Enigmatic Glass-Like Carbon from the Alpine Foreland, Southeast Germany: A Natural Carbonization Process
Tatyana G. SHUMILOVA
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI, 96822 USA
Search for more papers by this authorSergey I. ISAENKO
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorVasily V. ULYASHEV
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorBoris A. MAKEEV
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorMichael A. RAPPENGLÜCK
Institute for Interdisciplinary Studies, Gilching, Germany
Search for more papers by this authorAleksey A. VELIGZHANIN
National Research Center «Kurchatov Institute», Akademika Kurchatova pl. 1, Moscow, 123182 Russia
Search for more papers by this authorCorresponding Author
Kord ERNSTSON
Faculty of Philosophy I, University of Würzburg, Germany
Corresponding author. E-mail: [email protected]Search for more papers by this authorTatyana G. SHUMILOVA
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI, 96822 USA
Search for more papers by this authorSergey I. ISAENKO
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorVasily V. ULYASHEV
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorBoris A. MAKEEV
Institute of Geology of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982 Russia
Search for more papers by this authorMichael A. RAPPENGLÜCK
Institute for Interdisciplinary Studies, Gilching, Germany
Search for more papers by this authorAleksey A. VELIGZHANIN
National Research Center «Kurchatov Institute», Akademika Kurchatova pl. 1, Moscow, 123182 Russia
Search for more papers by this authorCorresponding Author
Kord ERNSTSON
Faculty of Philosophy I, University of Würzburg, Germany
Corresponding author. E-mail: [email protected]Search for more papers by this authorAbout the first author: Tatyana SHUMILOVA, female, born in Vorkuta, Russian Federation, in December 1967. She received her PhD at the Institute of Geology UB Komi SC UB RAS in 1995. She was habilitated at the Saint-Petersburg Mining University (Leningrad Mining Institute) in 2003. At present she is a head of the Laboratory of Diamond Mineralogy and main scientist at the Institute of Geology UB Komi SC UB RAS and Affiliated Researcher at the University of Hawaii. She published over 50 papers in peer-reviewed journals such as Scientific Reports, Carbon, European Journal of Mineralogy, Mineralogy and Petrology, Doklady Earth Sciences and others.
Abstract
Unusual carbonaceous matter, termed here chiemite, composed of more than 90% C from the Alpine Foreland at Lake Chiemsee in Bavaria, southeastern Germany has been investigated using optical and atomic force microscopy, X-ray fluorescence spectroscopy, scanning and transmission electron microscopy, high-resolution Raman spectroscopy, X-ray diffraction and differential thermal analysis, as well as by δ13C and 14C radiocarbon isotopic data analysis. In the pumice-like fragments, poorly ordered carbon matter co-exists with high-ordering monocrystalline α-carbyne, and contains submicrometer-sized inclusions of complex composition. Diamond and carbyne add to the peculiar mix of matter. The required very high temperatures and pressures for carbyne formation point to a shock event probably from the recently proposed Holocene Chiemgau meteorite impact. The carbon material is suggested to have largely formed from heavily shocked coal, vegetation like wood, and peat from the impact target area. The carbonization/coalification high PT process may be attributed to a strong shock that instantaneously caused the complete evaporation and loss of volatile matter and water, which nevertheless preserved the original cellular structure seen fossilized in many fragments. Relatively fresh wood encapsulated in the purported strongly shocked matter point to quenched carbon melt components possibly important for the discussion of survival of organic matter in meteorite impacts, implying an astrobiological relationship.
References
- Balzaretti, N.M., Perottoni, C.A., and Jornada, J.A.H., 2003. High-pressure Raman and infrared spectroscopy of polyacetylene. Journal of Raman Spectroscopy, 34: 259–263
- Bauer, F., Hiltl, M., Rappenglück, M.A., Neumair, A., and Ernstson, K., 2013. Fe2Si (Hapkeite) from the subsoil in the alpine foreland (Southeast Germany): is it associated with an impact? 76th Annual Meteoritical Society Meeting. Meteoritics & Planetary Science, 48(s1), Abstract #5056.
- Boslough, M.B.E., and Crawford, D.A., 2008. Low–altitude airbursts and the impact threat. Int. J. Impact Engineering, 35 (12): 1441–1448.
- Bunch, T.E., Becker, L., Schultz, P.H., and Wolbach, W.S., 1997. New potential sources for Black Onaping carbon. In: Conferences on Large Meteorite Impacts and Planetary Evolution (Sudbury 97), p. 7, LPI Contributions No. 922, Lunar and Planetary Institute, Houston.
- Castelli, I.E., Salvestrini, P., and Manini, N., 2012. Mechanical properties of carbynes investigated by ab initio total-energy calculations. Physical Review B, 85(21): 214110.
- Chalifoux, W.A., and Tykwinski, R.R., 2010. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chemistry, 2: 967–971.
- Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., 2009. Structural Materials Science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results // Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 603: 95–98.
- Chuan, X.Y., Zheng, Z., and Chen, J., 2003. Flakes of natural carbyne in a diamond mine. Carbon, 41(10): 1877–1880.
- Correa, A.A., Bonev, S.A., and Galli, G., 2006. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. PNAS, 103 (5): 1204–1208.
- Courbion, G., and Ferey, G., 1988. Na2Ca3Al2F14: A new example of a structure with “independent F−“—A new method of comparison between fluorides and oxides of different formula // J. Solid State Chem., 76: 426–431.
- Danilova, YuV., Shumilova, T.G., Mayer, J., and Danilov, B.S., 2016. Conditions and formation mechanism of carbon phases in Late Quaternary geyzerites and travertines of Ol'khon area and Ol'khon Island (Baikal Rift Zone). Petrology, 24(1): 35–48.
- Ding Xu-Li, Li Qing-Shan and Kong Xiang-He, 2009. Optical and electrical properties evolution of diamond-like carbon thin films with deposition temperature. Chinese Physical Letters, 26(2): 027802.
- El Goresy, A., and Donnay, G., 1968. A new allotropic form of carbon from the Ries Crater. Science, 161: 363–364.
- El Goresy, A., Gillet, P., Chen, M., Kunstler, F., Graup, G., and Stähle, V., 2001. In situ discovery of shock-induced graphite-diamond transition in gneisses from the Ries crater, Germany. American Mineralogist, 86: 611–621.
- El Goresy, A., Dubovrinsky, L., Gillet, P., Mostefaoui, S., Graup, G., Drakopoulos, M., Simionovici, A.S., Swamy, V., and Masaitis, V.L., 2003. A novel cubic, transparent and super-hard polymorph of carbon from the Ries and Popigai craters: implications to understanding dynamic-induced natural high-pressure phase transitions in the carbon system. 34th Lunar and Planetary Science Conference, 1016.pdf.
- Ernstson, K., Hilt, M., and Neumair, A., 2014. Microtektite-Like Glasses from the Northern Calcareous Alps (Southeast Germany): Evidence of Proximal Impact Ejecta. 45th Lunar and Planetary Science Conference, 1200.pdf see above.
- Ernstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M.A., Sudhaus, D., and Zeller, K.W., 2010. The Chiemgau crater strewn field: evidence of a Holocene large impact in southeast Bavaria, Germany. J. Siberian Federal University, Engineering & Technology, 1(3): 72–103.
- Ernstson, K., and Neumair, A., 2011. Geoelectric complex resistivity measurements of soil liquefaction features in Quaternary sediments of the Alpine Foreland, Germany. Fall Meeting, 5–9 Dec. 2011, Abstracts. San Francisco: AGU, NS23A-1555.
- Ernstson, K., Shumilova, T.G., Isaenko, S.I., Neumair, A., and Rappenglück, M.A., 2013. From biomass to glassy carbon and carbynes: evidence of possible meteorite impact shock coalification and carbonization. Modern problems of theoretical, experimental and applied mineralogy (Yushkin Memorial Seminar 2013). Proceedings of mineralogical seminar, Syktyvkar. IG Komi SC UB RAS: 369–371.
- Ernstson, K., Mayer, W., Neumair, A., and Sudhaus, D., 2011. The sinkhole enigma in the alpine foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes. Centr. Eur. J. Geosci. 3(4): 385–397.
- Ernstson, K., Sideris, C., Liritzis, I., and Neumair, A., 2012. The Chiemgau meteorite impact signature of the Stöttham archaeological site (southeast Germany). Mediterranean Archaeology and Archaeometry, 12: 249–259.
- Fedoseev, D.V., Novikov, N.V., and Teremetskaya, I.G., 1981. Diamond. In: N.V. Novikov (ed.), Diamond Reference book. Kiev: Naukova Dumka, 77 (in Russian). Ferrari, A.C., and Robertson, J., 2001. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64: 075414.
- Ferrari, A.C., and Robertson, J., 2004. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. Royal Soc. London, A, 362: 2477–2512.
- Filik, J., Harvey, J.N., Allan, N.L., May, P.W., Dahl, J.E.P., Liu, S., and Carlson, R.M.K., 2006. Raman spectroscopy of nanocrystalline diamond: An ab initio approach. Physical Review B, 74, 035423.
- French, B.M., 1998. Traces of Catastrophe: a Handbook of Shock-metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston, TX: Lunar and Planetary Institute, 120.
- Gojani, A.B., and Takayama, K., 2008. Experimental Determination of Shock Hugoniot for Water, Castor Oil, and Aqueous Solutions of Sodium Chloride, Sucrose and Gelatin. Materials Science Forum, 566: 23–28.
- Hammersley, A.P., 2016. FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Crystallogr. 49: 646–652.
- Hermes, R., and Strickfaden, W., 2005. New theory on the formation of trinitite. Nuclear Weapons Journal, 2: 2–7.
- Heymann, D., and Dessler, B., 1997. Raman study of carbonaceous matter and anthroxolite in rocks from the Sudbury, Ontario, impact structure. 28th Lunar and Planetary Science Conference, 1268.pdf. see above.
- Hiltl, M., Bauer, F., Ernstson, K., Mayer, W., Neumair, A., and Rappenglück, M.A., 2011. SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? 42nd Lunar and Planetary Science Conference, 1391.pdf see above.
- Hoffmann, V., Rösler, W., and Schibler, I., 2004. Anomalous magnetic signature of top soils in Burghausen area, SE Germany. Geophys. Res. Abstr. 6: 05041.
- Hoffmann, V., Rösler, W., Patzelt, A., Raeymaekers, B., and Van Espen, P., 2005. Characterisation of a small crater-like structure in SE Bavaria, Germany. Meteor. Planet. Sci. 40: A129.
- Hoffmann, V., Torii, M., and Funaki, M., 2006. Peculiar magnetic signature of Fe-silicide phases and diamond/ fullerene containing carbon spherules. In: 10 th Castle Meeting on New Trends in Geomagnetism. Travaux Géophysiques XXVII (27): 52–53.
- Howard, K.T., Bailey, M.J., Berhanu, D., Bland, P.A., Cressey, G., Howard, L.E., Jeynes, C., Matthewman, R., Martins, Z., Sephton, M.A., Stolojan, V., and Verchovsky, S., 2013. Biomass preservation in impact melt ejecta. Nature Geosci. 6: 1018–1022.
- Isaenko, S., Shumilova, T., Ernstson, K., Shevchuk, S., Neumair, A., and Rappenglück, M., 2012. Carbynes and DLC in naturally occurring carbon matter from the Alpine Foreland, South-East Germany: Evidence of a probable new impactite. Eur. Min. Conf., Vol. 1, EMC2012–217, 2012.
- Itoh, M., Kotani, M., Naito, H., Sunada, T., Kawazoe, Y., and Adschiri, T., 2009. New metallic carbon crystal. Physics Rev. Let. 102 (5): 055703.
- Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A., and Sonoki, T., 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11: 6613–6621.
- Kavan, L., and Kasher, J., 1999. Molecular and electron spectroscopy of carbyne structures. In: R.B. Heimann, S.E. Evsyukov, and L. Kavan (eds.), Carbyne and Carbynoid Structures. Dordrecht: Kluwer, 343–356.
10.1007/978-94-011-4742-2_23 Google Scholar
- Korochantsev, A.V., Badjukov, D.D., and Sadilenko, D.A., 2001. Shock metamorphism of organic matter. Meteor. Planet. Sci., 36(9): A104
- Kudryavtsev, Yu. P., Evsyukov, S., Guseva, M., Babaev, V., and Khvostov, V., 1997. Carbyne – a linear chainlike carbon allotrope. In: P.A. Thrower (ed.), Chemistry and Physics of Carbon. New York-Basel-Hong Kong: Marchel Dekker Inc., 2–70.
- Lamperti, A., and Ossi, P.M., 2003. Energetic condition for carbyne formation. Chem. Phys. Let. 376: 662–665.
- Lin, Y., Zhang, L., Mao, H., Chow, P., Xiao, Y., Baldini, M., Shu, J., and Mao, W.L., 2011. Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Let. 107: 175504.
- Lindgren, P., Parnell, J., Bowden, S.A., Taylor, C., Osinski, G.R., and Lee, P., 2006. Preservation of biological signature within impact melt breccias, Haughton Impact Structure. 37th Lunar and Planetary Science Conference, 1028.pdf
- Liritzis, I., Zacharias, N., Polymeris, G.G., Kitis, G., Ernstson, K., Sudhaus, D., Neumair, A., Mayer, W., Rappenglück, M.A., and Rappenglück, B., 2010. The Chiemgau meteorite impact and tsunami event (southeast Germany): first OSL dating. Mediterranean Archaeology and Archaeometry, 10(4): 17–33.
- Liu Lian, Huang Hin and Liu Zhiqiang, 2016. Stable carbon isotopic composition of black carbon in surface soil as a proxy for reconstructing vegetation on the northern slope of the Qinling Mountains. Acta Geologica Sinica (English Edition) 90(1): 222–229.
- Liu, M., Artyukhov, VI, Lee, H., Xu, F., and Yakobson, B.I., 2013. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano, 7(11): 10075–10082.
- Lysyuk, AYu, Yurgenson, G.A., and Yushkin, N.P., 2006. Phytofulgurites: A new type of geological formations. Doklady Earth Sciences, 411: 1431–1434.
- S.P. Marsh (ed.), 1980. LASL Shock Hugoniot Data. Berkeley, Los Angeles and London: University of California Press, 658.
10.1177/003803858001400422 Google Scholar
- Masaitis, V.L., Futergendler, S.I., and Gnevushev, M.A., 1972. Diamonds in impactites of the Popigai meteoritic crater. Zapiski Vsesoyuznogo Mineralogicheskogo Obshestva, 101 (1): 108–112 (in Russian).
- Melosh, H.J., 1989. Impact cratering: A geologic process. New York: Oxford University Press.
- Missio, A.L., Mattos, B.D., Gatto, A.A., and de Lima, E.A., 2014. Thermal analysis of charcoal from fast-growing eucalypt wood: influence of raw material moisture content. J. Wood Chemistry and Technology, 34: 191–201.
- Miura, Y., Fukuyama, S., and Gucsik, A., 1999a. Compositional changes by multiple impacts. J. Materials Processing Technology, 85: 192–193.
- Miura, Y., Kobayashi, H., Kedves, M., and Gucsik, A., 1999b. Carbon source from limestone target by impact reaction at the K/T boundary. 30th Lunar and Planetary Science Conference, 1522–1523.
- Naik, T.R., Kraus, R.N., and Kumar, R., 2001. Wood Ash: A New Source of Pozzolanic Material. – Report No. CBU-2001-10 REP-435, Department of Civil Engineering and Mechanics, College of Engineering and Applied Science, The University of Wisconsin, Milwaukee.
- Narayan, J., and Bhaumik, A., 2015. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys., 118: 215303.
- Neumair, A., and Ernstson, K., 2011. Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany. Fall Meeting, 5–9 Dec. 2011, Abstracts. San Francisco: AGU, GP11A-1023. usual citation
- Osswald, S., Mochalin, V.N., Havel, M., Yushin, G., and Gogotsi, Y., 2009. Phonon confinement effects in the Raman spectrum of nanodiamond. Physical Review B. 80, 075419.
- Pan, B., Xiao, J., Li, J., Liu, P., Wang, C., and Yan, G., 2015. Carbyne with finite length: The one-dimensional sp carbon. Science Advances, 1(9) me1500857.
- Parnell, J., Lee, P., Osinski, G.R., and Cockell, C.S., 2005. Application of organic geochemistry to detect signatures of organic matter in the Haughton impact structure. Meteor. Planet. Sci. 40: 1879–1885.
- Parnell, J., and Lindgren, P., 2006a. The processing of organic matter in impact craters: implications for the exploration of life. In: Proceedings of the First International Conference on Impact Cratering in the Solar System. ESLAB430-Proc_288838-Parnell.pdf, 147–152, European Space Agency.
- Parnell, J., and Lindgren, P., 2006b. Survival of reactive carbon through meteorite impact melting. Geology, 34: 1029–1032.
- Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., and Peng, J.L., 2000. The Raman spectrum of nanocrystalline diamond. Chem. Phys. Let. 332: 93–97
- Procházka, V., and Kletetschka, G., 2016. Evidence for superaparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th Lunar and Planetary Science Conference, 2763.pdf see above.
- Rappenglück, B., Ernstson, K., Mayer, W., Neumair, A., Rappenglück, M.A., Sudhaus, D., and Zeller, K.W., 2009. The Chiemgau impact: An extraordinary case study for the question of Holocene meteorite impacts and their cultural implications. In: Belmonte, J. A. (ed.), Proceedings of the International Conference on Archaeoastronomy, SEAC 16th 2008 “Cosmology across Cultures. Impact of the Study of the Universe in Human Thinking”, Granada September 8–12, 2008, A.S.P. Conf. Ser., 2009.
- Rappenglück, B., Rappenglück, M.A., Ernstson, K., Mayer, W., Neumair, A., Sudhaus, D., and Liritzis, I., 2010. The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). Antiquity, 84: 428–439.
- Rappenglück MA, Bauer F, Ernstson K, and Hiltl M. (2014) Meteorite impact on a micrometer scale: iron silicide, carbide and CAI minerals from the Chiemgau impact event (Germany). In: Problems and perspectives of modern mineralogy (Yushkin Memorial Seminar–2014) Proceedings, Syktyvkar, Komi Republic, Russia 19–22 May 2014, Syktyvkar, pp. 106–107.
- Rappenglück, M.A., Bauer, F., Hiltl, M., Neumair, A., and Ernstson, K., 2013. Calcium-Aluminum-rich Inclusions (CAIs) in iron silicide matter (Xifengite, Gupeiite, Hapkeite): evidence of a cosmic origin. 76th Annual Meteoritical Society Meeting, Meteor. Planet. Sci. 48, s1, Abstract #5055.
- Rietmeijer, F.J.M., and Rotundi, A., 2005. Natural carbynes, including chaoite, on Earth, in meteorites, comets, circumstellar and interstellar dust. In: F. Cataldo (ed.), Polyynes: Synthesis, properties, and applications. Boca Raton: CRC Press, 339–370.
10.1201/9781420027587.ch16 Google Scholar
- Robertson, L., 2002. Diamond-like amorphous carbon. Materials Science and Engineering, R 37: 129–281.
- Rösler, W., Hoffmann, V., Raeymaekers, B., Schryvers, D., and Popp, J., 2005. Diamonds in carbon spherules – evidence for a cosmic impact? Meteor. Planet. Sci. 40: A129.
- Rösler, W., Patzelt, A., and Hoffmann, V., and Raeymaekers, B., 2006. Characterisation of a small crater-like structure in SE Bavaria, Germany. Abstract, European Space Agency, First International Conference on Impact Cratering in the Solar System, ESTEC, Noordwijk, The Netherlands, 08 – 12 May.
- Schüssler, U., Rappenglück, M.A., Ernstson, K., Mayer, W., and Rappenglück, B., 2005. Das Impakt-Kraterstreufeld im Chiemgau. Eur. J. Mineral. 17, Beih. 1: 124.
- Schultz, P.H., Scott, H.R., Clemett, S.J., Thomas-Keprta, K.L., and Zárate, M., 2014. Preserved flora and organics in impact melt breccias. Geology, 42: 515–518.
- Shumilova, T.G., 2003. Mineralogy of native carbon. Ekaterinburg: UB RAS Press, 316 (in Russian).
- Shumilova, T.G., Danilova, Yu.V., Gorbunov, M.V., and Isaenko, S.I., 2011. Natural monocrystalline α-carbyne. Doklady Earth Sciences, 436(1): 152–154.
- Shumilova, T.G., Isaenko, S.I., Ulyashev, V.V., Kazakov, V.A., and Makeev, B.A., 2018. After-coal diamonds: an enigmatic type of impact diamonds. Eur. J. Min. 30: 61–76.
- Stöffler, D., and Langenhorst, F., 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29: 155–181.
- Tagami, M., Liang, Y., Naito, H., Kawazoe, Y., and Kotani, M., 2014. Negatively curved cubic carbon crystals with octahedral symmetry. Carbon, 76: 266–274.
- Terrones, H., Terrones, M., Hernández, E., Grobert, N., Charlier, J.C., and Ajayan, P.M., 2000. New metallic allotropes of planar and tubular carbon. Phys. Rev. Let., 84(8): 1716–1719.
- Ulyashev, V.V., and Veligzhanin, 2016. AA Phase variety of carbon substance in the Kara impact structure by the data of synchrotron study. In: Problems and perspectives of modern mineralogy (Yushkin Memorial Seminar–2016). Syktyvkar, Komi Republic, Russia 17–20 May 2016, Proceedings. Syktyvkar Geoprint, 111–112 (in Russian).
- Wasson, J.T., 2003. Large aerial bursts; an important class of terrestrial accretionary events. Astrobiology, 3(1): 163–179.
- Wei, Q., Sankar, J., Sharma, A.K., Oktyabrsky, S., Narayan, J., and Narayan, R.J., 2000. Atomic structure, electrical properties, and infrared range optical properties of diamondlike carbon films containing foreign atoms prepared by pulsed laser deposition. J. Materials Res., 15 (3): 633–641.
- Whittaker, A.G., 1979. Carbon: occurrence of carbyne forms of carbon in natural graphite. Carbon, 17(1): 21–24
- Wu Yingzhong, Duan Yi, Zhao Yang, Cao Xixi, Ma Lanhua, Qian Yaorong, Li Zhongping and Xing Lantian, 2018. Comparative study of hydrogen and carbon isotopic composition of gases generated from the pyrolysis of a peat under saltwater and freshwater conditions. Acta Geologica Sinica (English Edition) 92(5): 1879–1887.
- Yang, Z.Q., Verbeeck, J., Schryvers, D., Tarcea, N., Popp, J., and Rösler, W., 2008. TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diamond & Related Materials, 17: 937–943.
- Yezerskiy, V.A., 1982. Impactly metamorphosed coal substance in impactites. Meteoritika. 41: 134–140 (in Russian)
- Yezerskiy, V.A., 1986. High pressure polymorphs produced by the shock transformation of coals. Intern. Geol. Rev., 28: 221–228. DOI:10.1080/00206818609466264.
10.1080/00206818609466264 Google Scholar
- Zhuang, X., Chen, S., Zhang, T., Pan, X., Jiang, Y., and Bai, M., 2009. Thermal analysis on the combustion characteristics of seven kinds of biomass charcoals. Chemistry and Industry of Forest Products 29, Suppl., 0253–2417, SO- 0169 – 06 (in Chinese).