Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract
Irene González-Rodríguez
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorLorena Ruiz
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorMiguel Gueimonde
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorCorresponding Author
Abelardo Margolles
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Correspondence: Abelardo Margolles, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain. Tel.: +34 985 89 21 31; fax: +34 985 89 22 33; e-mail: [email protected]Search for more papers by this authorBorja Sánchez
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorIrene González-Rodríguez
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorLorena Ruiz
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorMiguel Gueimonde
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorCorresponding Author
Abelardo Margolles
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Correspondence: Abelardo Margolles, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain. Tel.: +34 985 89 21 31; fax: +34 985 89 22 33; e-mail: [email protected]Search for more papers by this authorBorja Sánchez
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
Search for more papers by this authorAbstract
Probiotics are live microorganisms that when administered in adequate amounts confer a health benefit on the host. They are mainly bacteria from the genera Lactobacillus and Bifidobacterium. Traditionally, functional properties of lactobacilli have been studied in more detail than those of bifidobacteria. However, many recent studies have clearly revealed that the bifidobacterial population in the human gut is far more abundant than the population of lactobacilli. Although the ‘beneficial gut microbiota’ still remains to be elucidated, it is generally believed that the presence of bifidobacteria is associated with a healthy status of the host, and scientific evidence supports the benefits attributed to specific Bifidobacterium strains. To carry out their functional activities, bifidobacteria must be able to survive the gastrointestinal tract transit and persist, at least transiently, in the host. This is achieved using stress response mechanisms and adhesion and colonization factors, as well as by taking advantage of specific energy recruitment pathways. This review summarizes the current knowledge of the mechanisms involved in facilitating the establishment, colonization, and survival of bifidobacteria in the human gut.
References
- Arboleya S, Ruas-Madiedo P, Margolles A, Solís G, Salminen S, de Los Reyes-Gavilán CG & Gueimonde M (2011) Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 149: 28–36.
- Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J & Kitaoka M (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286: 34583–34592.
- Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, Giubellini V, Tettelin H, van Sinderen D & Ventura M (2010) Comparative genomics of the genus Bifidobacterium. Microbiology 156: 3243–3254.
- Candela M, Bergmann S, Vici M, Vitali B, Turroni S, Eikmanns BJ, Hammerschnidt S & Brigidi P (2007) Binding of human plasminogen to Bifidobacterium. J Bacteriol 189: 5929–5936.
- Candela M, Biagi E, Centanni M, Turroni S, Vici M, Musiani F, Vitali B, Bergmann S, Hammerschmidt S & Brigidi P (2009) Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 155: 3294–3303.
- Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S & Brigidi P (2010) DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156: 1609–1618.
- Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P, Cavaggioni A, Tormen D, Sturniolo GC, Morelli L & Palu G (2005) Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol Med Microbiol 43: 197–204.
- Collado MC & Sanz Y (2006) Methods for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. J Microbiol Methods 66: 560–563.
- Davis LM, Martínez I, Walter J, Goin C & Hutkins RW (2011) Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6: e25200.
- de los Reyes-Gavilán CG, Suárez A, Fernández-García M, Margolles A, Gueimonde M & Ruas-Madiedo P (2011) Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Res Microbiol 162: 514–519.
- Falony G, Verschaeren A, De Bruycker F, De Preter V, Verbeke K, Leroy F & De Vuyst L (2009) In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl Environ Microbiol 75: 5884–5892.
- Fanning S, Hall LJ, Cronin M et al. (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. P Natl Acad Sci USA 109: 2108–2113.
- Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB, Lebrilla CB & Mills DA (2012) Endo-β-N-acetylglucosaminidases from infant-gut associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics 11: 775–785.
- Gilad O, Jacobsen S, Stuer-Lauridsen B, Pedersen MB, Garrigues C & Svensson B (2010) Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization. Appl Environ Microbiol 76: 7285–7291.
- Gleinser M, Grimm V, Zhurina D, Yuan J & Riedel CU (2012) Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb Cell Fact 11: 80.
- González R, Klaassens ES, Malinen E, de Vos WM & Vaughan EE (2008) Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol 74: 4686–4694.
- González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M & Margolles A (2012) Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78: 3992–3998.
- Goulas T, Goulas A, Tzortzis G & Gibson GR (2009) Expression of four beta-galactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides. Appl Microbiol Biotechnol 84: 899–907.
- Gueimonde M, Margolles A, de los Reyes-Gavilán CG & Salminen S (2007) Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile – a preliminary study. Int J Food Microbiol 113: 228–232.
- Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilán CG & Margolles A (2009) Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Appl Environ Microbiol 75: 3153–3160.
- Guglielmetti S, Tamagnini I, Mora D, Minuzzo M, Scarafoni A, Arioli S, Hellman J, Karp M & Parini C (2008) Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells. Appl Environ Microbiol 74: 4695–4702.
- Janer C, Rohr LM, Peláez C, Laloi M, Cleusix V, Requena T & Meile L (2004) Hydrolysis of oligofructoses by the recombinant beta-fructofuranosidase from Bifidobacterium lactis. Syst Appl Microbiol 27: 279–285.
- Kabeerdoss J, Devi RS, Mary RR, Prabhavathi D, Vidya R, Mechenro J, Mahendri NV, Pugazhendhi S & Ramakrishna BS (2011) Effect of yoghurt containing Bifidobacterium lactis Bb12 on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 10: 138.
- Katayama T, Fujita K & Yamamoto K (2005) Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 99: 457–465.
- Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H & Yamamoto K (2011) An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 21: 437–447.
- Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM & Volckaert G (2011) Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Appl Microbiol Biotechnol 92: 1179–1185.
- Liu D, Wang S, Xu B et al. (2011) Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Proteomics 11: 2628–2638.
- Margolles A & de los Reyes-Gavilán CG (2003) Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69: 5096–5103.
- Masco L, Crockaert C, Van Hoorde K, Swings J & Huys G (2007) In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. J Dairy Sci 90: 3572–3578.
- Masuda K, Sakai N, Nakamura K, Yoshioka S & Ayabe T (2011) Bactericidal activity of mouse α-defensin cryptdin-4 predominantly affects noncommensal bacteria. J Innate Immun 3: 315–326.
- O'Connell Motherway M, Zomer A, Leahy SC et al. (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. P Natl Acad Sci USA 108: 11217–11222.
- Pokusaeva K, Fitzgerald GF & van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6: 285–306.
- Qin J, Li R, Raes J et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
- Rhim SL, Park MS & Ji GE (2006) Expression and secretion of Bifidobacterium adolescentis amylase by Bifidobacterium longum. Biotechnol Lett 28: 163–168.
- Ritter P, Kohler C & von Ah U (2009) Evaluation of the passage of Lactobacillus gasseri K7 and bifidobacteria from the stomach to intestines using a single reactor model. BMC Microbiol 9: 87–95.
- Ruas-Madiedo P, Gueimonde M, Fernández-García M, de los Reyes-Gavilán CG & Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74: 1936–1940.
- Ruas-Madiedo P, Gueimonde M, Arigoni F, de los Reyes-Gavilán CG & Margolles A (2009) Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl Environ Microbiol 75: 1204–1207.
- Ruiz L, Coute Y, Sánchez B, de los Reyes-Gavilán CG, Sánchez JC & Margolles A (2009) The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155: 957–967.
- Ruiz L, Zomer A, O'Connell-Motherway M, van Sinderen D & Margolles A (2012) Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics. Appl Environ Microbiol 78: 1123–1131.
- Sánchez B, Ruiz L, de los Reyes-Gavilán CG & Margolles A (2008) Proteomics of stress response in Bifidobacterium. Front Biosci 13: 6905–6919.
- Sánchez B, Urdaci MC & Margolles A (2010) Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology 156: 3232–3242.
- Schell MA, Karmirantzou M, Snel B et al. (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. P Natl Acad Sci USA 99: 14422–14427.
- Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB & Mills DA (2011) An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 286: 11909–11918.
- Turroni F, Bottacini F, Foroni E et al. (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. P Natl Acad Sci USA 107: 19514–19519.
- Turroni F, Milani C, van Sinderen D & Ventura M (2011a) Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes 2: 183–189.
- Turroni F, Foroni E, Serafini F et al. (2011b) Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis. Appl Environ Microbiol 77: 7408–7417.
- Wang L, Meng X, Zhang B, Wang Y & Shang Y (2010) Influence of cell surface properties on adhesion ability of bifidobacteria. World J Microbiol Biotechnol 26: 1999–2007.
- Ward RE, Niñonuevo M, Mills DA, Lebrilla CB & German JB (2007) In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 51: 1398–1405.
- Xiao JZ, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T, Iwatsuki K & Kitaoka M (2010) Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76: 54–59.
- Yuan J, Wang B, Sun Z et al. (2008) Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J Proteome Res 7: 375–385.