An alternative approach to the detection of latent fingermarks using [Eu2(BDC)3(H2O)2], a luminescent non-toxic MOF powder
André L. R. Talhari MSc
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorFilipe G. M. Mauricio PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorBruna R. B. Gomes PhD
LBQP, Instituto de Biologia, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorCaroline R. Carneiro PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorIdio A. S. Filho PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorFabiane H. Veiga-Souza PhD
LBQP, Instituto de Biologia, Universidade de Brasília-UnB, Brasília, Brazil
Faculdade de Ceilândia, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorCorresponding Author
Ingrid T. Weber PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Correspondence
Ingrid T. Weber, LIMA, Instituto de Química, Universidade de Brasília-UnB, 70904-970, Brasília, DF, Brazil.
Email: [email protected]
Search for more papers by this authorAndré L. R. Talhari MSc
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorFilipe G. M. Mauricio PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorBruna R. B. Gomes PhD
LBQP, Instituto de Biologia, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorCaroline R. Carneiro PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorIdio A. S. Filho PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorFabiane H. Veiga-Souza PhD
LBQP, Instituto de Biologia, Universidade de Brasília-UnB, Brasília, Brazil
Faculdade de Ceilândia, Universidade de Brasília-UnB, Brasília, Brazil
Search for more papers by this authorCorresponding Author
Ingrid T. Weber PhD
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil
Correspondence
Ingrid T. Weber, LIMA, Instituto de Química, Universidade de Brasília-UnB, 70904-970, Brasília, DF, Brazil.
Email: [email protected]
Search for more papers by this authorPresented in part at the 2023 InterForensics Conference, August 28-31, 2023, in Brasilia, Brazil; and at the XXI Brazilian Materials Research Society Meeting, October 1-5, 202, in Maceió, Alagoas, Brazil.
Abstract
Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu2(BDC)3(H2O)2] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum. LFs aged up to 30 days, left on glass slides were developed and classified as level-3. The images presented high quality, enabling correct donor identification as well as through an Automated Fingerprint Identification System (AFIS) search. EuBDC also showed useful results as secondary technique for fixed cyanoacrylate LFs, especially on a reflective, multicolored and non-flat surfaces. Additionally, the EuBDC was tested on ungroomed fingermarks, developed on a split depletion series of successive deposits and compared to a commercially available luminescent powder. Development also occurred on ungroomed aged fingermarks; as a secondary technique for cyanoacrylate fuming; and on transparent adhesive tape when used as a suspension for the latter. Considering that development powders are frequently handled by Papilloscopists and that this may pose a health risk, the acute toxicity and of EuBDC and histopathological analysis were evaluated. The tests showed no signs of toxicity. Therefore, the EuBDC was classified in category 5 in the Globally Harmonized System classification, the least toxic category, with an LD50 >5000 mg/Kg. The set of results shows that EuBDC powder has the potential use as a fingermark developer, as well as being suitable for applications for non-toxic material.
CONFLICT OF INTEREST STATEMENT
The authors have no conflicts of interest to declare.
Supporting Information
Filename | Description |
---|---|
jfo15691-sup-0001-Supinfo.docxWord 2007 document , 30.2 MB |
Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Gino S, Omedei M. Effects of the most common methods for the enhancement of latent fingerprints on DNA extraction from forensic samples. Forensic Sci Int Genet Suppl Ser. 2011; 3(1): e273–e274. https://doi.org/10.1016/j.fsigss.2011.08.133
10.1016/j.fsigss.2011.08.133 Google Scholar
- 2Lennard C. Fingerprint detection: current capabilities. Aust J Forensic Sci. 2007; 39(2): 55–71. https://doi.org/10.1080/00450610701650021
10.1080/00450610701650021 Google Scholar
- 3Niu X, Song T, Xiong H. Large scale synthesis of red emissive carbon dots powder by solid state reaction for fingerprint identification. Chin Chem Lett. 2021; 32(6): 1953–1956. https://doi.org/10.1016/j.cclet.2021.01.006
- 4Wang M, Li M, Yu A, Wu J, Mao C. Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Appl Mater Interfaces. 2015; 7(51): 28110–28115. https://doi.org/10.1021/acsami.5b09320
- 5Ferreira RG, Paula RB, Okuma AA, Costa LM. Fingerprint development techniques: A review. Rev Virtual Química. 2021; 13(6): 1278–1302. https://doi.org/10.21577/1984-6835.20210083
- 6de Jong R, de Puit M. Fluorescent metal organic frameworks for the visual enhancement of latent fingermarks. Forensic Sci Int. 2018; 291: 12–16. https://doi.org/10.1016/j.forsciint.2018.07.033
- 7Truccolo G, Boseley RE, Lewis SW, Gee WJ. Forensic applications of rare earths: Anticounterfeiting materials and latent fingerprint developers. In: JCG Bünzli, V Pecharsky, editors. Handbook on the physics and chemistry of rare earths: including actinides. Amsterdam, The Netherlands: North Holland Publishing Company (an imprint of Elsevier); 2020. p. 45–117. https://doi.org/10.1016/bs.hpcre.2020.07.001
- 8McRoberts A. The fingerprint sourcebook. Washington, DC: U.S Department of Justice, Office of Justice Programs, National Institue of Justice; 2011.
- 9Freitas ACB, Barrado CM. Synthesis and characterization of silica-based luminescent hybrid material for developing latent fingerprints. Rev Process Químicos. 2020; 13(26): 43–50. https://doi.org/10.19142/rpq.v13i26.537
10.19142/rpq.v13i26.537 Google Scholar
- 10Hazarika P, Russell DA. Advances in fingerprint analysis. Angew Chem Int Ed. 2012; 51(15): 3524–3531. https://doi.org/10.1002/anie.201104313
- 11Balsan J, Rosa B, Pereira C, Santos C. Development of methodology of latent fingerprint revelation with chalcones. Quim Nova. 2019; 42(8): 845–850. https://doi.org/10.21577/0100-4042.20170399
- 12Bhati K, Bajpai Tripathy D, Kumaravel V, Sudhani HPK, Ali S, Choudhary R, et al. Sensitive fingerprint detection using biocompatible mesoporous silica nanoparticle coating on non-porous surfaces. CoatingsTech. 2023; 13(2):268. https://doi.org/10.3390/coatings13020268
- 13Chávez D, Garcia CR, Oliva J, Diaz-Torres LA. A review of phosphorescent and fluorescent phosphors for fingerprint detection. Ceram Int. 2021; 47(1): 10–41. https://doi.org/10.1016/j.ceramint.2020.08.259
- 14Darshan GP, Premkumar HB, Nagabhushana H, Sharma SC, Prashanth SC, Prasad BD. Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material. J Colloid Interface Sci. 2016; 464: 206–218. https://doi.org/10.1016/j.jcis.2015.11.025
- 15Sodhi GS, Kaur J. Powder method for detecting latent fingerprints: a review. Forensic Sci Int. 2001; 120(3): 172–176. https://doi.org/10.1016/S0379-0738(00)00465-5
- 16Saif M, Shebl M, Nabeel AI, Shokry R, Hafez H, Mbarek A, et al. Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent fingerprint detection. Sensors Actuators B Chem. 2015; 220: 162–170. https://doi.org/10.1016/j.snb.2015.05.040
- 17Friesen JB. Forensic chemistry: the revelation of latent fingerprints. J Chem Educ. 2015; 92(3): 497–504. https://doi.org/10.1021/ed400597u
- 18Assis AML, Costa CV, Alves MS, Melo JCS, de Oliveira VR, Tonholo J, et al. From nanomaterials to macromolecules: innovative technologies for latent fingerprint development. WIREs Forensic Sci. 2023; 5(2):e1475. https://doi.org/10.1002/wfs2.1475
- 19Jasuja OP, Singh G. Development of latent fingermarks on thermal paper: preliminary investigation into use of iodine fuming. Forensic Sci Int. 2009; 192(1–3): e11–e16. https://doi.org/10.1016/j.forsciint.2009.08.005
- 20Fung TC, Grimwood K, Shimmon R, Spindler X, Maynard P, Lennard C, et al. Investigation of hydrogen cyanide generation from the cyanoacrylate fuming process used for latent fingermark detection. Forensic Sci Int. 2011; 212(1–3): 143–149. https://doi.org/10.1016/j.forsciint.2011.06.004
- 21Malik P, Singh G. Health considerations for forensic professionals: a review. Forensic Sci Policy Manag an Int J. 2011; 2(1): 1–4. https://doi.org/10.1080/19409044.2010.516794
10.1080/19409044.2010.516794 Google Scholar
- 22Rajan R, Zakaria Y, Shamsuddin S, Nik Hassan NF. Fluorescent variant of silica nanoparticle powder synthesised from rice husk for latent fingerprint development. Egypt J Forensic Sci. 2019; 9(1): 50. https://doi.org/10.1186/s41935-019-0155-1
10.1186/s41935-019-0155-1 Google Scholar
- 23Gao F, Han J, Zhang J, Li Q, Sun X, Zheng J, et al. The synthesis of newly modified CdTe quantum dots and their application for improvement of latent fingerprint detection. Nanotechnology. 2011; 22(7):075705. https://doi.org/10.1088/0957-4484/22/7/075705
- 24Zhao R, Chai X, Dong C, Shuang S, Guo Y. Eu3+−doped aluminum metal-organic frameworks: a versatile platform for ratiometric detection of histidine and water, and visible fingerprint identification. Microchem J. 2024; 199:109960. https://doi.org/10.1016/j.microc.2024.109960
- 25Zhu K, Yan B. Multifunctional Eu(iii)-modified HOFs: Roxarsone and aristolochic acid carcinogen monitoring and latent fingerprint identification based on artificial intelligence. Mater Horiz. 2023; 10(12): 5782–5795. https://doi.org/10.1039/D3MH01253K
- 26Peng D, Wu X, Liu X, Huang M, Wang D, Liu R. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions. ACS Appl Mater Interfaces. 2018; 10(38): 32859–32866. https://doi.org/10.1021/acsami.8b10371
- 27Sun L, Zhang Y, Lv X, Li H. A luminescent Eu-based MOFs material for the sensitive detection of nitro explosives and development of fingerprint. Inorg Chem Commun. 2023; 156:111267. https://doi.org/10.1016/j.inoche.2023.111267
- 28Liang K, Carbonell C, Styles MJ, Ricco R, Cui J, Richardson JJ, et al. Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater. 2015; 27(45): 7293–7298. https://doi.org/10.1002/adma.201503167
- 29Moret S, Scott E, Barone A, Liang K, Lennard C, Roux C, et al. Metal-organic frameworks for fingermark detection — a feasibility study. Forensic Sci Int. 2018; 291: 83–93. https://doi.org/10.1016/j.forsciint.2018.08.005
- 30Xu H, Liu F, Cui Y, Chen B, Qian G. A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem Commun. 2011; 47(11): 3153–3155. https://doi.org/10.1039/C0CC05166G
- 31Serwy IB, Wanderley KA, Lucena MAM, Maldaner AO, Talhavini M, Rodrigues MO, et al. [Ln2(BDC)3(H2O)4]: a low cost alternative for GSR luminescent marking. J Lumin. 2018; 200: 24–29. https://doi.org/10.1016/j.jlumin.2018.02.039
- 32Reineke TM, Eddaoudi M, Fehr M, Kelley D, Yaghi OM. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc. 1999; 121(8): 1651–1657. https://doi.org/10.1021/ja983577d
- 33 Group IFR. Guidelines for the assessment of fingermark detection techniques. J Forensic Identif. 2014; 64: 174–200.
- 34Sears VG, Bleay SM, Bandey HL, Bowman VJ. A methodology for finger mark research. Sci Justice. 2012; 52(3): 145–160. https://doi.org/10.1016/j.scijus.2011.10.006
- 35 Organisation for Economic Co-operation and Development (OECD). Test No. 423: acute oral toxicity–acute toxic class method. OECD guideline for testing of chemicals. Paris, France: OECD; 20021 Dec. p. 1–14. https://doi.org/10.1787/9789264071001-en
- 36Lucena MAM, Oliveira MFL, Arouca AM, Talhavini M, Ferreira EA, Alves S, et al. Application of the metal–organic framework [Eu(BTC)] as a luminescent marker for gunshot residues: a synthesis, characterization, and toxicity study. ACS Appl Mater Interfaces. 2017; 9(5): 4684–4691. https://doi.org/10.1021/acsami.6b13474
- 37Talhari ALR, Lucena MAM, Mauricio FGM, Oliveira MFL, Veiga-Souza FH, Junior SA, et al. Luminescent marker for GSR: evaluation of the acute oral and inhalation toxicity of the MOF [Eu(DPA) (HDPA)]. ACS Appl Bio Mater. 2020; 3(5): 3049–3056. https://doi.org/10.1021/acsabm.0c00107
- 38Zaeri N. Minutiae-based fingerprint extraction and recognition. In: J Yang, editor. Biometrics. Rijeka, Croatia: IntechOpen; 2011. p. 266. https://doi.org/10.5772/17527
10.5772/17527 Google Scholar
- 39Chadwick S, Moret S, Jayashanka N, Lennard C, Spindler X, Roux C. Investigation of some of the factors influencing fingermark detection. Forensic Sci Int. 2018; 289: 381–389. https://doi.org/10.1016/j.forsciint.2018.06.014
- 40Carneiro CR, Silva CS, Weber IT. A preliminary study of fingerprint aging using near infrared hyperspectral imaging (NIR-HSI). Anal Methods. 2023; 15(46): 6451–6459. https://doi.org/10.1039/D3AY01386C
- 41Tang R, Kong J, Zheng LL, Wang Z, Guo J, Jin X, et al. Various visualization of latent fingerprints with Eu3+−activated CaBi2Nb2O9 fluorescent labeling agent. Mater Res Bull. 2022; 154:111925. https://doi.org/10.1016/j.materresbull.2022.111925
- 42Hopkins SL, Clarke KT, Krosch MN, Gee WJ. Preparation of a low-cost fingerprint powder that harnesses white light to emit long-lived phosphorescence. Sci Justice. 2023; 63(4): 500–508. https://doi.org/10.1016/j.scijus.2023.04.013
- 43Li F, Tang L, Liu Y, Shao J. Background-free latent fingerprint imaging based on carbonized polymers@silica powder with intense green room-temperature phosphorescence. Opt Mater (Amst). 2022; 128:112356. https://doi.org/10.1016/j.optmat.2022.112356
- 44van Dam A, van Beek FT, Aalders MCG, van Leeuwen TG, Lambrechts SAG. Techniques that acquire donor profiling information from fingermarks—a review. Sci Justice. 2016; 56(2): 143–154. https://doi.org/10.1016/j.scijus.2015.12.002
- 45Palak GSB. Trends in developing latent fingermarks on adhesive tapes: a review. Probl Forensic Sci. 2019; 120: 279–299.
- 46Naveen Kumar K, Dagupati R, Lim J, Choi J. Bright red luminescence from Eu3+−activated noncytotoxic SnO2 quantum dots for latent fingerprint detection. Ceram Int. 2022; 48(12): 17738–17748. https://doi.org/10.1016/j.ceramint.2022.03.044
- 47Hulla JE, Navarro L, Kruger CL, Hayes AW. Toxicity, subchronic and chronic. In: P Wexler, editor. Encyclopedia of toxicology. 3rd ed. Oxford, U.K: Academic Press; 2014. p. 626–633. https://doi.org/10.1016/B978-0-12-386454-3.00070-1
10.1016/B978-0-12-386454-3.00070-1 Google Scholar
- 48Lan S, Zhang J, Li X, Pan L, Li J, Wu X, et al. Low toxicity of metal-organic rramework MOF-74(Co) nano-particles in vitro and in vivo. Nano. 2022; 12(19):3398. https://doi.org/10.3390/nano12193398