Discovery and Significance of Diamonds and Moissanites in Chromitite within the Skenderbeu Massif of the Mirdita Zone Ophiolite, West Albania
Weiwei WU
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorCorresponding Author
Jingsui YANG
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorChangqian MA
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorIbrahim MILUSHI
Department of Geoscience & Geoenvironment, Energy, Water & Environment, Polytechnic University of Tirana, Tirana 1000 Albania
Search for more papers by this authorDongyang LIAN
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorYazhou TIAN
College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
Search for more papers by this authorWeiwei WU
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorCorresponding Author
Jingsui YANG
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorChangqian MA
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorIbrahim MILUSHI
Department of Geoscience & Geoenvironment, Energy, Water & Environment, Polytechnic University of Tirana, Tirana 1000 Albania
Search for more papers by this authorDongyang LIAN
CARMA, State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037 China
School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074 China
Search for more papers by this authorYazhou TIAN
College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
Search for more papers by this authorAbout the first author:
WU Weiwei, Male, born in 1989 in Shiyan city, Hubei Province, PhD candidate, student of Academy of Geological Sciences and China University of Geosciences, Wuhan. His research interests focus on ophiolite and chromitite.
Email: [email protected]; phone: 15072469354.
Abstract
In recent years diamonds and other unusual minerals (carbides, nitrides, metal alloys and native elements) have been recovered from mantle peridotites and chromitites (both high–Cr chromitites and high–Al chromitites) from a number of ophiolites of different ages and tectonic settings. Here we report a similar assemblage of minerals from the Skenderbeu massif of the Mirdita zone ophiolite, west Albania. So far, more than 20 grains of microdiamonds and 30 grains of moissanites (SiC) have been separated from the podiform chromitite. The diamonds are mostly light yellow, transparent, euhedral crystals, 200–300 μm across, with a range of morphologies; some are octahedral and cuboctahedron and others are elongate and irregular. Secondary electron images show that some grains have well–developed striations. All the diamond grains have been analyzed and yielded typical Raman spectra with a shift at ∼1325 cm−1. The moissanite grains recovered from the Skenderbeu chromitites are mainly light blue to dark blue, but some are yellow to light yellow. All the analyzed grains have typical Raman spectra with shifts at 766 cm−1, 787 cm−1, and 967 cm−1. The energy spectrums of the moissanites confirm that the grains are composed entirely of silicon and carbon. This investigation expands the occurrence of diamonds and moissanites to Mesozoic ophiolites in the Neo–Tethys. Our new findings suggest that diamonds and moissanites are present, and probably ubiquitous in the oceanic mantle and can provide new perspectives and avenues for research on the origin of ophiolites and podiform chromitites.
References
- Ahmed, A.H., and Arai, S., 2002. Unexpectedly high–PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143(3): 263–278.
- Arai, S., 2013. Conversion of low–pressure chromitites to ultrahigh–pressure chromitites by deep recycling: A good inference. Earth and Planetary Science Letters, 379: 81–87.
- Arai, S., Uesugi, J., and Ahmed, A.H., 2004. Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology, 147(2): 145–154.
- Arai, S., and Yurimoto, H., 1994. Podiform chromitites of the tari–misaka ultramafic complex, southwestern Japan, as mantle melt interaction products. Economic Geology and the Bulletin of the Society of Economic Geologists, 89(6): 1279–1288.
- Bai Wenji, Zhou Meifu and Robinson, P.T., 1993. Possibly diamond–bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650–1659.
- Bai Wenji, Yang Jingsui, Fang Qingsong, Yan Binggang and Zhang Zhongming, 2001. Study on a storehouse of ultrahigh pressure mantle minerals–podiform chromite deposites. Earth Science Frontiers, 8(3): 111–122 (in Chinese with English abstract).
- Bebien, J., Dimo–Lahitte, A., Vergely, P., Insergueix–Filippi, D., and Dupeyrat, L., 2000. Albanian ophiolites. I – Magmatic and metamorphic processes associated with the initiation of a subduction, Ofioliti, 25(1): 39–45.
- Bebien, J., Shallo, M., Manika, K., and Gega, D., 1998. The Shebenik massif (Albania): A link between MOR– and SSZ–type ophiolites? Ofioliti, 23(1): 7–15.
- Beccaluva, L., Coltorti, M., Premti, I., Saccani, E., Siena, F.T., and Zeda, O., 1994. Mid–ocean ridge and supra–subduction affinities in the ophiolitic belts from Albania. Ofioliti, 19(1): 77–96.
- Beccaluva, L., Coltorti, M., Saccani, E., and Siena, F., 2005. Magma generation and crustal accretion as evidenced by supra–subduction ophiolites of the Albanide–Hellenide Subpelagonian zone. Island Arc, 14(4): 551–563.
- Bortolotti, V., Kodra, A., Marroni, M., Mustafa, F., Pandolfi, L., Principi, G., and Saccani, E., 1996. Geology and petrology of ophiolitic sequences in the Mirdita region (Northern Albania). Ofioliti, 21(1): 3–20.
- Bortolotti, V., Marroni, M., Pandolfi, L., Prinicipi, G., and Saccani, E., 2002. Interaction between mid–ocean ridge and subduction magmatism in Albanian ophiolites. Journal of Geology, 110(5): 561–576.
- Coleman, R.G., 1977. Ophiolites: ancient oceanic lithosphere? Berlin, Heidelberg: Springer Berlin Heidelberg, 229.
10.1007/978-3-642-66673-5 Google Scholar
- Dick, H.J.B, and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine–type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54–76.
- Dilek, Y., 2003. Ophiolite concept and its evolution. Special Papers–Geological Society of America, 1–16.
- Dilek, Y., and Flower, M.F.J, 2003. Arc–trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Special Publication–Geological Society of London, 218: 43–68.
- Dilek, Y., and Furnes, H., 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113(1): 1–20.
- Dilek, Y., and Furnes, H., 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin of the Geological Society of America, 123 (3–4): 387–411.
- Dilek, Y., and Fumes, H., 2014. Ophiolites and their origins. Elements, 10(2): 93–100.
- Dilek, Y., and Moores, E.M., 1999. A Tibetan model for the early Tertiary western United States. Journal of the Geological Society, 156(5): 929–941.
- Dilek, Y., and Polat, A., 2008. Suprasubduction zone ophiolites and Archean tectonics. Geology, 36(5): 431.
- Dilek, Y., Shallo, M., and Fumes, H., 2005. Rift–drift, seafloor spreading, and subduction tectonics of Albanian ophiolites. International Geology Review, 47(2): 147–176.
- Dilek, Y., and Thy, P., 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: model for multi–stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 113(1): 68–87.
- Dobrzhinetskaya, L.F., Wirth, R., Yang Jingsui, Hutcheon, I.D., Weber, P.K., and Green, H.W., 2009. High–pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106(46): 19233–19238.
- Dresser, J.A., 1913. Preliminary report on the serpentine and associated rock of Southern Quebec. Memoir–Geological Svrvey of Canada, 22: 1–103.
- Falloon, T.J., and Danyushevsky, L.V., 2000. Melting of refractory mantle at 1· 5, 2 and 2· 5 GPa under anhydrous and H2O–undersaturated conditions: implications for the petrogenesis of high–Ca boninites and the influence of subduction components on mantle melting. Journal of Petrology, 41(2): 257–283.
- Flower, M., and Dilek, Y., 2003. Arc–trench rollback and forearc accretion: 1. A collision–induced mantle flow model for Tethyan ophiolites. Special Publication–Geological Society of London, 218: 21–42.
- Götze, J., Schertl, H., Neuser, R.D., Kempe, U., and Hanchar, J.M., 2013. Optical microscope–cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals. Mineralogy and Petrology, 107(3): 373–392.
- Griffin, W.L., Afonso, J.C., Belousova, E.A., Gain, S.E., Gong Xiaohan, Gonzalez–Jimenez, J.M., Howell, D., Huang Jinxiang, McGowan, N., Pearson, N.J., Satsukawa, T., Shi Rengdeng, Williams, P., Xiong Qin, Yang Jingsui, Zhang, M. O'Reilly, and Suznne Y., Mantle recycling: Transition zone metamorphism of Tibetan ophiolite peridotites and its tectonic implications. Journal of Petrology, 57(4): 655–684.
- Harte, B., Fitzsimons, I., Harris, J.W., and Otter, M.L., 1999. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineralogical Magazine, 63(6): 829.
- Hoeck, V., Koller, F., Meisel, T., Onuzi, K., and Kneringer, E., 2002. The Jurassic South Albanian ophiolites: MOR– vs. SSZ– type ophiolites. Lithos, 65 (1–2): 143–164.
- Howell, D., Griffin, W.L., Yang Jingsui, Gain, S., Stern, R.A., Huang Jinxiang, and Jacob, D.E., 2015. Diamonds in ophiolites: Contamination or a new diamond growth environment? Earth and Planetary Science Letters, 430: 284–295.
- Hoxha, M., and Boullier, A.M., 1995. The peridotites of the Kukes ophiolite(Albania)–structure and kinematics. Tectonophysics, 249 (3–4): 217–231.
- Huang Zhu, Yang Jingsui, Robinson, P.T., Zhu Yongwang, Xiong Fahui, Liu Zhao and Zhang Zhonming, 2015. The Discovery of Diamonds in Chromitites of the Hegenshan Ophiolite, Inner Mongolia, China. Acta Geologica Sinica (English Edition), 89 (2): 341–350.
- Insergueix–Filippi, D., Dupeyrat, L., Dimo–Lahitte, A., Vergely, P., and Bebien, J., 2000. Albanian ophiolites. II – Model of subduction zone infancy at a mid–ocean ridge. Ofioliti, 25(1): 47–53.
- Institute of Geology, Chinese Academy of Geological Sciences, 1981. The discovery of alpine–type diamond bearing ultrabasic intrusions in Xizang (Tibet). Geological Review, 27(5): 445–447 (in Chinese).
- Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71–103.
10.1139/e67-004 Google Scholar
- Karaoğlan, F., Parlak, O., Klötzli, U., Thöni, M., and Koller, F., 2012. U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: implications for the Neotethyan evolution. Geodinamica Acta, 25 (3–4): 146–161.
- Klingenberg, B., and Kushiro, I., 1996. Melting of a chromite–bearing harzburgite and generation of boninitic melts at low pressures under controlled oxygen fugacity. Lithos, 37(1): 1–14.
- Koller, F., Hoeck, V., Meisel, T., Ionescu, C., Onuzi, K., and Ghega, D., 2006. Cumulates and gabbros in southern Albanian ophiolites: their bearing on regional tectonic setting. Geological Society, London, Special Publications, 260(1): 267–299.
- Liang Fenghua, Xu Zhiqing and Zhao Jiannan, 2014. In situ Moissanite in Dunite: Deep Mantle Origin of Mantle Peridotite in Luobusa Ophiolite, Tibet. Acta Geologica Sinica (English Edition), 88(2): 517–529.
- Manika, K., Shallo, M., and Gega, D., 1997. The plutonic sequence of the Shebenik ophiolite complex, Albania: Evidence for dual magmatism. Ofioliti, 22 (1SI): 93–99.
- Marcucci, M., Kodra, A., Pirdeni, A., and Gjata, Th., 1994. Radiolarian assemblage in the Triassic and Jurassic cherts of Albania. Ofioliti, 19(1): 105–115.
- Marcucci, M., and Prela, M., 1996. The Lumi i zi (Puke) section of the Kalur cherts: radiolarian assemblages and comparison with other sections in northern Albania. Ofioliti, 21(1): 71–76.
- Matsumoto, I., Arai, S., and Yamauchi, H., 1997. High–Al podiform chromitites in dunite–harzburgite complexes of the Sangun zone, central Chugoku district, Southwest Japan. Journal of Asian Earth Sciences, 15 (2–3): 295–302.
- McGowan, N.M., Griffin, W.L., González–Jiménez, J.M., Belousova, E., Afonso, J.C., Shi Rendeng, and McCammon, C.A., 2015. Tibetan chromitites: Excavating the slab graveyard. Geology, 43(2): 179–182.
- Morishita, T., Maeda, J., Miyashita, S., Kumagai, H., Matsumo, T., and Dick, H.J.B, 2007. Petrology of local concentration of chromian spinel in dunite from the slow–spreading Southwest Indian Ridge. European Journal of Mineralogy, 19(6): 871–882.
- Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphere. Netherlands: Kluwer Academic Publishers, 369.
10.1007/978-94-009-2374-4 Google Scholar
- Nicolas, A., Boudier, F., and Meshi, A., 1999. Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania) Journal of Geophysical Research–Solid Earth, 104 (B7): 15155–15167.
- Parlak, O., Karaoğlan, F., Rızaoğlu, T., Klötzli, U., Koller, F., and Billor, Z., 2013. U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. Journal of Geodynamics, 65(65): 22–37.
- Pearce, J.A., 2003. Supra–subduction zone ophiolites: The search for modern analogues. Special Papers–Geological Society of America, 373: 269–294.
- Pearce, J.A., Lippard, S.J., and Roberts, S., 1984. Characteristics and tectonic significance of supra–subduction zone ophiolites. Geological Society, London, Special Publications, 16(1): 77–94.
10.1144/GSL.SP.1984.016.01.06 Google Scholar
- Roberts, S., 1988. Ophiolitic chromitite formation; a marginal basin phenomenon? Economic Geology, 83(5): 1034–1036.
- Robertson, A., and Shallo, M., 2000. Mesozoic–Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics, 316 (3–4): 197–254.
- Robinson, P.T., Bai Wenji, Malpas, J., Yang Jingsui, Zhou Meifu, Fang Qinsong and Hu Xufeng, 2004. Ultra–high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Special Publication–Geological Society of London, 226(1): 247–272.
- Robinson, P.T., Trumbull, R.B., Schmitt, A., Yang Jingsui, Li Jinyang, Zhou Meifu, Erzinger, J., Dare, S. and Xiong Fahui, 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27(2): 486–506.
- Ruskov, T., Spirov, I., Georgieva, M., Yamamoto, S., and Green, H.W., McCammon, C.A., and Dobrzhinetskaya, L.F., 2010. Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle. Journal of Metamorphic Geology, 28(5): 551–560.
- Saccani, E., and Photiades, A., 2004. Mid–ocean ridge and supra–subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 73(3): 229–253.
- Saccani, E., and Tassinari, R., 2015. The role of MORB and SSZ magma–types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry. Ofioliti, 40(1): 37–56.
- Schertl, H., Neuser, R.D., Nikolai, V., and Shatsky, V.S., 2004. UHP–metamorphic rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan New insights using cathodoluminescence petrography. European Journal of Mineralogy, 16(1): 49–57.
- Shallo, M., 1994. Outline of the Albanian ophiolites. Ofioliti, 19: 57–75.
- Shallo, M., and Dilek, Y., 2003. Development of the ideas on the origin of Albanian ophiolites. Special Papers–Geological Society of America, 351–364.
- Shilo, N.A., Kaminskiy, F.V., Lavrova, L.D., Dolmatov, B.K., Pleshakov, A.P., Tkachenlo, L.A., and Shepeleva, K.A., 1979. First diamond finds in ultramafic rocks of the Kamchatka, Doklady Akademiya Nauk SSSR. Earth Science Sections, 241: 179–182.
- Shilo, N.A., Kaminskiy, F.V., Palanzhyan, S.A., Til'man, S.M, Tkachenlo, L.A., Lavrova, L.D., and Shepeleva, K.A., 1978. First diamond finds in Alpine–type ultramafic rocks of the Northeastern USSR Doklady Akademiya Nauk SSSR. Earth Science Sections, 241: 179–182.
- Tashko, A., 1996. Geochemical, petrological and structural diversities of Albanides ophiolites. Bulletin de la Societe Geologique de France, 167(3): 335–343.
- Taylor, W.R., Milledge, H.J., Griffin, B.J., Nixon, P.H., Kamperman, M., and Mattey, D.P., 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet: authentic ophiolitic diamonds or contamination? 6th International Kimberlite Conference Extended Abstract, Russia, Novosibirsk, 623–624.
- Tian Yazhou, Yang Jingsui, Robinson, P.T., Xiong Fahui, Li Yuan, Zhang Zhongming, Liu Zhao, Liu Fei and Niu Xiaolu, 2015a. Diamond Discovered in High–Al Chromitites of the Sartohay Ophiolite, Xinjiang Province, China. Acta Geologica Sinica (English Edition), 89(2): 332–340.
- Tian Yazhou, Yang Jingsui, Zhang Zhongming, Xiong Fahui, Li Yuan, Liu Zhao, Liu Fei and Niu Xiaolu, 2015b. Discovery and implication of unusual mineral group from Sarthay high–Al chromitites, Xinjiang. Acta Petrologica Sinica, 31(12): 3650–3662 (in Chinese with English abstract).
- Trumbull, R.B., Yang Jingsui, Robinson, P.T., Di Pierro, S., Vennemann, T., and Wiedenbeck, M., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle: New discoveries from ophiolites. Geochmica Et Cosmochimica Acta, 113(3): 612–620.
- Umino, S., and Kushiro, I., 1989. Experimental studies on boninite petrogenesis. Boninites and Related Rocks. Unwin Hyman, London, 89–111.
- Uysal, I., Sadiklar, M.B., Tarkian, M., Karsli, O., and Aydin, F., 2005. Mineralogy and composition of the chromitites and their platinum–group minerals from Ortaca (Mugla–SW Turkey): evidence for ophiolitic chromitite genesis. Mineralogy and Petrology, 83 (3–4): 219–242.
- Van der Laan, S.R.M. Flower, A.F., and Koster Van Groos, 1989. Experimental evidence for the origin of boninites: near–liquidus phase relations to 7.5 kbar. Boninites. Unwin Hyman, London, 112–147.
- Xiong Fahui, Yang Jingsui, Robinson, P.T., Xu Xiangzhen, Ba Dengzhu, Li Yuan, Zhang Zhongming and Rong He, 2016. Diamonds and other exotic minerals recovered from peridotites of the Dangqiong ophiolite, Western Yarlung–Zangbo suture zone, Tibet. Acta Geologica Sinica (English Edition), 90(2): 425–439.
- Xu Xiangzhen, Yang Jingsui, Chen Songyong, Fang Qingsong, Bai Wenji and Ba Dengzhu, 2009. Unusual mantle mineral group from chromitite orebody Cr–11 in Luobusa ophiolite of Yarlung–Zangbo suture zone, Tibet. Journal of Earth Science, 20(2): 284–302.
- Xu Xiangzhen, Yang Jingsui, Ba Dengzhu, Chen Songyong, Fang Qingsong and Bai Wenji, 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet. Acta Petrologica Sinica, 24(7): 1453–1462 (in Chinese with English abstract).
- Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S., 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In–situ ultrahigh–pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109(3): 314–322.
- Yang Jingsui, Dobrzhinetskaya, L., Bai Wenji, Fang Qinsong, Robinson, P.T., Zhang Junfeng, and Green, H.W., 2007. Diamond–and coesite–bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875–878.
- Yang Jingsui, Zhang Zhongming, Li Tianfu, Li Zhaoli, Ren Yufeng, Xu Xiangzhen, Ba Dengzhu, Bai Wenji, Fang Qingsong, Chen Songyong and Rong He, 2008. Unusual minerals from harzburgite, the host rock of the Luobusa chromite deposit, Tibet. Acta Petrologica Sinica, 24(7): 1445–1452 (in Chinese with English abstract).
- Yang Jingsui, Xu Zhiqin, Duan Xiangdong, Li Jing, Xiong Fahui, Liu Zhao, Cai Zhihui and Li Huaqi, 2012. Discovery of a Jurassic SSZ ophiolite in the Myitkyina region of Myanmar. Acta Petrologica Sinica, 28(6): 1710–1730 (in Chinese with English abstract).
- Yang Jingsui, Meng Fancong, Xu Xiangzhen, Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., and Cliff, J., 2015. Diamonds, native elements and metal alloys from chromitites of the Ray–Iz ophiolite of the Polar Urals. Gondwana Research, 27(2): 459–485.
- Yang Jingsui, Robinson, P.T., and Dilek, Y., 2014a. Diamonds in ophiolites. Elements, 10(2): 127–130.
- Yang Jingsui, Xu Xiangzhen, Bai Wenji, Zhang Zhongming and Rong He, 2014b. Features of diamond in ophiolite. Acta Petrologica Sinica, 30(8): 2113–2124 (in Chinese with English abstract).
- Yang Jingsui, Xu Xiangzhen, Li Yuan, Li Jinyang, Ba Dengzhu, Rong He and Zhang Zhongming, 2011. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung–Zangbo suture of Tibet: A proposal for a new type of diamond occurrence. Acta Petrologica Sinica, 27(11): 3171–3178 (in Chinese with English abstract).
- Zhou Meifu, Malpas, J., Robinson, P.T., Sun, M. and Li Jianwei, 2001. Crystallization of podiform chromitites from silicate magmas and the formation of nodular textures. Resource Geology, 51(1): 1–6.
- Zhou Meifu, Robinson, P.T., Malpas, J. and Li Zijin, 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt–rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3–21.
- Zhou Meifu, Robinson, P.T. and Bai Wenji, 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita, 29(1): 98–101.
- Zhou Meifu, Robinson, P.T., Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, and Malpas, J., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262–283.
- Zhou Meifu, Sun, M., Keays, R.R., and Kerrich, R.W., 1998. Controls on platinum–group elemental distributions of podiform chromitites: a case study of high–Cr and high–Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677–688.