., Li, J., Hellerstein, M. K., Qu, J., & Ghaemmaghami, S. (2014). Kinetics of precursor labeling in stable isotope labeling in cell cultures (SILAC) experiments. Analytical Chemistry, 86(22), 11334–11341. https://doi.org/10.1021/ac503067a