research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Multipolar model and Hirshfeld atom refinement of tetra­aqua­bis­­(hydrogenmaleato)iron(II)

crossmark logo

aDepartment of Chemistry, Federal University of Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, Minas Gerais 31310-390, Brazil
*Correspondence e-mail: [email protected]

Edited by K. Wozniak, Warsaw University, Poland (Received 16 September 2024; accepted 15 April 2025; online 9 May 2025)

This article is part of a collection of articles on Quantum Crystallography, and commemorates the 100th anniversary of the development of Quantum Mechanics.

A high-resolution charge density study using the Hansen–Coppens multipolar model was performed on tetra­aqua­bis­(hydrogenmaleato)iron(II). The experimental electron density was subjected to Bader's topological analysis. Hirshfeld atom refinement and topological analysis of the molecular wavefunction were also conducted. A comparison of the properties obtained under different resolution and acquisition conditions are presented. The performance of these models is evaluated in terms of their ability to achieve bond lengths close to those from neutron diffraction, provide accurate anisotropic displacement parameters and model electron densities precisely, and to determine atomic charges under different experimental and modeling conditions. The structure presents a short intramolecular hydrogen bond, which is found to have a distinct character compared to other interactions, as the hydrogen interacts covalently with two oxygen atoms. Different models were evaluated, each outperforming the others in specific aspects. Overall, the analysis of these models provide deeper insights into electron density distribution and the nature of the interactions present in the structure.

1. Introduction

Understanding chemical bonds and interactions is crucial for interpreting and predicting reactions and modeling properties of interest since the characteristics of compounds directly result from the electron arrangement of their atoms. For coordination compounds and intra- and intermolecular interactions in particular, the nature of the contacts can include ionic, covalent, and mixed characters, which is challenging for traditional models to interpret electron distribution. Advancements in experimental techniques and refinement methods have greatly enhanced the comprehension of the interactions in crystalline materials, providing important information about the chemical bonds and crystal packing.

The independent atom model (IAM) refinement approach has traditionally been effective for the positioning of heavy atoms, which have minimal contribution from valence electrons. However, this model often results in inaccurate bond lengths involving lighter atoms, particularly for hydrogen, which does not have inner electron shells, and its only electron is involved in a chemical bond. Consequently, applying this model results in an apparent shortening of X–H, where X is another atom bonded to the hydrogen atom (Coppens, 1997[Coppens, P. (1997). X-ray Charge Densities and Chemical Bonding. Oxford: International Union of Crystallography/Oxford University Press.]). On the other hand, the neutron diffraction experiment is well known for its ability to provide precise atomic positions and displacement parameters, including for hydrogen atoms, since neutrons primarily interact with atomic nuclei.

To accurately describe the electron density and obtain atomic positions comparable to those from neutron diffraction, it is essential to treat atoms aspherical entities (Woińska et al., 2016[Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.]; Dittrich et al., 2017[Dittrich, B., Lübben, J., Mebs, S., Wagner, A., Luger, P. & Flaig, R. (2017). Chem. A Eur. J. 23, 4605-4614.]; Hoser et al., 2009[Hoser, A. A., Dominiak, P. M. & Woźniak, K. (2009). Acta Cryst. A65, 300-311.]). In this regard, the multipolar model (MM) of Hansen & Coppens (1978[Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909-921.]) is widely used. In this model, the atomic electron density (ρa) is described as a combination of core spherical density, spherical valence density, and aspherical valence deformation density [equations (1[link]) and (2[link])]. The latter uses a multipole expansion based on spherical harmonics whose coefficients are refined against experimental data. The second and third terms have refinable parameters (κ and κ′, respectively) that account for the contraction or expansion of the respective valence density:

[\rho _{\rm a} = \rho _{\rm c}(r) + P_{\rm v}\kappa ^{3}\rho _{\rm v}(\kappa r) + \sum \limits_{l = 0}^{l_{\rm max}} \kappa ^{\prime 3}R_{nl}\left(\kappa ^{\prime}, r \right)\sum \limits_{m}^{ + l} P_{lm \pm }d_{lm \pm }\left({\theta, {\varphi}} \right), \eqno(1)]

where the radial functions are

[R_{l}(\kappa ^{\prime},r) = { {\zeta ^{n_{l} + 3}} \over {(n_{l} + 2)!}}(\kappa ^{\prime}r)^{n_{l}}\exp \left( - \kappa ^{\prime}\zeta _{l}r \right). \eqno(2)]

Although MM usually enables an accurate description of electron density for certain species, it requires rigorous experimental conditions, such as high-resolution and low-temperature measurements, and small-size, high-quality single crystals, besides being highly user dependent (Koritsanszky & Coppens, 2001[Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583-1628. ]).

Advances in quantum crystallography—a field defined by the mutual enhancement of crystallographic data and quantum mechanical calculations (Massa, Huang & Karle, 1995[Massa, L., Huang, L. & Karle, J. (1995). Int. J. Quantum Chem. S29, 371-384. ]; Grabowsky et al., 2017[Grabowsky, S., Genoni, A. & Bürgi, H.-B. (2017). Chem. Sci. 8, 4159-4176.]; Genoni et al., 2018[Genoni, A., Bučinský, L., Claiser, N., Contreras-García, J., Dittrich, B., Dominiak, P. M., Espinosa, E., Gatti, C., Giannozzi, P., Gillet, J., Jayatilaka, D., Macchi, P., Madsen, A. Ø., Massa, L., Matta, C. F., Merz, K. M., Nakashima, P. N. H., Ott, H., Ryde, U., Schwarz, K., Sierka, M. & Grabowsky, S. (2018). Chem. A Eur. J. 24, 10881-10905.])—have enabled the application of alternative aspherical atom models. One of those approaches is Hirshfeld atom refinement (HAR) (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]; Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]), which combines X-ray diffraction experimental data with ab initio calculation. HAR employs molecular wavefunction computation. This wavefunction is partitioned using the Hirshfeld stockholder partitioning scheme (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]). The resulting aspherical atomic electron densities are used to compute aspherical structure factors, which are then applied in the refinement of structural parameters against experimental data. This procedure is done iteratively until the convergency is achieved. Equations (3[link]) and (4[link]) show the Hirshfeld partitioning scheme, where ρA(r) is the electron density associated with atom A, wA(r) is a weighting function that determines the fraction of the molecular electron density ρmol(r) assigned to atom A. The weighting function wA(r) is defined as the ratio of the spherically averaged electron density of atom A, [\rho _{\rm A}^{0}\left({\bf r} - {\bf r}_{\rm A} \right)], at position rA, to the sum of the spherically averaged electron densities of all atoms in the molecule, [\sum \nolimits_{\rm B}^{\rm mol} \rho _{\rm B}^{0}\left({\bf r} - {\bf r}_{\rm B} \right)]:

[\rho _{\rm A}({\bf r}) = w_{\rm A}({\bf r})\rho _{\rm mol}({\bf r}), \eqno(3)]

where

[w_{\rm A}({\bf r}) = {{\rho _{\rm A}^0\left({\bf r} - {\bf r}_{{\rm A}} \right)} \over {\sum \nolimits_{\rm B}^{\rm mol} \rho _{\rm B}^0\left({\bf r} - {\bf r}_{\rm B} \right)}}. \eqno(4)]

Recent developments, such as the NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]) module in Olex2 software (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) have made the implementation of HAR more accessible. The new capabilities allow, for instance, the application of quantum chemistry software packages such as ORCA5.0 (Neese, 2022[Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.]), restraints and constraints from olex2.refine, and disorder treatment (Kleemiss et al., 2024[Kleemiss, F., Peyerimhoff, N. & Bodensteiner, M. (2024). J. Appl. Cryst. 57, 161-174.]; Hatcher et al., 2023[Hatcher, L. E., Saunders, L. K. & Coulson, B. A. (2023). Faraday Discuss. 244, 370-390.]; Jha et al., 2023[Jha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116-127.]). These advancements, along with the ability of HAR to provide X–H distances and displacement parameters in good agreement with those from neutron diffraction, even for non-high-resolution X-ray diffraction experiments, extend its applicability to a broader range of systems and common experimental conditions (Chęcińska et al., 2013[Chęcińska, L., Morgenroth, W., Paulmann, C., Jayatilaka, D. & Dittrich, B. (2013). CrystEngComm, 15, 2084.]; Woińska et al., 2014[Woińska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Woźniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A70, 483-498.]).

Other alternatives to IAM have already been proposed. For instance, the transferable aspherical atom model (TAAM) (Jha et al., 2020[Jha, K. K., Gruza, B., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2020). Acta Cryst. B76, 296-306.]; Volkov et al., 2007[Volkov, A., Messerschmidt, M. & Coppens, P. (2007). Acta Cryst. D63, 160-170.]; Dominiak et al., 2007[Dominiak, P. M., Volkov, A., Li, X., Messerschmidt, M. & Coppens, P. (2007). J. Chem. Theory Comput. 3, 232-247.]; Bojarowski et al., 2022[Bojarowski, S. A., Gruza, B., Trzybiński, D., Kamiński, R., Hoser, A. A., Kumar, P., Woźniak, K. & Dominiak, P. M. (2022). https://doi.org/10.26434/chemrxiv-2022-l5ql7.]), which is based on transferring the multipolar parameters of the pseudo atoms from one molecule to pseudo atoms in other molecules with similar chemical environments (Brock et al., 1991[Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47, 789-797.]). However, fragments containing transition metals are not yet included in existing compiled databases (Sanjuan-Szklarz et al., 2020[Sanjuan-Szklarz, W. F., Woińska, M., Domagała, S., Dominiak, P. M., Grabowsky, S., Jayatilaka, D., Gutmann, M. & Woźniak, K. (2020). IUCrJ, 7, 920-933.]). To overcome this limitation, hybrid methods such as IAM–TAAM, HAR–TAAM, and HAR joined with extremely localized molecular orbitals (ELMOs) (Meyer et al., 2016[Meyer, B., Guillot, B., Ruiz-Lopez, M. F., Jelsch, C. & Genoni, A. (2016). J. Chem. Theory Comput. 12, 1068-1081.]; Meyer & Genoni, 2018[Meyer, B. & Genoni, A. (2018). J. Phys. Chem. A, 122, 8965-8981.])—HAR–ELMO (Malaspina et al., 2019[Malaspina, L. A., Wieduwilt, E. K., Bergmann, J., Kleemiss, F., Meyer, B., Ruiz-López, M. F., Pal, R., Hupf, E., Beckmann, J., Piltz, R. O., Edwards, A. J., Grabowsky, S. & Genoni, A. (2019). J. Phys. Chem. Lett. 10, 6973-6982.]; Malaspina et al. 2021a[Malaspina, L. A., Genoni, A. & Grabowsky, S. (2021a). J. Appl. Cryst. 54, 987-995.])—have emerged. Additionally, models such as X-ray constrained wavefunction (Jayatilaka & Grimwood, 2001[Jayatilaka, D. & Grimwood, D. J. (2001). Acta Cryst. A57, 76-86.]) and X-ray wavefunction refinement (Grabowsky et al., 2012[Grabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776-6779.]) have been demonstrated to produce highly accurate electron density models by incorporating quantum-mechanical wavefunctions directly into the refinement process.

Despite these features, the multipole model and Hirshfeld atom refinement were chosen in this work because they are the most well established quantum crystallography methods currently available to deal with transition metals and different types of hydrogen contacts and offer a balance between accuracy and computational feasibility.

The quantum theory of atoms in molecules (QTAIM) (Bader, 1994[Bader, R. (1994). Atoms in Molecules: A Quantum Theory. Oxford: Clarendon Press.]), which can be applied to MM and HAR, provides a means to examine experimental data beyond distances and angles, deepening the information extracted from the experiment. It applies a partitioning scheme of molecules in open subsystems (atomic basins), generating, for instance, atomic charges through integrating electron densities in those atomic basins. Such analysis has been proven successful in studying chemical bonds in complexes containing transition metals, such as the Cr(CO)6, Fe(CO)5, and Ni(CO)4 (Farrugia & Evans, 2005[Farrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A 109, 8834-8848. ]) and short hydrogen bonds (Dos Santos et al., 2012[Dos Santos, L. H. R., Rodrigues, B. L., Idemori, Y. M. & Fernandes, N. G. (2012). J. Mol. Struct. 1014, 102-109.]; Pinto et al., 2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]).

This study focuses on the application of multipolar and Hirshfeld atom refinements to the coordination compound tetra­aqua­bis­(hydrogenmaleato)iron(II) ([Fe(C4H3O4)2(H2O)4]) [hereafter abbreviated to FeHmal]. The complex presents distinct types of contacts, such as oxygen–metal coordination, intermolecular hydrogen bonds, and a short intramolecular hydrogen bond in the asymmetric unit. This makes the complex a good test for the ability of both refinements to provide a chemically reasonable model. Other structures containing the hydrogen maleate ligand have already been studied using quantum crystallography approaches, such as methyl­ammonium hydrogen maleate (Madsen et al., 1998[Madsen, D., Flensburg, C. & Larsen, S. (1998). J. Phys. Chem. A, 102, 2177-2188.]), L-phenyl­alanine hydrogen maleate (Woińska et al., 2014[Woińska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Woźniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A70, 483-498.]), series of hydrogen maleate salts (Malaspina et al., 2020[Malaspina, L. A., Hoser, A. A., Edwards, A. J., Woińska, M., Turner, M. J., Price, J. R., Sugimoto, K., Nishibori, E., Bürgi, H.-B., Jayatilaka, D. & Grabowsky, S. (2020). CrystEngComm, 22, 4778-4789.]; Malaspina et al., 2021b[Malaspina, L. A., Genoni, A., Jayatilaka, D., Turner, M. J., Sugimoto, K., Nishibori, E. & Grabowsky, S. (2021b). J. Appl. Cryst. 54, 718-729.]) and tetra­aqua­bis­(hydrogenmaleato)­nickel(II) (Pinto et al., 2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]). A neutron diffraction study for an analog compound tetra­aquabis(hydrogenmaleato)zinc(II) (Sequeira et al., 1992[Sequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1192-1197.]) is available. This facilitates the analysis of bond lengths obtained from the herein-explored models with those determined using neutron diffraction.

Thus, two high-resolution X-ray diffraction measurements were carried out: one with higher completeness, I/σ(I), and Rint values, and another with the same resolution but with lower data quality. The aim was to evaluate the performance of the models in terms of their ability to obtain near-neutron diffraction bond lengths, appropriate anisotropic displacement parameters (ADPs), accurately modeled electron densities, and atomic charges under different experimental and modeling conditions. Also, the impact of the resolution limit was assessed by comparing the models with and without a cutoff in resolution. Table 1[link] presents a description of each model tested in this work.

Table 1
Description of each model

Model Description
MM1 Multipolar refinement for a high-resolution (d = 0.36 Å) measurement, employing SHADE2.1 for generation of hydrogen ADPs.
HAR1 Hirshfeld atom refinement, in NoSpherA2 module in Olex2, with the PBE0 functional and cc-pVTZ basis set, refining atomic positions and ADPs without constraints.
HAR1_cutoff Same methodology as HAR1 but with a reflection cutoff at d = 0.45 Å.
MM1_cutoff Same methodology as MM1 but with a reflection cutoff at d = 0.45 Å.
MM2 Multipolar refinement for high-resolution (d = 0.36 Å) data, collected under faster conditions than in MM1, resulting in lower completeness, redundancy, and higher Rint values.

2. Experimental

2.1. Synthesis and crystallization

Iron powder (0.28 g, 5 mmol) was heated to 353 K with an aqueous solution of maleic acid (1.74 g, 15 mmol) in 10 ml of water for 2 h until the iron was completely dissolved (Barman et al., 2002[Barman, R. K., Chakrabarty, R. & Das, B. K. (2002). Polyhedron, 21, 1189-1195.]). Crystals formed during the process were filtered, washed with a small amount of water, and dried in air. One suitable single crystal was selected for each X-ray diffraction experiment.

2.2. Data collection

High-resolution data collection (0.36 Å) was performed on an XtaLAB Synergy diffractometer, equipped with a HyPix detector, using Mo Kα radiation (λ = 0.71073 Å), at 100 K. Two datasets were obtained. The first one [named Exp_slow] was collected more slowly (2.12 seconds per frame in low angles and 17.28 seconds per frame in high angles), resulting in higher I/σ(I) and lower Rint values. The other data set [named Exp_fast] was collected faster (0.72 seconds per frame in low angles and 5.75 seconds per frame in high angles). Data reductions of both experiments were carried out using CrysAlisPro (Rigaku Oxford Diffraction, 2019[Rigaku Oxford Diffraction (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]). The reflection data used for all refinements were scaled and merged in SORTAV (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.]).

2.3. Independent atom model

The structure was solved by direct methods using SHELXS (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]) and refinement was performed inSHELXL (version 2018/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) based on F2, both in WinGX (version 2021/3; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). All atoms, including hydrogen, were located in the Fourier difference map. Hydrogen atoms were refined with isotropic displacement parameters, while all the other atoms were refined anisotropically. The same procedure was carried out for Exp_slow and Exp_fast data sets.

2.4. Multipolar models

2.4.1. Multipolar model for the Exp_slow data set (MM1)

Multipolar refinement based on the Hansen–Coppens model was performed in the XDLSM module of XD2016 (Volkov et al., 2016[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. (2016). XD2016. University at Buffalo, State University of New York, NY, USA; University of Milan, Italy; University of Glasgow, UK; CNRISTM, Milan, Italy; Middle Tennessee State University, TN, USA; and Freie Universität, Berlin, Germany.]) for the Exp_slow data set. The scattering factors were taken from the Su–Coppens–Macchi databank (Su & Coppens, 1998[Su, Z. & Coppens, P. (1998). Acta Cryst. A54, 646-652.]; Macchi & Coppens, 2001[Macchi, P. & Coppens, P. (2001). Acta Cryst. A57, 656-662.]). The merging process performed using SORTAV yielded 14020 reflections. Of these, 13896 with I > σ(I) were included in the refinement based on F2 (in order to better compare with the HAR1 procedure). The weighting scheme chosen was 1/σ2([F_{\rm obs}^2]) (for all MM-based refinements). The initial atomic coordinates and displacement parameters were taken from the final IAM refinement. Initially, this refinement was redone in XD2016, refining the positions and thermal motions of non-hydrogen atoms. Subsequently, kappa refinement was conducted. The refinement of the κ′ parameter for the iron atom was tested, but discarded as it did not result in an improvement of the model. Then, multipoles were refined, considering local symmetry of the atoms. All non-H atoms were refined up to the hexadecapole level. In contrast, hydrogen atoms were refined up to the quadrupolar level. Local symmetries were tested starting from the highest local symmetries to all atoms: mmm for Fe, mm2 to C atoms, and m to O atoms. Successive symmetry relaxations resulted in the best model with local symmetries: −1 to Fe, m to C atoms, and 1 to all O atoms except O6, for which the m symmetry was adequate. Symmetries mm2, m, and cylindrical were considered for H atoms. The final model considered cylindrical symmetry for all H atoms except H3A. For H3A (part of the short hydrogen bond), symmetry m was considered in the final model. X—H distances were initially constrained by the RESETBOND command based on neutron diffraction data for the analog complex but were freely refined in the subsequent refinement steps. Subsequently, ADPs for H atoms were estimated with SHADE2.1 (Madsen, 2006[Madsen, A. Ø. (2006). J. Appl. Cryst. 39, 757-758.]) and inserted in the model, followed by a new refinement of the position of non-H atoms and multipoles of all the atoms, to fit the new ADPs generated. The isotropic extinction parameter was refined considering the model proposed by Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 148-153.]). Topological properties were calculated in the TOPXD and XDPROP modules of XD2016. This model will be called MM1 hereafter.

2.4.2. Multipolar model with a cutoff in reflections (MM1_cutoff)

An MM1-like refinement, with a resolution cutoff in d = 0.45 Å (resulting in 7330 merged reflections included in the refinement) was conducted, aiming to compare the effects of the resolution on the quality of refinement and to infer what features were added in the model exclusively by the higher-resolution part of the data. The subsequent procedures were carried out as outlined in Section 2.4[link]. This model will be called MM1_cutoff.

2.4.3. Multipolar model for the Exp_fast data set (MM2)

To access differences coming from experiments with the same resolution, but different quality data, a multipole refinement was employed for the Exp_fast data set. In this case, some adjustments were made in the refinement conditions, because the data quality was lower compared to that of Exp_slow. The refinement was carried out based on F, considering the reflections with F > 3σ(F). The remaining refinement procedure was essentially the same as in MM1. This model will be called MM2. Table S6 provides all chosen atom symmetries for MM-derived models. This model will be called MM2.

2.5. Hirshfeld atom refinement (HAR1)

HAR was executed using the NoSpherA2 module in Olex2, using the same merged reflections as in MM1, starting from atomic coordinates and displacement parameters from the IAM refinement. The weighting scheme was 1/σ2([F_{\rm obs}^2]) + 0.0065P)2 + 0.0083P], where P = (Fo2 + 2Fc2)/3 and the extinction parameter was refined. Quantum mechanical calculations were performed using ORCA 5.0, with the PBE0 functional and cc-pVTZ basis set, and assuming a vacuum environment. Multiplicities equal to 5 (high-spin model) and 1 (low-spin model) were tested for the Fe atom. The refinement was conducted based on F2. Positions and ADPs of all atoms were refined without any constraints or restraints.

The multiplicity 5 model proved to be more suitable, as it exhibited better statistical parameters [R(F) = 0.0176, wR(F2) = 0.0478 and S = 1.1446] compared with R(F) = 0.0223, wR(F2) = 0.0556 and S = 1.0625 for the multiplicity 1 model) and more appropriate deformation and residual maps in the metal region, as can be seen in Fig. S5. This aligns with a recent study on experimental spin state determination of a similar complex (which presents the Fe coordinated by six water molecules) using Hirshfeld atom refinement investigated by Brüx et al. (2025[Brüx, D., Ebel, B., Pelzer, N., Kalf, I. & Kleemiss, F. (2025). Chem. A Eur. J. 31, e202404017.]).

Topological analysis was carried out on the molecular wavefunction in Multiwfn (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]). This model will be called HAR1.

2.6. Hirshfeld atom refinement with a cutoff in reflections (HAR1_cutoff)

A HAR1-like refinement, with a resolution cutoff at d = 0.45 Å (resulting in the same 7330 merged reflections included in the MM1_cutoff refinement) was conducted, so that the effects of the resolution in the refinement could be compared. The subsequent procedures were carried out as outlined in Section 2.4.1[link]. This model will be called HAR1_cutoff.

3. Results and discussion

3.1. Model comparison

This section compares models MM1 and HAR, all obtained from Exp_slow data.

3.1.1. Figures of merit

The two models demonstrate significant improvements over traditional IAM in terms of figures of merit, as seen in Table 2[link]. This improvement is expected, as both MM and HAR account for aspherical features that IAM cannot capture. MM1 shows lower R values, as expected due to the higher number of refined parameters, while HAR1 shows a better agreement in terms of the S value (although this parameter depends on the weighting scheme adopted, which was different). The two refinements still exhibit a non-negligible amount of unmodeled electron density (especially HAR1), as indicated by Δρmax and Δρmin values. These values can be attributed primarily to the high-resolution data used in the experiment, since at a high angle (where the scattering intensity is low), only the core electrons contribute significantly.

Table 2
Refinement statistics for the multipolar model and Hirshfeld atom refinement of tetra­aqua­bis­(hydrogeno­maleato)iron(II)

  IAM MM1 HAR1
R(F) 0.0209 0.0162 0.0176
wR(F2) 0.0570 0.0454 0.0478
S 1.058 1.4093 1.1446
No. of independent reflections [I > σ(I)] 14020, 13896 13896 13896
No. of parameters 126 346 161
Δρmax, Δρmin (e Å−3) 0.90, −1.10 0.60, −0.29 0.50, −0.73
3.1.2. Crystal structure
3.1.2.1. Molecular geometry

A view of the two molecular structures with displacement ellipsoids can be seen in Fig. 1[link](a) for MM1 and Fig. 1(b) for HAR1, in which it is possible to see that the main visual differences between the models are in the ADPs of the H atoms. Fig. 1[link](d) presents an overlap of these models and, additionally, the structure obtained from neutron diffraction of the zinc analog complex (MALAQZ03; Sequeira et al., 1992[Sequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1192-1197.]), in which the main difference lies in the O—H bond lengths of the water molecules. These variations may impact the interpretation of subsequently derived structural and electronic properties.

[Figure 1]
Figure 1
FeHmal crystal structures generated by (a) MM1, (b) HAR anisotropic atomic displacement ellipsoids are drawn at the 50% probability level. (c) Overlap of the structures of FeHmal by MM1 (green), and HAR1 (red), showing the ellipsoids. (d) Overlap of the structures of FeHmal by MM1 (green), HAR1 (red), and the zinc analog complex by neutron diffraction - MALAQZ03 (blue) (alignment RMSD = 0.023 Å).
3.1.2.2. Hydrogen bonding

Table 3[link] provides a comparative analysis of hydrogen bond distances and bond angles obtained from MM1, HAR1, and MALAQZ03 data. Accurate H-atom placement is crucial, as even slight variations can affect hydrogen-bond geometry and, consequently, the arrangement of atoms in the crystal. In general, D–H and H⋯A distances vary significantly among the models but remain close to the ones obtained from the neutron diffraction ones of the analog compound. The root-mean-square distance (RMSD) between the D–H distances refined in MM1 and the neutron distances is 0.0238 Å and the RMSD between the refined distances in HAR1 and the neutron distances is 0.0212 Å, showing that HAR1 performs slightly better in this sense.

Table 3
Hydrogen-bond geometry (Å, °) obtained from MM1 (1st line), HAR1 (2nd line), and neutron diffraction from the zinc analog complex (3rd line)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 1.070 (18) 1.349 (18) 2.4186 (2) 177.7 (12)
1.136 (16) 1.284 (16) 2.4184 (2) 175.6 (11)
1.097 (7) 1.316 (5) 2.410 (4) 174.7 (4)
O5—H5A⋯O2 0.941 (12) 2.391 (13) 2.9014 (2) 113.8 (9)
0.935 (9) 2.380 (13) 2.9014 (2) 114.9 (10)
0.929 (8) 2.253 (5) 2.792 (3) 122.2 (4)
O5—H5A⋯O3i 0.941 (12) 1.996 (12) 2.8554 (2) 151.0 (11)
0.935 (9) 2.008 (11) 2.8560 (2) 150.0 (12)
0.929 (8) 2.108 (6) 2.888 (3) 140.8 (4)
O5—H5B⋯O4ii 0.929 (13) 1.840 (12) 2.7555 (2) 168.3 (11)
0.953 (10) 1.814 (11) 2.7555 (2) 169.3 (11)
0.957 (9) 1.848 (7) 2.789 (4) 167.4 (4)
O6—H6A⋯O4iii 0.924 (11) 1.927 (11) 2.8145 (2) 160.3 (11)
0.959 (10) 1.885 (10) 2.8150 (2) 162.9 (10)
0.950 (8) 1.949 (6) 2.869 (3) 162.4 (4)
O6—H6B⋯O1iv 0.932 (13) 1.885 (13) 2.8154 (2) 175.3 (10)
0.963 (10) 1.853 (10) 2.8153 (2) 177.9 (10)
0.965 (7) 1.899 (5) 2.861 (3) 174.9 (3)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, y − 1, z − 1; (iii) x, y, z − 1; (iv) x, y, z − 1.

Gilli & Gilli (2000[Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1-15.]) classified the hydrogen maleate ion as a negative charge-assisted hydrogen bond [(−)CAHB]. In their study, neutron diffraction data revealed an interdependence between the values of d(O—H) and d(H⋯O), indicating that strong O—H⋯O bonds tend to approximate these two distances to 1.20 Å, with d(O⋯O) ≅ 2.40 Å, in such a way that the H atom is in the electron densities of both O atoms. For the O3—H3A⋯O2 contact (the short intramolecular hydrogen bond), the D–H (and H⋯A) distance varies slightly between the methods, with MM1 providing lower D–H (and higher H⋯A) distances and HAR providing higher D–H (and lower H⋯A) distances. The two models result in O3⋯O2 distances lower than 2.42 Å, aligned with the classification as (−)CAHB and with the observation by Madsen et al. (1998[Madsen, D., Flensburg, C. & Larsen, S. (1998). J. Phys. Chem. A, 102, 2177-2188.]) for the uncoordinated anion (although this anion contains a mirror plane not contained in the ligand coordinated to Fe). The asymmetry of the short hydrogen bonding is associated with the metal–ligand coordination as pointed out by Pinto et al. (2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]).

More significant differences in distances and angles are observed for the hydrogen bonds involving water molecules. Both herein-presented models, particularly MM1, derive O5—H5A and H5A⋯O2 distances substantially longer than the distance obtained from neutron diffraction. In different ways, both models, but especially MM1, underestimate the O5—H5B bond length, although it does not deviate much from the reference concerning the other contacts involving this atom.

Regarding the distances from O6 to the H atoms to which it is bonded, HAR1 performs better, although MM1 gives the most consistent H6A⋯O4 and H6B⋯O1 distances. Finally, both models underestimate the DA distances, except in the case of O2⋯O5, where it is overestimated, and in the case of O2⋯O3, where both models delivered values very close to those of neutron diffraction. Additional bond distances and angles are shown in Table S3.

To better understand the variations in the distances obtained by the refinements, the graph in Fig. 2[link] shows these variations related to O–H and C–H distances. Fig. 2[link] illustrates the differences between bond lengths derived from X-ray and neutron diffraction for all bonds containing H atoms. In most O–H connections, MM1 tends to underestimate [something also observed by Pinto et al. (2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]) for the nickel analog complex] the distances, except for O2⋯H3A and O5—H5A, where it overestimates. This model provides C–H distances very close to those from neutron diffraction. The HAR1 model displays an opposite trend, overestimating most bond lengths except for O2⋯H3A, which it underestimates, and O5—H5B and O6—H6B, where it provides values very close to those obtained from neutron diffraction.

[Figure 2]
Figure 2
Differences between the X-ray and neutron diffraction bond distances for bonds containing hydrogen for the MM1 and HAR1 models. Error bars are the uncertainties of the distances derived by each model.

Woińska et al. (2014[Woińska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Woźniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A70, 483-498.]) evaluated the capabilities of HAR in modeling the interactions in L-phenyl­alaninium hydrogen maleate, especially the short hydrogen bond. The results were compared to those obtained from IAM, MM, TAAM, and neutron diffraction data. The results showed that HAR produced the most accurate electron density model and the closest match to neutron diffraction results. Malaspina et al. (2020[Malaspina, L. A., Hoser, A. A., Edwards, A. J., Woińska, M., Turner, M. J., Price, J. R., Sugimoto, K., Nishibori, E., Bürgi, H.-B., Jayatilaka, D. & Grabowsky, S. (2020). CrystEngComm, 22, 4778-4789.]) investigated the hydrogen maleate anion stabilized by different cations using HAR and demonstrated that accurate and precise hydrogen-atom positions in short O—H⋯O hydrogen bonds can be achieved, whether isotropic displacement parameters are used, or ADPs are refined or estimated through SHADE. In the present study, HAR with free refinement of the ADPs was applied to the coordinated anion, showing potential for deriving X–H distances for compounds containing short hydrogen bonds coordinated to transition metals. Although the procedure occasionally overestimates or underestimates the bond distances observed in the compound under investigation, no consistent pattern for this behavior has been identified.

Olovsson et al. (1984[Olovsson, G., Olovsson, I. & Lehmann, M. S. (1984). Acta Cryst. C40, 1521-1526.]) used three neutron-derived geometries of hydrogen maleate and one hydrogen chloro­maleate structure to derive a correlation between the O—H and O⋯H distances in the anion. Malaspina et al. (2017[Malaspina, L. A., Edwards, A. J., Woińska, M., Jayatilaka, D., Turner, M. J., Price, J. R., Herbst-Irmer, R., Sugimoto, K., Nishibori, E. & Grabowsky, S. (2017). Cryst. Growth Des. 17, 3812-3825.]) extended their ideas using a larger data set of 17 neutron-diffraction structures involving the hydrogen maleate anion to derive a way to predict the hydrogen bond lengths starting from the position of the O atoms involved in the short contact. This method is expressed in equations (5) and (6). The O3—H3A and H3A⋯O2 distances obtained by applying these equations to the MM1 and HAR1 models are presented in Table 4[link] (with the approximation of the projection of the O⋯H interaction onto O⋯O as being the O⋯H distance and the projection of the O—H bond onto O⋯O as being the O–H distance, since the O—H⋯O bond angle is very close to 180°):

[d_{{\rm H} \cdots A} = {{d_{{\rm O} \cdots {\rm O}} - (2.1424\, \pm \,0.0019)} \over {0.2217\, \pm \,0.0015}}, \eqno(5)]

[d_{D - {\rm H}} = (2.1424\, \pm \,0.0019)\,\AA - (0.7783 \pm 0.0015)d_{{\rm H} \cdots A}. \eqno(6)]

The distances are essentially the same in both models, which is expected given the similarity in the O3⋯O2 distance: 2.4186 (2) Å for MM1 and 2.4184 (2) Å for HAR1. When comparing the predicted values to those in Table 3, it is evident that the equation yields an O3—H3A bond length longer than in both models, while the H3A⋯O2 hydrogen bond distance is shorter.

Table 4
O3—H3A and H3A⋯O2 hydrogen bond distances (Å) found for FeHmal, determined using equations (5)[link] and (6)[link]

MM1 (1st line), HAR1 (2nd line).

O3—H3A H3A⋯O2
1.173 (11) 1.246 (12)
1.173 (11) 1.245 (12)
3.1.2.3. Anisotropic displacement parameters

In Figs. 1[link](a) and 1[link](b), the ellipsoids of non-H atoms are similar between the models, while those of H atoms differ, especially those of the H atoms of water molecules and the H atom involved in the short hydrogen bond (H3A). Fig. 1[link](c) shows an overlap of the two models (green-MM1, red-HAR1), with the structures rotated to minimize the RMSD between the two structures (alignment RMSD = 0.023 Å). In the HAR1, these ellipsoids appear larger and the H3A is noticeably stretched and flattened. This suggests that the procedure employed by generating displacement parameters in NoSpherA2 captures a broader range of atomic motion for these H atoms. In contrast, ADPs from the MM1 model appear more uniform due to the use of SHADE2.1, since it estimates ADPs for H atoms considering a harmonic approximation rather than refining it. On the other hand, ADPs derived from HAR are directly refined against experimental data; therefore, they are subject to limitations related to data quality and experimental conditions.

The similarity index S12 (Whitten & Spackman, 2006[Whitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875-888.]), where S12 = 100(1 − R12) [R12 is derived in equation (7[link])] was employed to assess the differences in ADP values between the two models. R12 represents the overlap of the probability density functions (PDFs) corresponding to the analyzed ADP tensors. This index describes a percentage difference between the two PDFs (p1 and p2). U1 and U2 are the corresponding displacement tensors. Since the PDFs are normalized, when U1 = U2, R12 = 1.0 and consequently, there is no difference between the PDFs:

[R_{12} = \int[p_{1}(x)p_{2}(x)]^{1/2} d^{3}x = {{2^{3/2}(\det U_{1}^{-1}\det U_{2}^{-1})^{1/4} } \over {[\det(U_{1}^{-1} + U_{2}^{-1}) ]^{1/2} }}. \eqno(7)]

The combination of the figures of merit (FOM) based on the S12 value, Reigval (an index based on the magnitudes of corresponding eigenvalues) and the RMS error, is more informative since S12 does not provide a direct measure of the relative orientation of the eigenvectors of the tensors (Sovago et al., 2014[Sovago, I., Gutmann, M. J., Hill, J. G., Senn, H. M., Thomas, L. H., Wilson, C. C. & Farrugia, L. J. (2014). Cryst. Growth Des. 14, 1227-1239.]). The three indices are combined according to equation (8[link]),

[{\rm Overall\, \,FOM} = {{{\rm RMS} + 100R_{\rm eigval} + (100 - S_{12})} \over {300}}. \eqno(8)]

These indices were calculated using the SimADP routine in WinGX, where the two molecules being compared are rotated to minimize differences in their positional coordinates. S12, RMS, Reigval, and overall FOM for the overlapped atoms are presented in Table 5[link]. Heavier atoms show significantly lower RMSD and Reigval and S12 values closer to 100%, reflecting high similarity in the ADPs obtained by the two models. These statistics get worse for H atoms, showing that the main difference between the derivation of ADPs between the two models concerns the H atoms. The RMSeigvec for H atoms is also notably higher, particularly for H3, H3A, H6A and H6B, with values exceeding 30°. The overall FOM for all atoms is consistently small, with lower values for heavier atoms and more elevated values for H atoms. The average S12 similarity index over all atoms in the molecule is 97.24%, indicating that the ADPs from the two models are highly consistent.

Table 5
RMSD (°) of principal axes of the orthogonalized Uij tensors (degrees), Reigval, S12 index (%), and overall figure of merit (FOM) for atomic positions obtained for all atoms upon overlap of the structures obtained by MM1 and HAR1

  RMSD Reigval S12 Overall FOM
Fe1 1.73 0.003 99.96 0.007
O1 0.42 0.009 99.97 0.005
O2 6.45 0.012 99.98 0.026
O3 0.89 0.009 99.98 0.006
O4 0.67 0.009 99.98 0.005
O5 1.26 0.006 99.98 0.006
O6 4.41 0.004 99.97 0.016
C1 3.85 0.011 99.93 0.017
C2 1.11 0.011 99.94 0.008
C3 0.11 0.013 99.94 0.005
C4 0.58 0.007 99.94 0.004
H2 26.84 0.249 92.94 0.196
H3 34.75 0.074 92.98 0.164
H3A 35.23 0.078 83.62 0.198
H5A 29.94 0.114 95.18 0.154
H5B 25.92 0.199 96.50 0.164
H6A 40.27 0.064 98.19 0.162
H6B 35.16 0.337 91.35 0.258

More insight into the ADPs can be obtained by comparing the results from the Hirshfeld rigid bond test (Hirshfeld, 1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]), which evaluates the differences in amplitudes of mean square displacements (DMSDA) of the two atoms involved in a bond, serving to test whether the ADPs within a molecule are internally consistent. According to this test, for an adequate deconvolution of the vibration, this value should be as low as possible. As shown in Table 6[link], the results reveal a consistent trend where MM1 exhibits much lower DMSDA values for all X—H bonds. This trend indicates that the ADPs generated by SHADE2.1 offer a more accurate representation of atomic vibrations. This outcome is expected since SHADE2.1's methodology integrates neutron diffraction data and information about the bonded atom to derive ADPs for the H atoms.

Table 6
DMSDA values (1 × 10−4 Å2) in the O—H and C—H bonds (Å) from the evaluated models: MM1 (1st line), HAR1 (2nd line)

Atom 1 Atom 2 Distance DMSDA Atom 1 Atom 2 Distance DMSDA
O6 H6A 0.924 69 O3 H3A 1.070 49
0.959 107 1.136 418
O6 H6B 0.932 65 O2 H3A 1.349 46
0.963 207 1.284 406
O5 H5A 0.941 51 C2 H2 1.067 56
0.935 68 1.084 65
O5 H5B 0.929 60 C3 H3 1.081 59
0.952 177 1.107 63
3.1.3. Residual and deformation electron density maps

The final model quality can be assessed through residual and deformation maps. Fig. 3[link] (MM1), and Fig. 4[link] (HAR1) show these maps for the models explored in this work. All of them reveal electron density accumulated in chemical bonds and lone pairs in the water molecules and the hydrogen maleate ligand. None of the models show electron density overlap between iron and its bonded oxygen atoms, suggesting electrostatic character. Notably, in the region of Fe, the deformation map derived from multipole refinement displays a spherical appearance, while the HAR-derived map shows electron density accumulation between the ligands. All the models show a non-negligible number of residuals around Fe, due to the high resolution at which the X-ray diffraction experiment took place. Both models present low residues in the hydrogen maleate ligand region, especially MM1.

[Figure 3]
Figure 3
Deformation and residual maps for MM1: (a) deformation map in the hydrogen maleate plane, (b) residual map in the hydrogen maleate plane, (c) deformation map in Fe1–O5–O6 plane and (d) residual map in the Fe1–O5–O6 plane. Contours levels at 0.1 e Å3, with positive contours in blue and negative contours in red.
[Figure 4]
Figure 4
Deformation and residual maps for HAR1: (a) deformation map in the hydrogen maleate plane, (b) residual map in the hydrogen maleate plane, (c) deformation map in Fe1–O5–O6 plane and (d) residual map in the Fe1–O5–O6 plane. Contours levels at 0.1 e Å3, with positive contours in blue and negative contours in red.

The residuals at O2 and O3 in the HAR model indicate signs of anharmonicity, which could potentially be modeled using Gram–Charlier coefficients. However, since this possibility was tested and discarded in MM1, and with the objective of maintaining the comparability between models, it was decided not to refine these coefficients in HAR1 either. Consequently, the electron density distributions around these O atoms are less accurately modeled, leading to noticeable residuals in their regions.

3.1.4. Topological analysis

Both studied models allow the interpretation of properties derived from bond critical points (bcps). Table S2 presents the sum of distances from atoms to their bcps, electron density [ρ(rbcp)], Laplacian [∇2ρ(rbcp)], principal curvatures, and ellipticity at these points for diverse bonds and interactions in the compound. The values of λ1 and λ2 are negative, while λ3 is positive as expected for bond critical points

The analysis of the Laplacian reveals areas of charge concentration [negative ∇2ρ(rbcp)] and depletion [positive ∇2ρ(rbcp)]. The Laplacian values from the two models cannot be directly compared, as this property represents the second derivative of the electron density. Consequently, small variations in the electron density can result in significant changes in the Laplacian. However, analyzing the signs and orders of magnitude offers valuable insight into the chemical nature of the interactions. The interpretations of these properties are very similar in the two models.

Positive and small values of the Laplacian (the sum of λ1, λ2, and λ3) denote that atoms are connected electrostatically by closed-shell interactions, such as ionic bonds, as seen in Fe—O bonds across both models, consistent with crystal field theory. This also happens in all hydrogen bonds involving water molecules and carb­oxy­lic oxygens. Negative values of the Laplacian indicate open-shell interactions, with concentration of electron density in the internuclear regions, as in covalent bonds, which are evident in O—H bonds in water molecules and C—H bonds within the hydrogen maleate ligand in both models

Both models yield negative Laplacians for all C–C, C–H, O–H, and C–O interactions, indicating covalency. The water hydrogen atoms are involved in typical electrostatic hydrogen bonds (O—H⋯O), with one covalent (O—H) and one ionic (H⋯O) interaction, according to the observed Laplacian values. In the case of the short hydrogen bond (O3—H3A⋯O2), particularly, both models give negative Laplacian for both interactions, indicating that the hydrogen interacts covalently with both O atoms, inline with Pinto et al. (2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]) for the analog complex and Madsen et al. (1998[Madsen, D., Flensburg, C. & Larsen, S. (1998). J. Phys. Chem. A, 102, 2177-2188.]) for the uncoordinated ion. Particularly, the magnitude of these interactions differentiates this hydrogen bond from those involving water molecules, in which O—H bonds show largely negative Laplacians and H⋯O interactions have small and positive values, which indicates electrostatic interaction. There is a difference in the distance between the O and H atoms of the short hydrogen bond comparing the uncoordinated anion with the present work, since in the first, there is a plane of symmetry that causes the critical points to be found at the same distance (ca 0.30 Å) from the H/D atom, while in this work the distance from H3A to the bcp that connects O3—H3A is 0.234 Å (MM1) and 0.250 Å (HAR1) and the distance from H3A to the bcp that connects O2⋯H3A is 0.392 Å (MM1) and 0.327 Å (HAR1).

The values of ρ(rbcp) found here for C—C bonds are close to those found for the uncoordinated ion, despite the absence of the plane of symmetry in the ligand in the present study. The metal–ligand coordination seems to have some effect on the value of ρ(rbcp) for the C1—O1 bond, since for the uncoordinated anion this value is 2.92 e Å−3, for coordination with nickel it is 2.73 e Å−3 and in this work, the value is 2.618 e Å−3 (MM1) and 2.562 e Å−3 (HAR1).

The ellipticity value (ɛ) evaluates how cylindrical the bonds are, enabling to differentiate between single and double bonds. For both models, the C2—C3 bond has the greatest ɛ value of all covalent bonds, aligned to the expected double bond.

Espinosa et al. (1999[Espinosa, E., Souhassou, M., Lachekar, H. & Lecomte, C. (1999). Acta Cryst. B55, 563-572.]) identified an exponential relationship between λ3 and the d(H⋯O) distance, which is reproduced here as equation (9),[link]

[\lambda _{3}({\bf r}_{\rm bcp}) = 0.41\,(8) \times 10^{3}\exp [- 2.4\,(1) \times d({\rm H}\cdots{\rm O})]. \eqno(9)]

Considering the uncertainty of the values found applying this equation, the λ3 values for hydrogen bonds coming from MM1 and HAR1 in Table 4[link] align with the findings of Espinosa et al. (1999[Espinosa, E., Souhassou, M., Lachekar, H. & Lecomte, C. (1999). Acta Cryst. B55, 563-572.]) and a comparison in given in Table 7[link]. The differences arise from the fact that, in the present work, the hydrogen atoms had their positions freely refined whereas the equation was based on combined X-ray and neutron diffraction data.

Table 7
Values of λ3 found in this work and using equation (9)[link]

MM1 (1st line), HAR1 (2nd line).

H⋯O This work Espinosa et al. H⋯O This work Espinosa et al.
O2⋯H3A 15.297 16.1 (3.9) O4⋯H5Bii 4.859 5.0 (1.3)
17.737 18.8 (4.5) 5.3 (1.4)
O2⋯H5A 1.700 1.3 (4) O4⋯H6Aiii 4.206 4.0 (1.1)
1.518 1.4 (4) 4.4 (1.2)
O3⋯H5Ai 3.330 3.4 (1.0) O1⋯H6Biii 4.424 4.4 (1.2)
3.3 (9) 4.8 (1.3)
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, y − 1, z − 1; (iii) x, y, z − 1.

Fig. 5[link] presents the molecular graphs generated from the two models containing all critical points and bond paths. All models present virtually the same (3, −3) critical points due to nuclear positions, (3, −1) bond critical points, and (3, +1) ring critical points, one formed as a consequence of the short intramolecular hydrogen bond and the other due to the bond critical point generated by the O5—H5A⋯O2 interaction. The main difference is in the bond path formed by this interaction, for which HAR1 presents a steeper curve, while MM1 is straighter.

[Figure 5]
Figure 5
FeHmal molecular graphs (xdprop module) for (a) the asymmetric unit of MM1 and (b) the molecular unit of HAR1. (a) Blue dots are (3, +3) critical points, red dots (3, −1) critical points and yellow dots (3, +1) critical points, HAR1. (b) Purple dots are (3, +3) critical points, orange dots are (3, −1) critical points and yellow dots are (3, +1) critical points. The molecular graph generated for the HAR1 model presents the entire molecule since the calculations done in the HAR procedure consider the entire unit cell.

Abramov (1997[Abramov, Yu. A. (1997). Acta Cryst. A53, 264-272.]) proposed a methodology to estimate the kinetic energy density, G(r), for closed-shell interactions in terms of ρ(r) and ∇ 2ρ(r) at the critical bonding point, given in equation (10[link]),

[G\left({\bf r}_{\rm bcp} \right) = {3 \over {10}}{\left({3{{{\pi}}^2}} \right)^{{2 / 3}}}{{\rho}}{\left({{{\bf {r}}_{{\rm{bcp}}}}} \right)^{{5/ 3}}} + {1 \over 6}{\nabla ^2}{{\rho}}\left({{{\bf{r}}_{{\rm{bcp}}}}} \right) .\eqno(10)]

The Laplacian of the electron density is related to energy densities through equation (11)[link], where V(r) is the potential energy density at point r:

[{\rm L}({\bf r}) = 2G({\bf r}) + V({\bf r}) = - {1 \over 4}{\nabla ^2}{\rho}({\bf r}). \eqno(11)]

The electronic energy density H(r) can be calculated with equation (12),[link]

[H({\bf r}) = G({\bf r}) + V({\bf r}). \eqno(12)]

Espinosa and co-workers (2002[Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529-5542.]) established that when |V(rbcp)|/G(rbcp) > 2, the interaction is classified as open-shell and when it is < 1, it is closed-shell. It is possible to see these properties for Fe—O bonds and hydrogen bonds within the explored models in Table S3.

In all models, the |V(rbcp)|/G(rbcp) ratio for Fe—O bonds is close to 1, which, together with H(rbcp) very close to zero, indicates a predominance of purely closed-shell interactions. The HAR1 model yields a value slightly greater than unity for the V(rbcp)|/G(rbcp) ratio for the Fe—O1 bond, suggesting a small covalence for all Fe—O bonds. Values of this ratio between 1 and 2 for the O4⋯H5B and O1⋯H6B intermolecular interactions in MM1 indicate that these contacts are in the transition region between closed-shell and shared-shell. O2⋯H5A, O3⋯H5A, and O4⋯H6A have values lower than unity for all models, suggesting nature totally electrostatic.

In both models, the O2⋯H3A interaction has a |V(rbcp)|/G(rbcp) ratio greater than 2 (significantly higher than the value found by Pinto et al. (2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]) for the analog nickel complex using multipolar refinement), which, along with the negative Laplacian, the high value of ρ(rbcp), G(bcp)/ρ(rbcp) smaller than 1 and H(rbcp)/ρ(rbcp) smaller than 0, supports its classification as purely covalent bond by these models.

Table 8[link] presents atomic charges calculated using QTAIM for both models. All of them yield very close to zero total charges, consistent with the real crystal expected charge. In the case of MM1, the total value of the sum of the charges is 0.01 e.

Table 8
Atomic charges (e) and volumes (Å3) from QTAIM for MM1 (1st line), HAR1 (2nd line)

There are two values in the HAR1 line because the HAR procedure calculates the wavefunction for both asymmetric units of the unit cell. TotalHmal refers to the atoms in the hydrogen maleate anion; Totalw5 denotes the water molecule composed of O5, H5A, and H5B; and Totalw6 corresponds to the water molecule formed by O6, H6A, and H6B.

Atom qΩ VΩ Atom qΩ VΩ
Fe1 2.03 10.05 H3A 0.67 0.94
1.53 10.00 0.65 1.23
O1 −1.38 15.42 TotalHmal −1.50 113.91
−1.27 17.40 −0.87 122.73
O2 −1.35 16.41 O5 −1.07 15.91
−1.25 17.35 −1.25 17.99
O3 −1.28 15.86 H5A 0.69 1.56
−1.23 17.74 0.67 2.48
O4 −1.34 16.90 H5B 0.65 1.56
−1.16 20.05 0.63 2.85
C1 1.87 4.90 Totalw5 0.27 19.03
1.67 5.29 0.05 23.32
C2 −0.22 11.49 O6 −1.00 16.89
−0.07 12.58 −1.21 18.56
C3 −0.43 12.38 H6A 0.60 1.89
−0.04 12.18 0.63 2.92
C4 1.85 5.40 H6B 0.62 1.75
1.70 5.31 0.64 2.86
H2 0.03 7.47 Totalw6 0.22 20.53
0.05 6.85 0.06 24.34
H3 0.08 6.73 Unit cell 0.01 316.99
0.09 6.76 0.00 350.79
†Although Multiwfn calculates the topological properties ignoring symmetry (for each pair of atoms, two values are calculated), only one value is shown for each pair of atoms in the HAR1 line because the values are numerically identical after rounding.

Both models lead to charges with chemical sense since they lead to O atoms (more electronegative) with more negative charges and C atoms (more electropositive, and, in addition, bonded to oxygens) with a positive charge.

MM1 and HAR1 models differ significantly in the charge of the iron atom, with the former being closer to the chemically expected +2. The MM1 model also gives a bigger charge for H3A. There is also a considerable difference between the values from the two models for the sum of the charges of the hydrogen maleate ligand, although both derive values close to −1. Additionally, the MM1 model gives a bigger charge and smaller volume for H3A, consistent with its strong interaction with both oxygens in the short hydrogen bond. The MM-derived methods use the Lagrangian parameter to evaluate the integration, with 〈|L([{{\Omega}}])|〉 = 6.4 × 10−4 a.u.

HAR1 volumes differ substantially from those of MM1 and from the total unit cell volume (experimental value of 318.456 (5) Å3. This difference is due to the molecular wavefunction being calculated in a vacuum environment, which does not account for the crystal packing.

3.2. On the importance of good data collection

3.2.1. MM1 versus MM1_cutoff

The importance of high-resolution measurements in charge density studies is well known. The data collection up to high angles is necessary because the core electrons scatter at larger values, for which the atomic scattering factors decrease significantly (Woolfson, 1997[Woolfson, M. M. (1997). An Introduction to X-ray Crystallography, 2nd ed. Cambridge, New York: Cambridge University Press.]), and to adequately model the charge density, accounting for subtle effects such as deviations from sphericity in the electron distribution. The main experiment in this work (Exp_slow) was carried out up to a resolution of d = 0.36 Å, and, thus, accounts for a deep electron distribution in the atoms of the complex, especially in the iron region. A refinement similar to the MM1 but using only the reflections that fall at resolution cutoff at d = 0.45 Å was conducted to assess the impact of resolution on refinement quality.

Fig. 6[link] exhibits deformation and residual maps for MM1_cutoff. It is visible that the electron density in this model is more spread in the bond regions and is much less defined than in the higher-resolution model. There are, naturally fewer residuals compared to MM1, due to the exclusion of high angle scattering data, with the main ones remaining around the metal region.

[Figure 6]
Figure 6
Deformation and residual maps for MM1_cutoff: (a) deformation map in the hydrogen maleate plane, (b) residual map in the hydrogen maleate plane, (c) deformation map in Fe1–O5–O6 plane and (d) residual map in the Fe1–O5–O6. Contours levels at 0.1 e Å3, with positive contours in blue and negative contours in red.

Iron atomic charge and volume were calculated through QTAIM for this model, yielding a value of 1.57 e and volume of 9.24 Å3 (Lagrangian of 9.76 × 10−5). This charge is lower than the value obtained from the full-resolution MM1 model (2.23 e). This difference highlights the impact of the resolution on the atomic charges, especially for the Fe cation. Among all atoms of the structure, Fe is the main contributor to scattering in high resolution. The number of core electrons in Fe is much higher than the number of any other atom in the structure.

3.2.2. HAR1 versus HAR_cutoff

The HAR1_cutoff refinements were conducted under nearly identical conditions to HAR1. Analogously to MM1_cutoff, there are, naturally fewer residuals (Fig. 7[link]) compared to HAR1, due to the exclusion of high-angle scattering data. The properties such as distances and bond angles of this refinement are extremely similar to those obtained in HAR1 and will not be detailed here. Similar results performing Hirshfeld atom refinement at different resolutions were also found by Pinto et al. (2023[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281-295.]) for the nickel analog complex.

[Figure 7]
Figure 7
Deformation and residual maps for HAR1_cutoff: (a) deformation map in the hydrogen maleate plane, (b) residual map in the hydrogen maleate plane, (c) deformation map in Fe1–O5–O6 plane and (d) residual map in the Fe1–O5–O6 plane. Contour level at 0.1 e Å3, with positive contours in blue and negative contours in red.
3.2.3. MM1 versus MM2

The statistical parameters in Table S4 provide a view of the data quality across resolution ranges for the Exp_slow and Exp_fast., the data used for MM1 and MM2, respectively. The average redundancy decreases as resolution increases since higher-resolution data are more challenging to collect. The data collection maintains nearly 100% completeness throughout both experiments, with a slight decrease in the two final ranges. In both cases, there is a drop in the mean F2/σ(F2) across the resolution ranges since reflection intensities become weaker and more difficult to distinguish from the noise at higher resolutions. However, for the Exp_slow data collection, this drop is less pronounced than for Exp_fast. Consistently, the Rint values naturally increase within the ranges, reflecting the challenge of accurately measuring and merging high-resolution data, with better performance for Exp_slow, presenting the smallest increase, reflecting in the better subsequent statistical parameter values and interpretation of electron density distributions.

Table 9[link] presents a comparative view of the iron orbital population for three multipolar models explored in this work. Model MM1 shows somehow similar occupations for the three t2g orbitals (dxz, dxy, and dyz) and for the two eg orbitals (dz2 and dx2y2) in accordance with the spherical appearance of the electron distribution around the iron seen in Fig. 3[link].

Table 9
Iron orbital populations (e, %) from the MM1, MM1_cutoff, and MM2 models

  MM1 MM1_cutoff MM2
Orbital e % e % e %
dxz 1.39 23.5 1.54 24.3 1.69 24.4
dxy 1.31 22.1 1.44 22.7 1.32 19.4
dyz 1.19 20.1 1.26 19.9 1.38 20.2
dx2y2 1.12 18.8 1.13 17.9 0.91 13.5
dz2 0.93 15.6 0.96 15.2 1.51 22.2
Total 5.94   6.33   6.83  

Regarding MM2 refinement, orbital populations show significant variations relative to MM1, as can also be inferred by their respective deformation maps in the Fe1–O5–O6 plane [Fig. 8[link](c)], which shows electron accumulation between the ligands in the case of MM2 and does not show in MM1. Notably, for the MM2 model, the dz2 orbital has the second highest occupancy, but for the Exp_slow-derived models, this orbital has the lowest occupancy of all.

[Figure 8]
Figure 8
Deformation and residual maps for MM2 with contour level at 0.1 e Å−3: (a) deformation map in the hydrogen maleate plane, (b) residual map in the maleate plane, (c) deformation map in Fe1–O5–O6 plane and (d) residual map in the Fe1–O5–O6 Contours levels at 0.1 e Å3, with positive contours in blue and negative contours in red.

Interestingly, the total d population obtained from model MM1 is equal to 5.94, basically leading to the expected FeII ion occupation of d orbitals, in good agreement with the charge obtained using the QTAIM integration (Table 8[link]).

Table S5 presents atomic charges and volumes calculated by QTAIM for the MM2 model. The mean Lagrangian is 〈|L(Ω)|〉 = 5.76 × 10−4 a.u. and the volumes are very close to those obtained by the other multipolar-derived refinements. However, this model differs significantly from the others regarding the charge of the Fe atom, presenting the smaller one shown in this work, which is similar to what Pinto and co-workers found (0.809 e) for the Ni atom in an analog complex.

The total charge of the hydrogen maleate ligand also shows significant variation compared to the other models presented, with a value approximately half of that observed in MM1, for instance.

These data show that faster acquisition with poorer statistics can yield results that differ significantly from those obtained with better measurements, potentially leading to less accurate chemical results.

4. Conclusion

Tetra­aqua­bis­(hydrogenmaleato)iron(II) was studied in a high-resolution single-crystal X-ray diffraction experiment and Hansen–Coppens MM and HAR were employed. Both models represented an improvement in the figures of merit and chemical description of the compound in comparison to IAM.

Topological analysis based on the QTAIM was performed for both models, which allowed a quantitative description of the chemical bonds of the compound. The covalent and electrostatic characters of the bonds were elucidated. The analysis allowed the conclusion that the compound presents interactions with distinct characters. The short intramolecular hydrogen bond has a special character since hydrogen interacts covalently with the two O atoms. Atomic charges were calculated for the models, and all were chemically consistent.

The multipole model yields highly satisfactory results for all the properties analyzed. However, its performance is significantly influenced by variations in data collection strategies and the resolution cutoff. In contrast, HAR results are less influenced by data quality, yielding similar bond distances and other properties under varying conditions. However, the ADPs derived for hydrogen atoms using this model, particularly for the one involved in the short hydrogen bond, exhibit notable issues. The multipole model, when used in conjunction with SHADE2.1, resulted in very accurate anisotropic displacement parameters, as expected, due to the methodology used.

Overall, these models and the topological analysis provided deeper insights into the electron density distribution of the compound and the nature of the hydrogen bonds within the compound.

Supporting information


Computing details top

bis-(hydrogenmaleate)tetraaquairon(II) (I) top
Crystal data top
C8H14FeO12 Z = 1
Mr = 358.04 F(000) = 184.538
Triclinic, P1 Dx = 1.867 Mg m3
a = 5.2066 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.3264 (1) Å Cell parameters from 13896 reflections
c = 9.2475 (1) Å θ = 2.4–79.1°
α = 108.907 (1)° µ = 1.25 mm1
β = 105.498 (1)° T = 100 K
γ = 92.310 (1)° Rectangular, yellow
V = 318.46 (1) Å3
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
14021 independent reflections
Radiation source: micro-focus sealed X-ray tube Rint = 0.036
ω scans θmax = 79.6°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.84a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1314
Tmin = 0.921, Tmax = 1.000 k = 2020
174906 measured reflections l = 2525
Refinement top
Refinement on F2 3 restraints
Least-squares matrix: full w2 = 1/[s2(Fo2)]
R[F2 > 2σ(F2)] = 0.016 (Δ/σ)max = 0.033
wR(F2) = 0.045 Δρmax = 0.60 e Å3
S = 1.41 Δρmin = 0.29 e Å3
13896 reflections Extinction correction: Becker-Coppens type 1 Lorentzian isotropic, Becker, P.J. & Coppens, P. (1974) Acta Cryst., A30, 129-153.
346 parameters Extinction coefficient: 0.042 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
Fe1 0.5 0.5 1 0.009 0.5
O6 0.82414 (3) 0.362243 (18) 1.098620 (16) 0.011
O4 0.70328 (5) 0.97929 (3) 1.876372 (18) 0.015
O5 0.74721 (4) 0.76485 (2) 1.075563 (18) 0.013
O1 0.35166 (3) 0.56038 (2) 1.205377 (15) 0.012
O2 0.69805 (4) 0.77362 (4) 1.38289 (2) 0.016
O3 0.83852 (4) 0.96298 (4) 1.66586 (2) 0.016
C4 0.66815 (3) 0.91290 (2) 1.730655 (16) 0.011
C1 0.47135 (3) 0.67210 (2) 1.345594 (15) 0.01
C2 0.33282 (3) 0.67858 (2) 1.469159 (17) 0.012
C3 0.41667 (3) 0.77529 (2) 1.628218 (17) 0.012
H2 0.144 (2) 0.5867 (17) 1.4197 (13) 0.028
H3 0.284 (2) 0.7604 (18) 1.6971 (13) 0.027
H6A 0.827 (2) 0.2395 (16) 1.0290 (13) 0.024
H5B 0.720 (2) 0.8478 (16) 1.0169 (14) 0.026
H6B 0.999 (2) 0.4255 (17) 1.1282 (13) 0.025
H5A 0.848 (3) 0.8420 (18) 1.1805 (14) 0.026
H3A 0.781 (3) 0.880 (2) 1.541 (2) 0.024
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Fe1 0.007955 (11) 0.009327 (11) 0.008109 (11) 0.000040 (7) 0.002865 (7) 0.002483 (7)
O6 0.00994 (3) 0.01206 (3) 0.01179 (3) 0.00124 (2) 0.00328 (2) 0.00329 (3)
O4 0.02062 (6) 0.01306 (4) 0.00817 (3) 0.00179 (4) 0.00369 (4) 0.00181 (3)
O5 0.01330 (4) 0.01175 (4) 0.01044 (4) 0.00259 (3) 0.00192 (3) 0.00296 (3)
O1 0.01078 (3) 0.01382 (4) 0.00818 (3) 0.00093 (3) 0.00318 (2) 0.00113 (3)
O2 0.01237 (5) 0.02138 (6) 0.00975 (4) 0.00557 (5) 0.00420 (3) 0.00085 (4)
O3 0.01397 (5) 0.01993 (6) 0.00943 (4) 0.00584 (5) 0.00290 (4) 0.00103 (4)
C4 0.01251 (4) 0.01061 (3) 0.00817 (3) 0.00031 (3) 0.00274 (3) 0.00230 (3)
C1 0.00917 (3) 0.01163 (4) 0.00811 (3) 0.00007 (3) 0.00284 (2) 0.00203 (3)
C2 0.01034 (4) 0.01439 (4) 0.00919 (4) 0.00141 (3) 0.00381 (3) 0.00166 (3)
C3 0.01196 (4) 0.01364 (4) 0.00915 (4) 0.00075 (3) 0.00437 (3) 0.00192 (3)
H2 0.020298 0.033424 0.022397 0.008366 0.006304 0.002069
H3 0.027006 0.033473 0.020941 0.002656 0.012896 0.0055
H6A 0.029013 0.021681 0.02135 0.006564 0.009674 0.005206
H5B 0.037611 0.020078 0.022454 0.000779 0.010162 0.009136
H6B 0.01592 0.032617 0.025558 0.00006 0.005315 0.008694
H5A 0.02992 0.024714 0.016453 0.005553 0.00401 0.000709
H3A 0.024986 0.026435 0.014619 0.004308 0.005035 0.001979
Geometric parameters (Å, º) top
Fe1—O6 2.1471 (1) O1—O2 2.2174 (2)
Fe1—O6i 2.1471 (1) O1—C1 1.2565 (2)
Fe1—O5 2.0855 (1) O1—C2 2.3400 (2)
Fe1—O5i 2.0855 (1) O2—C1 1.2692 (2)
Fe1—O1 2.1601 (1) O2—H3A 1.349 (18)
Fe1—O1i 2.1601 (1) O3—C4 1.2965 (2)
O6—H6A 0.924 (11) O3—H3A 1.070 (18)
O6—H6B 0.932 (13) C4—C3 1.4967 (2)
O4—O3 2.2110 (3) C1—C2 1.4954 (2)
O4—C4 1.2338 (2) C2—C3 1.3463 (2)
O4—C3 2.3440 (2) C2—H2 1.067 (10)
O5—H5B 0.929 (13) C3—H3 1.081 (11)
O5—H5A 0.941 (12)
O6—Fe1—O6i 180 O2—C1—C2 120.991 (13)
O6—Fe1—O5 92.588 (6) O1—C2—C1 28.796 (7)
O6—Fe1—O5i 87.412 (6) O1—C2—C3 158.316 (13)
O6—Fe1—O1 93.179 (6) C1—C2—C3 129.642 (14)
O6—Fe1—O1i 86.821 (6) O4—C3—C4 27.703 (8)
O6i—Fe1—O5 87.412 (6) O4—C3—C2 157.881 (13)
O6i—Fe1—O5i 92.588 (6) C4—C3—C2 130.216 (14)
O6i—Fe1—O1 86.821 (6) O3—O4—H6Aii 107.0 (3)
O6i—Fe1—O1i 93.179 (6) O3—O4—H5Biii 139.3 (4)
O5—Fe1—O5i 180 C3—O4—H6Aii 148.2 (3)
O5—Fe1—O1 97.326 (6) C3—O4—H5Biii 106.7 (3)
O5—Fe1—O1i 82.674 (6) H6Aii—O4—H5Biii 98.9 (5)
O5i—Fe1—O1 82.674 (6) Fe1—O1—H6Biv 106.0 (3)
O5i—Fe1—O1i 97.326 (6) Fe1i—O1—H6Biv 106.0 (3)
O1—Fe1—O1i 180 O2—O1—H6Biv 155.5 (4)
H5A—O5—H5B 106.4 (10) C2—O1—H6Biv 92.6 (3)
H6A—O6—H6B 104.4 (10) O1—O2—H5A 92.9 (3)
O3—O4—C3 64.216 (7) O4—O3—H5Av 86.4 (4)
C4—O4—C3 34.329 (10) H3—C4—H3A 117.1 (5)
Fe1—O1—O2 97.908 (7) H2—C1—H3A 112.5 (5)
O2—O1—C2 63.744 (7) O1—C2—H3 174.1 (3)
C1—O1—C2 34.979 (8) O4—C3—H2 175.0 (3)
O1—O2—C1 28.452 (8) C1—H2—C3 75.2 (3)
O4—O3—C4 28.314 (9) C1—H2—H3 102.5 (5)
O4—C4—O3 121.791 (17) C3—H2—H3 27.3 (3)
O4—C4—C3 117.969 (17) C4—H3—C2 75.1 (4)
O3—C4—C3 120.218 (13) C4—H3—H2 102.1 (5)
O1—C1—O2 122.782 (15) C2—H3—H2 27.0 (3)
O1—C1—C2 116.225 (13) O2—H5A—O3v 94.9 (5)
O1—C1—H2 88.845 (10) C4—H3A—C1 105.7 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x1, y, z; (v) x+2, y+2, z+3.
bis-(hydrogenmaleate)tetraaquairon(II) (MM1cutoff) top
Crystal data top
C8H14FeO12 Z = 1
Mr = 358.04 F(000) = 184.538
Triclinic, P1 Dx = 1.867 Mg m3
a = 5.2066 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.3264 (1) Å Cell parameters from 13896 reflections
c = 9.2475 (1) Å θ = 2.4–79.1°
α = 108.907 (1)° µ = 1.25 mm1
β = 105.498 (1)° T = 100 K
γ = 92.310 (1)° Rectangular, yellow
V = 318.46 (1) Å3
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
14021 independent reflections
Radiation source: micro-focus sealed X-ray tube Rint = 0.036
ω scans θmax = 79.6°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.84a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1314
Tmin = 0.921, Tmax = 1.000 k = 2020
174906 measured reflections l = 2525
Refinement top
Refinement on F2 7330 reflections
Least-squares matrix: full 366 parameters
R[F2 > 2σ(F2)] = 0.01 3 restraints
wR(F2) = 0.032 w2 = 1/[s2(Fo2)]
S = 1.14 (Δ/σ)max = 0.001
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
Fe1 0.5 0.5 1 0.008 0.5
O6 0.82412 (3) 0.362285 (19) 1.098632 (17) 0.011
O4 0.70322 (5) 0.97921 (3) 1.87637 (2) 0.014
O5 0.74712 (4) 0.76484 (3) 1.07559 (2) 0.012
O1 0.35169 (3) 0.56036 (2) 1.205382 (17) 0.011
O2 0.69809 (4) 0.77361 (4) 1.38289 (2) 0.015
O3 0.83853 (5) 0.96288 (4) 1.66584 (2) 0.015
C4 0.66813 (3) 0.91287 (2) 1.730633 (16) 0.01
C1 0.47138 (3) 0.67210 (2) 1.345600 (16) 0.009
C2 0.33281 (3) 0.67858 (2) 1.469144 (17) 0.011
C3 0.41665 (3) 0.77530 (2) 1.628190 (17) 0.011
H2 0.143 (5) 0.588 (3) 1.4204 (17) 0.027
H3 0.286 (4) 0.7593 (18) 1.698 (2) 0.027
H6A 0.827 (2) 0.243 (4) 1.031 (2) 0.023
H5B 0.723 (2) 0.844 (3) 1.020 (2) 0.026
H6B 0.987 (5) 0.420 (2) 1.1262 (14) 0.025
H5A 0.836 (4) 0.833 (3) 1.170 (3) 0.025
H3A 0.778 (4) 0.880 (3) 1.540 (3) 0.023
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Fe1 0.00723 (2) 0.00851 (2) 0.00739 (2) 0.000060 (11) 0.002633 (12) 0.002290 (12)
O6 0.00917 (4) 0.01123 (4) 0.01100 (4) 0.00110 (3) 0.00305 (3) 0.00301 (3)
O4 0.01986 (8) 0.01225 (6) 0.00733 (5) 0.00192 (5) 0.00343 (5) 0.00154 (4)
O5 0.01256 (6) 0.01095 (5) 0.00967 (5) 0.00256 (4) 0.00170 (4) 0.00281 (4)
O1 0.01001 (5) 0.01290 (5) 0.00736 (4) 0.00107 (4) 0.00289 (3) 0.00081 (4)
O2 0.01163 (6) 0.02044 (8) 0.00898 (6) 0.00570 (6) 0.00393 (5) 0.00060 (5)
O3 0.01310 (7) 0.01917 (7) 0.00868 (6) 0.00593 (6) 0.00264 (5) 0.00081 (5)
C4 0.01170 (5) 0.00975 (4) 0.00727 (4) 0.00017 (3) 0.00249 (3) 0.00200 (3)
C1 0.00832 (4) 0.01073 (5) 0.00724 (4) 0.00022 (3) 0.00253 (3) 0.00173 (3)
C2 0.00949 (5) 0.01341 (5) 0.00833 (5) 0.00149 (3) 0.00355 (3) 0.00136 (3)
C3 0.01113 (5) 0.01267 (5) 0.00828 (5) 0.00087 (4) 0.00412 (3) 0.00161 (3)
H2 0.019492 0.032939 0.022056 0.008562 0.006215 0.001997
H3 0.026884 0.032858 0.020519 0.002843 0.013018 0.005513
H6A 0.027923 0.020473 0.020987 0.006031 0.009114 0.004357
H5B 0.037832 0.019352 0.022143 0.000725 0.010658 0.008892
H6B 0.014916 0.031312 0.02523 0.000331 0.004952 0.007666
H5A 0.029213 0.023846 0.015957 0.005465 0.004195 0.000354
H3A 0.023772 0.025534 0.013948 0.004079 0.004735 0.001736
Geometric parameters (Å, º) top
Fe1—O6 2.1468 (1) O1—C1 1.2566 (2)
Fe1—O6i 2.1468 (1) O1—C2 2.3399 (2)
Fe1—O5 2.0852 (2) O2—C1 1.2692 (2)
Fe1—O5i 2.0852 (2) O2—H3A 1.34 (3)
Fe1—O1 2.1601 (1) O3—C4 1.2963 (3)
Fe1—O1i 2.1601 (1) O3—H3A 1.07 (3)
O6—H6A 0.90 (3) C4—C3 1.4966 (2)
O6—H6B 0.86 (3) C1—C2 1.4954 (2)
O4—O3 2.2113 (3) C2—C3 1.3463 (2)
O4—C4 1.2340 (2) C2—H2 1.07 (3)
O4—C3 2.3438 (2) C3—H3 1.08 (3)
O5—H5B 0.88 (3) H2—H3 2.35 (2)
O5—H5A 0.84 (3) H6A—H6B 1.39 (3)
O1—O2 2.2175 (2) H5B—H5A 1.38 (3)
O6—Fe1—O6i 180.0000 (2) O3—C4—H3 148.0 (5)
O6—Fe1—O5 92.589 (7) O3—C4—H3A 31.4 (7)
O6—Fe1—O5i 87.411 (7) C3—C4—H3 28.0 (5)
O6—Fe1—O1 93.171 (6) C3—C4—H3A 89.0 (7)
O6—Fe1—O1i 86.829 (6) H3—C4—H3A 116.9 (9)
O6i—Fe1—O5 87.411 (7) O1—C1—O2 122.783 (16)
O6i—Fe1—O5i 92.589 (7) O1—C1—C2 116.214 (14)
O6i—Fe1—O1 86.829 (6) O1—C1—H2 89.0 (5)
O6i—Fe1—O1i 93.171 (6) O1—C1—H3A 158.8 (7)
O5—Fe1—O5i 180 O2—C1—C2 121.001 (14)
O5—Fe1—O1 97.314 (7) O2—C1—H2 148.3 (5)
O5—Fe1—O1i 82.686 (7) O2—C1—H3A 36.1 (7)
O5i—Fe1—O1 82.686 (7) C2—C1—H2 27.3 (5)
O5i—Fe1—O1i 97.314 (7) C2—C1—H3A 84.9 (7)
O1—Fe1—O1i 180 H2—C1—H3A 112.2 (8)
Fe1—O6—H6A 112.1 (6) O1—C2—C1 28.802 (7)
Fe1—O6—H6B 118.1 (7) O1—C2—C3 158.311 (13)
Fe1i—O6—H6A 112.1 (6) O1—C2—H2 84.0 (6)
Fe1i—O6—H6B 118.1 (7) O1—C2—H3 174.1 (5)
H6A—O6—H6B 104.3 (10) C1—C2—C3 129.632 (14)
O3—O4—C4 29.877 (11) C1—C2—H2 112.8 (6)
O3—O4—C3 64.204 (8) C1—C2—H3 156.8 (5)
O3—O4—H6Aii 107.2 (3) C3—C2—H2 117.5 (6)
O3—O4—H5Biii 138.9 (4) C3—C2—H3 27.2 (5)
C4—O4—C3 34.334 (10) H2—C2—H3 90.4 (8)
C4—O4—H6Aii 131.2 (3) O4—C3—C4 27.715 (8)
C4—O4—H5Biii 128.7 (3) O4—C3—C2 157.899 (13)
C3—O4—H6Aii 148.0 (3) O4—C3—H2 174.8 (5)
C3—O4—H5Biii 106.8 (3) O4—C3—H3 83.9 (6)
H6Aii—O4—H5Biii 98.9 (4) C4—C3—C2 130.224 (14)
Fe1—O5—H5B 121.9 (6) C4—C3—H2 157.4 (5)
Fe1—O5—H5A 127.5 (7) C4—C3—H3 111.5 (6)
Fe1i—O5—H5B 121.9 (6) C2—C3—H2 27.2 (5)
Fe1i—O5—H5A 127.5 (7) C2—C3—H3 118.2 (6)
H5B—O5—H5A 106.6 (9) H2—C3—H3 91.0 (8)
Fe1—O1—O2 97.906 (8) C1—H2—C2 39.9 (6)
Fe1—O1—C1 126.632 (12) C1—H2—C3 75.2 (9)
Fe1—O1—C2 161.414 (8) C1—H2—H3 102.6 (12)
Fe1—O1—H6Biv 106.2 (3) C2—H2—C3 35.2 (5)
Fe1i—O1—O2 97.906 (8) C2—H2—H3 62.6 (10)
Fe1i—O1—C1 126.632 (12) C3—H2—H3 27.4 (7)
Fe1i—O1—C2 161.414 (8) C4—H3—C2 75.1 (9)
Fe1i—O1—H6Biv 106.2 (3) C4—H3—C3 40.5 (7)
O2—O1—C1 28.766 (9) C4—H3—H2 102.1 (12)
O2—O1—C2 63.748 (7) C2—H3—C3 34.6 (6)
O2—O1—H6Biv 155.4 (3) C2—H3—H2 27.0 (6)
C1—O1—C2 34.984 (9) C3—H3—H2 61.6 (9)
C1—O1—H6Biv 127.1 (3) O6—H6A—H6A 36.9 (11)
C2—O1—H6Biv 92.4 (3) O4vi—H6A—H6A 162.0 (13)
O1—O2—C1 28.452 (9) O4vii—H5B—O5 169.0 (10)
O1—O2—H3A 138.6 (10) O4vii—H5B—H5A 149.0 (12)
C1—O2—H3A 110.2 (10) O5—H5B—H5A 35.7 (11)
O4—O3—C4 28.307 (9) O6—H6A—H6A 38.7 (11)
O4—O3—H5Av 85.2 (4) O1viii—H6A—H6A 144.6 (12)
O4—O3—H3A 137.9 (12) O5—H5A—O3v 151.5 (11)
C4—O3—H5Av 113.5 (4) O5—H5A—H5B 37.7 (11)
C4—O3—H3A 109.7 (12) O3v—H5A—H5B 120.4 (10)
H5Av—O3—H3A 136.7 (13) O2—H3A—O3 179 (2)
O4—C4—O3 121.816 (18) O2—H3A—C4 139.7 (15)
O4—C4—C3 117.951 (17) O2—H3A—C1 33.7 (6)
O4—C4—H3 90.0 (5) O3—H3A—C4 39.0 (9)
O4—C4—H3A 153.0 (7) O3—H3A—C1 145.0 (18)
O3—C4—C3 120.212 (14) C4—H3A—C1 106.1 (10)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x1, y, z; (v) x+2, y+2, z+3; (vi) x, y1, z1; (vii) x, y, z1; (viii) x+1, y, z.
(HAR) top
Crystal data top
C4H7Fe0.5O6 Z = 2
Mr = 179.02 F(000) = 184.538
Triclinic, P1 Dx = 1.867 Mg m3
a = 5.2066 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.3264 (1) Å Cell parameters from 13896 reflections
c = 9.2475 (1) Å θ = 2.4–79.1°
α = 108.907 (1)° µ = 1.25 mm1
β = 105.498 (1)° T = 100 K
γ = 92.310 (1)° Rectangular, yellow
V = 318.46 (1) Å3
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
13721 reflections with I 2u(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.036
ω scans θmax = 79.6°, θmin = 2.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.42.84a (Rigaku Oxford Diffraction, 2023) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 014
Tmin = 0.921, Tmax = 1.000 k = 2020
13896 measured reflections l = 2524
13896 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full 0 constraints
R[F2 > 2σ(F2)] = 0.017 All H-atom parameters refined
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0067P)2 + 0.0088P]
where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max = 0.0004
13896 reflections Δρmax = 0.50 e Å3
161 parameters Δρmin = 0.73 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Fe1 0.5 0.5 1.0 0.008171 (6)
O6 0.82416 (3) 0.36228 (2) 1.098618 (17) 0.011083 (14)
O4 0.70329 (4) 0.97923 (2) 1.876380 (16) 0.01426 (2)
O5 0.74708 (3) 0.76488 (2) 1.075624 (17) 0.012121 (16)
O1 0.35168 (3) 0.56036 (2) 1.205360 (15) 0.011217 (15)
O2 0.69811 (3) 0.77337 (3) 1.382921 (18) 0.01532 (2)
O3 0.83872 (4) 0.96253 (3) 1.665903 (18) 0.01545 (2)
C4 0.66816 (4) 0.91289 (2) 1.730671 (18) 0.010211 (17)
C1 0.47135 (3) 0.67209 (2) 1.345593 (18) 0.009430 (16)
C2 0.33281 (4) 0.67861 (3) 1.46918 (2) 0.011248 (19)
C3 0.41665 (4) 0.77527 (3) 1.62819 (2) 0.011343 (19)
H2 0.1391 (18) 0.5870 (14) 1.4175 (11) 0.027 (2)
H3 0.283 (2) 0.7569 (15) 1.6991 (11) 0.030 (2)
H6A 0.820 (2) 0.2344 (14) 1.0250 (12) 0.027 (2)
H5B 0.723 (2) 0.8502 (15) 1.0157 (13) 0.030 (2)
H6B 1.004 (2) 0.4304 (15) 1.1327 (13) 0.029 (2)
H5A 0.847 (3) 0.8391 (17) 1.1806 (12) 0.038 (3)
H3A 0.781 (2) 0.8758 (19) 1.533 (2) 0.031 (3)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Fe1 0.007586 (8) 0.008929 (9) 0.007798 (8) 0.000004 (5) 0.002729 (6) 0.002419 (6)
O6 0.00963 (3) 0.01180 (3) 0.01128 (3) 0.00126 (2) 0.00319 (3) 0.00327 (3)
O4 0.02007 (6) 0.01272 (4) 0.00785 (3) 0.00192 (4) 0.00362 (3) 0.00170 (3)
O5 0.01284 (4) 0.01141 (3) 0.01010 (3) 0.00262 (3) 0.00191 (3) 0.00282 (3)
O1 0.01033 (3) 0.01338 (4) 0.00790 (3) 0.00102 (3) 0.00308 (2) 0.00106 (2)
O2 0.01198 (4) 0.02111 (6) 0.00930 (3) 0.00546 (4) 0.00410 (3) 0.00076 (3)
O3 0.01344 (4) 0.01960 (5) 0.00910 (3) 0.00581 (4) 0.00274 (3) 0.00095 (3)
C4 0.01193 (4) 0.01002 (4) 0.00764 (3) 0.00026 (3) 0.00258 (3) 0.00212 (3)
C1 0.00864 (4) 0.01109 (4) 0.00759 (3) 0.00009 (3) 0.00274 (3) 0.00188 (3)
C2 0.00979 (4) 0.01377 (5) 0.00864 (4) 0.00140 (3) 0.00365 (3) 0.00149 (3)
C3 0.01138 (4) 0.01305 (5) 0.00859 (4) 0.00080 (4) 0.00420 (3) 0.00173 (3)
H2 0.022 (4) 0.027 (5) 0.029 (5) 0.007 (4) 0.009 (4) 0.004 (4)
H3 0.036 (6) 0.035 (6) 0.020 (4) 0.006 (4) 0.015 (4) 0.005 (4)
H6A 0.026 (5) 0.022 (4) 0.030 (5) 0.007 (4) 0.006 (4) 0.007 (4)
H5B 0.033 (6) 0.025 (5) 0.027 (5) 0.002 (4) 0.004 (4) 0.007 (4)
H6B 0.030 (5) 0.026 (5) 0.032 (6) 0.005 (4) 0.006 (4) 0.014 (4)
H5A 0.048 (7) 0.032 (6) 0.019 (4) 0.004 (5) 0.004 (4) 0.002 (4)
H3A 0.018 (6) 0.026 (7) 0.052 (11) 0.002 (5) 0.011 (6) 0.017 (7)
Geometric parameters (Å, º) top
Fe1—O6i 2.1470 (1) O1—C1 1.2566 (2)
Fe1—O6 2.1470 (1) O2—C1 1.2686 (2)
Fe1—O5i 2.0853 (1) O2—H3A 1.284 (16)
Fe1—O5 2.0853 (1) O3—C4 1.2958 (2)
Fe1—O1i 2.1600 (1) O3—H3A 1.136 (16)
Fe1—O1 2.1600 (1) C4—C3 1.4969 (2)
O6—H6A 0.959 (10) C1—C2 1.4955 (2)
O6—H6B 0.963 (10) C2—C3 1.3459 (2)
O4—C4 1.2337 (2) C2—H2 1.084 (8)
O5—H5B 0.953 (10) C3—H3 1.107 (9)
O5—H5A 0.935 (9)
O6i—Fe1—O6 180.0 H5A—O5—Fe1i 126.9 (8)
O5—Fe1—O6i 87.407 (6) H5B—O5—H5A 107.2 (10)
O5i—Fe1—O6 87.407 (6) C1—O1—Fe1 126.639 (11)
O5—Fe1—O6 92.593 (6) H3A—O2—C1 111.7 (5)
O5i—Fe1—O6i 92.593 (6) H3A—O3—C4 111.2 (6)
O5i—Fe1—O5 180.0 O3—C4—O4 121.819 (17)
O1i—Fe1—O6 86.821 (6) C3—C4—O4 117.973 (17)
O1i—Fe1—O6i 93.179 (6) C3—C4—O3 120.191 (14)
O1—Fe1—O6i 86.821 (6) O2—C1—O1 122.781 (15)
O1—Fe1—O6 93.179 (6) C2—C1—O1 116.238 (14)
O1—Fe1—O5i 82.696 (6) C2—C1—O2 120.978 (14)
O1i—Fe1—O5i 97.304 (6) C3—C2—C1 129.648 (15)
O1i—Fe1—O5 82.696 (6) H2—C2—C1 111.8 (5)
O1—Fe1—O5 97.304 (6) H2—C2—C3 118.5 (5)
O1i—Fe1—O1 180.0 C2—C3—C4 130.228 (16)
H6A—O6—Fe1i 110.5 (6) H3—C3—C4 111.8 (5)
H6B—O6—Fe1i 117.4 (6) H3—C3—C2 117.9 (5)
H6B—O6—H6A 108.1 (10) O3—H3A—O2 175.6 (11)
H5B—O5—Fe1i 122.3 (6)
Fe1—O1—C1—O2 3.33 (2) O1—C1—C2—C3 176.246 (18)
Fe1i—O1—C1—O2 3.33 (2) O2—C1—C2—C3 3.11 (2)
Fe1i—O1—C1—C2 176.008 (15) O3—C4—C3—C2 3.63 (2)
Fe1—O1—C1—C2 176.008 (15) C4—C3—C2—C1 2.95 (3)
O4—C4—C3—C2 177.839 (19)
Symmetry code: (i) x+1, y+1, z+2.
(HARcutoff) top
Crystal data top
C4H7Fe0.5O6 Z = 2
Mr = 179.02 F(000) = 184.538
Triclinic, P1 Dx = 1.867 Mg m3
a = 5.2066 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.3264 (1) Å Cell parameters from 13896 reflections
c = 9.2475 (1) Å θ = 2.4–79.1°
α = 108.907 (1)° µ = 1.25 mm1
β = 105.498 (1)° T = 100 K
γ = 92.310 (1)° Rectangular, yellow
V = 318.46 (1) Å3
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
θmax = 52.1°, θmin = 2.4°
7330 measured reflections h = 1111
7330 independent reflections k = 1615
7264 reflections with I 2u(I) l = 020
Rint = 0.036
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full 0 constraints
R[F2 > 2σ(F2)] = 0.011 All H-atom parameters refined
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0039P)2 + 0.0051P]
where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
7330 reflections Δρmax = 0.34 e Å3
160 parameters Δρmin = 0.41 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Fe1 0.5 0.5 1.0 0.007817 (8)
O6 0.82417 (3) 0.36226 (2) 1.098610 (17) 0.010794 (17)
O4 0.70326 (4) 0.97915 (2) 1.876359 (17) 0.01396 (2)
O5 0.74701 (3) 0.76491 (2) 1.075642 (17) 0.011844 (18)
O1 0.35173 (3) 0.56036 (2) 1.205379 (15) 0.010900 (17)
O2 0.69812 (3) 0.77332 (3) 1.382914 (18) 0.01499 (2)
O3 0.83868 (3) 0.96245 (3) 1.665889 (18) 0.01512 (2)
C4 0.66814 (4) 0.91289 (2) 1.730653 (19) 0.009900 (19)
C1 0.47136 (3) 0.67208 (2) 1.345602 (18) 0.009117 (18)
C2 0.33280 (4) 0.67862 (3) 1.46917 (2) 0.01092 (2)
C3 0.41662 (4) 0.77529 (3) 1.62818 (2) 0.01103 (2)
H2 0.1389 (16) 0.5869 (12) 1.4181 (10) 0.0281 (18)
H3 0.2842 (18) 0.7571 (13) 1.6990 (10) 0.031 (2)
H6A 0.8210 (19) 0.2348 (12) 1.0253 (11) 0.0265 (18)
H5B 0.7238 (19) 0.8504 (13) 1.0158 (11) 0.0288 (19)
H6B 1.0035 (18) 0.4295 (13) 1.1327 (11) 0.029 (2)
H5A 0.847 (2) 0.8404 (15) 1.1804 (10) 0.035 (2)
H3A 0.781 (2) 0.8781 (17) 1.5332 (17) 0.032 (3)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Fe1 0.007258 (11) 0.008548 (11) 0.007491 (11) 0.000024 (7) 0.002618 (7) 0.002368 (7)
O6 0.00942 (4) 0.01156 (4) 0.01097 (4) 0.00127 (3) 0.00317 (3) 0.00326 (3)
O4 0.01975 (6) 0.01244 (4) 0.00756 (3) 0.00198 (4) 0.00352 (4) 0.00161 (3)
O5 0.01254 (4) 0.01116 (4) 0.00985 (4) 0.00260 (3) 0.00181 (3) 0.00280 (3)
O1 0.01007 (4) 0.01302 (4) 0.00762 (3) 0.00103 (3) 0.00299 (3) 0.00100 (3)
O2 0.01171 (4) 0.02078 (6) 0.00893 (4) 0.00544 (4) 0.00398 (3) 0.00070 (4)
O3 0.01307 (5) 0.01930 (6) 0.00883 (4) 0.00581 (4) 0.00261 (3) 0.00091 (4)
C4 0.01168 (5) 0.00968 (4) 0.00730 (4) 0.00023 (4) 0.00249 (3) 0.00200 (3)
C1 0.00836 (4) 0.01076 (4) 0.00725 (4) 0.00014 (3) 0.00262 (3) 0.00178 (3)
C2 0.00950 (5) 0.01339 (5) 0.00834 (4) 0.00144 (4) 0.00358 (3) 0.00139 (4)
C3 0.01108 (5) 0.01273 (5) 0.00826 (4) 0.00090 (4) 0.00408 (4) 0.00162 (4)
H2 0.023 (4) 0.029 (4) 0.026 (4) 0.009 (3) 0.008 (3) 0.003 (3)
H3 0.035 (5) 0.037 (5) 0.021 (4) 0.005 (4) 0.017 (4) 0.006 (4)
H6A 0.026 (4) 0.020 (4) 0.032 (5) 0.008 (3) 0.006 (4) 0.008 (3)
H5B 0.027 (5) 0.026 (4) 0.027 (4) 0.001 (4) 0.002 (4) 0.007 (4)
H6B 0.030 (5) 0.024 (4) 0.033 (5) 0.004 (4) 0.007 (4) 0.011 (4)
H5A 0.041 (6) 0.032 (5) 0.019 (4) 0.003 (4) 0.005 (4) 0.001 (3)
H3A 0.018 (5) 0.027 (6) 0.057 (10) 0.001 (4) 0.013 (6) 0.022 (7)
Geometric parameters (Å, º) top
Fe1—O6i 2.1471 (1) O1—C1 1.2565 (2)
Fe1—O6 2.1471 (1) O2—C1 1.2684 (2)
Fe1—O5i 2.0853 (1) O2—H3A 1.291 (14)
Fe1—O5 2.0853 (1) O3—C4 1.2954 (2)
Fe1—O1i 2.1600 (1) O3—H3A 1.129 (15)
Fe1—O1 2.1600 (1) C4—C3 1.4968 (2)
O6—H6A 0.956 (8) C1—C2 1.4955 (2)
O6—H6B 0.959 (9) C2—C3 1.3459 (2)
O4—C4 1.2337 (2) C2—H2 1.086 (7)
O5—H5B 0.953 (9) C3—H3 1.101 (8)
O5—H5A 0.936 (8)
O6i—Fe1—O6 180.0 H5B—O5—Fe1i 122.5 (5)
O5—Fe1—O6i 87.397 (6) H5A—O5—Fe1i 127.4 (7)
O5i—Fe1—O6 87.397 (6) H5A—O5—H5B 106.4 (8)
O5—Fe1—O6 92.603 (6) C1—O1—Fe1 126.650 (12)
O5i—Fe1—O6i 92.603 (6) H3A—O2—C1 111.9 (5)
O5i—Fe1—O5 180.0 H3A—O3—C4 111.5 (5)
O1i—Fe1—O6 86.824 (6) O3—C4—O4 121.843 (17)
O1i—Fe1—O6i 93.176 (6) C3—C4—O4 117.955 (17)
O1—Fe1—O6i 86.824 (6) C3—C4—O3 120.186 (14)
O1—Fe1—O6 93.176 (6) O2—C1—O1 122.771 (16)
O1—Fe1—O5i 82.709 (6) C2—C1—O1 116.240 (15)
O1i—Fe1—O5i 97.291 (6) C2—C1—O2 120.986 (14)
O1i—Fe1—O5 82.709 (6) C3—C2—C1 129.646 (15)
O1—Fe1—O5 97.291 (6) H2—C2—C1 112.1 (4)
O1i—Fe1—O1 180.0 H2—C2—C3 118.2 (4)
H6A—O6—Fe1i 110.6 (5) C2—C3—C4 130.224 (16)
H6B—O6—Fe1i 117.8 (5) H3—C3—C4 111.7 (4)
H6B—O6—H6A 107.8 (8) H3—C3—C2 118.1 (4)
Fe1—O1—C1—O2 3.315 (19) O1—C1—C2—C3 176.250 (17)
Fe1i—O1—C1—O2 3.315 (19) O2—C1—C2—C3 3.10 (2)
Fe1i—O1—C1—C2 176.023 (14) O3—C4—C3—C2 3.63 (2)
Fe1—O1—C1—C2 176.023 (14) C4—C3—C2—C1 2.94 (3)
O4—C4—C3—C2 177.804 (19)
Symmetry code: (i) x+1, y+1, z+2.
bis-(hydrogenmaleate)tetraaquairon(II) (MM2) top
Crystal data top
C8H14FeO12 V = 318.38 (1) Å3
Mr = 358.04 Z = 1
Triclinic, P1 F(000) = 184.538
a = 5.20542 (4) Å Dx = 1.867 Mg m3
b = 7.32708 (5) Å Cell parameters from 115310 reflections
c = 9.24798 (6) Å θ = 2.5–78.7°
α = 108.8728 (6)° T = 100 K
β = 105.5716 (6)° Rectangular, yellow
γ = 92.2943 (6)°
Data collection top
Absorption correction: multi-scan
CrysAlisPro 1.171.42.49 (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k =
Tmin = 0.679, Tmax = 1.000 l =
h =
Refinement top
Refinement on F 345 parameters
Least-squares matrix: full 3 restraints
R[F2 > 2σ(F2)] = 0.019 w1 = 1/[s2(Fo)]
wR(F2) = 0.023 (Δ/σ)max < 0.001
S = 1.16 Δρmax = 0.56 e Å3
13286 reflections Δρmin = 0.77 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
Fe1 0.5 0.5 0 0.008 0.5
O6 0.17576 (3) 0.63779 (2) 0.098721 (19) 0.011
O5 0.74714 (4) 0.76482 (3) 0.07553 (2) 0.012
O1 0.35165 (4) 0.56038 (3) 0.205413 (19) 0.011
O3 0.83852 (5) 0.96301 (4) 0.66588 (2) 0.015
O2 0.69803 (4) 0.77366 (4) 0.38292 (2) 0.015
O4 0.70329 (5) 0.97938 (3) 0.87642 (2) 0.014
C4 0.66807 (4) 0.91297 (2) 0.730663 (19) 0.01
C1 0.47133 (3) 0.67212 (2) 0.345591 (18) 0.009
C2 0.33280 (4) 0.67857 (3) 0.46917 (2) 0.011
C3 0.41672 (4) 0.77541 (3) 0.62825 (2) 0.011
H2 0.140937 0.589458 0.419924 0.027
H3 0.274851 0.754466 0.707863 0.026
H3A 0.778717 0.881063 0.54354 0.024
H5B 0.718241 0.84991 0.016572 0.025
H5A 0.851385 0.839978 0.183627 0.026
H6A 0.174683 0.762115 0.026138 0.024
H6B 0.004823 0.570119 0.129648 0.025
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Fe1 0.007814 (14) 0.008870 (14) 0.007714 (13) 0.000155 (8) 0.002895 (8) 0.002295 (9)
O6 0.00952 (4) 0.01165 (4) 0.01125 (4) 0.00122 (3) 0.00331 (3) 0.00304 (3)
O5 0.01282 (5) 0.01122 (4) 0.00993 (4) 0.00244 (4) 0.00191 (3) 0.00279 (3)
O1 0.01039 (4) 0.01322 (5) 0.00772 (4) 0.00081 (4) 0.00319 (3) 0.00097 (4)
O3 0.01338 (6) 0.01918 (7) 0.00888 (4) 0.00544 (5) 0.00287 (4) 0.00094 (5)
O2 0.01177 (5) 0.02067 (8) 0.00915 (5) 0.00511 (5) 0.00415 (4) 0.00074 (5)
O4 0.01975 (7) 0.01251 (6) 0.00770 (4) 0.00156 (5) 0.00360 (4) 0.00171 (4)
C4 0.01186 (5) 0.01017 (4) 0.00776 (4) 0.00029 (3) 0.00281 (3) 0.00204 (3)
C1 0.00876 (4) 0.01108 (4) 0.00773 (4) 0.00002 (3) 0.00300 (3) 0.00179 (3)
C2 0.00987 (4) 0.01368 (5) 0.00868 (4) 0.00132 (4) 0.00384 (3) 0.00143 (4)
C3 0.01134 (5) 0.01309 (5) 0.00864 (4) 0.00074 (4) 0.00435 (3) 0.00167 (4)
H2 0.019037 0.034275 0.02234 0.007905 0.00597 0.003151
H3 0.0256 0.033496 0.020893 0.000855 0.013135 0.006145
H3A 0.024575 0.02701 0.014135 0.004758 0.004908 0.001827
H5B 0.031847 0.021798 0.02094 0.001813 0.006748 0.009235
H5A 0.026038 0.028955 0.01489 0.00659 0.001266 0.00221
H6A 0.028656 0.020111 0.020867 0.006773 0.009091 0.000447
H6B 0.015034 0.030896 0.024775 0.00058 0.005429 0.005645
Geometric parameters (Å, º) top
Fe1—H5B 2.7030 O5—O1i 2.8057 (2)
Fe1—H5Bi 2.7030 O5—O3iv 2.8546 (2)
Fe1—H5A 2.7687 O5—O2 2.9022 (3)
Fe1—H5Ai 2.7687 O5—O4v 2.7551 (3)
Fe1—H6A 2.6373 O1—C2 2.3405 (2)
Fe1—H6Ai 2.6373 O3—O2 2.4186 (3)
Fe1—H6B 2.7243 O3—C3 2.4228 (3)
Fe1—H6Bi 2.7243 O2—C2 2.4090 (2)
O6—O5 2.9231 (2) O4—C3 2.3432 (3)
O6—O1 2.9600 (2) C4—C2 2.5789 (2)
O6—O1ii 2.8140 (2) C1—C3 2.5735 (2)
O6—O4iii 2.8150 (3)
H5B—Fe1—H5Bi 180 O4—H3—H2 126.569 (5)
H5B—Fe1—H5A 32.6844 O4—H3—H2ix 159.716 (5)
H5B—Fe1—H5Ai 147.3156 O4—H3—H3Aviii 124.077 (6)
H5B—Fe1—H6A 62.4409 O4—H3—H5Aiii 71.127 (6)
H5B—Fe1—H6Ai 117.5591 O4—H3—H6Avii 88.272 (4)
H5B—Fe1—H6B 91.2672 O4—H3—H6Bvii 116.970 (4)
H5B—Fe1—H6Bi 88.7328 H2—H3—H2ix 64.1009
H5Bi—Fe1—H5A 147.3156 H2—H3—H3Aviii 68.0204
H5Bi—Fe1—H5Ai 32.6844 H2—H3—H5Aiii 115.2975
H5Bi—Fe1—H6A 117.5591 H2—H3—H6Avii 144.1806
H5Bi—Fe1—H6Ai 62.4409 H2—H3—H6Bvii 113.2346
H5Bi—Fe1—H6B 88.7328 H2ix—H3—H3Aviii 74.9129
H5Bi—Fe1—H6Bi 91.2672 H2ix—H3—H5Aiii 122.6474
H5A—Fe1—H5Ai 180 H2ix—H3—H6Avii 80.1860
H5A—Fe1—H6A 79.4655 H2ix—H3—H6Bvii 49.1402
H5A—Fe1—H6Ai 100.5345 H3Aviii—H3—H5Aiii 56.7603
H5A—Fe1—H6B 112.3464 H3Aviii—H3—H6Avii 101.2944
H5A—Fe1—H6Bi 67.6536 H3Aviii—H3—H6Bvii 93.4948
H5Ai—Fe1—H6A 100.5345 H5Aiii—H3—H6Avii 80.9411
H5Ai—Fe1—H6Ai 79.4655 H5Aiii—H3—H6Bvii 101.6871
H5Ai—Fe1—H6B 67.6536 H6Avii—H3—H6Bvii 31.2309
H5Ai—Fe1—H6Bi 112.3464 C2—H3A—C3 31.712 (6)
H6A—Fe1—H6Ai 180 C2—H3A—H3vi 119.364 (5)
H6A—Fe1—H6B 32.8970 C2—H3A—H5Aiv 138.972 (4)
H6A—Fe1—H6Bi 147.1030 C3—H3A—H3vi 107.066 (5)
H6Ai—Fe1—H6B 147.1030 C3—H3A—H5Aiv 107.342 (4)
H6Ai—Fe1—H6Bi 32.8970 H3vi—H3A—H5Aiv 61.6620
H6B—Fe1—H6Bi 180 Fe1—H5B—O6 44.742 (3)
O5—O6—O1 65.645 (6) Fe1—H5B—O1i 44.336 (3)
O5—O6—O1ii 161.546 (8) Fe1—H5B—O4iii 89.547 (4)
O5—O6—O4iii 65.255 (8) Fe1—H5B—O4iv 129.253 (5)
O5—O6—H2ii 136.872 (7) Fe1—H5B—C4v 117.600 (3)
O5—O6—H3v 84.842 (5) Fe1—H5B—H6A 57.6165
O5—O6—H5B 18.625 (3) Fe1—H5B—H6Avi 99.5347
O1—O6—O1ii 97.026 (6) Fe1—H5B—H6Ax 166.8724
O1—O6—O4iii 79.462 (7) Fe1—H5B—H6Bvi 71.9876
O1—O6—H2ii 134.376 (6) Fe1i—H5B—O6 44.742 (3)
O1—O6—H3v 150.459 (7) Fe1i—H5B—O1i 44.336 (3)
O1—O6—H5B 82.689 (5) Fe1i—H5B—O4iii 89.547 (4)
O1ii—O6—O4iii 119.846 (9) Fe1i—H5B—O4iv 129.253 (5)
O1ii—O6—H2ii 51.437 (4) Fe1i—H5B—C4v 117.600 (3)
O1ii—O6—H3v 112.118 (7) Fe1i—H5B—H6A 57.6165
O1ii—O6—H5B 178.758 (8) Fe1i—H5B—H6Avi 99.5347
O4iii—O6—H2ii 141.961 (8) Fe1i—H5B—H6Ax 166.8724
O4iii—O6—H3v 89.674 (6) Fe1i—H5B—H6Bvi 71.9876
O4iii—O6—H5B 58.918 (6) O6—H5B—O1i 64.100 (5)
H2ii—O6—H3v 67.555 (4) O6—H5B—O4iii 58.803 (5)
H2ii—O6—H5B 129.508 (6) O6—H5B—O4iv 173.122 (6)
H3v—O6—H5B 68.275 (4) O6—H5B—C4v 92.655 (5)
O6—O5—O1i 66.195 (6) O6—H5B—H6A 18.864 (3)
O6—O5—O3iv 149.712 (11) O6—H5B—H6Avi 134.254 (3)
O6—O5—O2 95.642 (7) O6—H5B—H6Ax 122.736 (3)
O6—O5—O4v 82.453 (8) O6—H5B—H6Bvi 101.376 (3)
O6—O5—H6A 18.685 (3) O1i—H5B—O4iii 122.829 (5)
O6—O5—H6Avi 131.296 (7) O1i—H5B—O4iv 109.397 (6)
O6—O5—H6Bvi 103.807 (6) O1i—H5B—C4v 79.966 (5)
O6—O5—H6Bi 109.591 (6) O1i—H5B—H6A 82.942 (3)
O1i—O5—O3iv 143.930 (10) O1i—H5B—H6Avi 70.162 (3)
O1i—O5—O2 127.633 (9) O1i—H5B—H6Ax 140.354 (3)
O1i—O5—O4v 85.139 (7) O1i—H5B—H6Bvi 37.286 (3)
O1i—O5—H6A 84.383 (6) O4iii—H5B—O4iv 127.509 (7)
O1i—O5—H6Avi 72.385 (6) O4iii—H5B—C4v 104.650 (6)
O1i—O5—H6Bvi 39.469 (4) O4iii—H5B—H6A 39.939 (4)
O1i—O5—H6Bi 66.877 (6) O4iii—H5B—H6Avi 166.538 (4)
O3iv—O5—O2 68.584 (7) O4iii—H5B—H6Ax 78.481 (4)
O3iv—O5—O4v 95.063 (8) O4iii—H5B—H6Bvi 159.853 (4)
O3iv—O5—H6A 131.180 (10) O4iv—H5B—C4v 88.196 (5)
O3iv—O5—H6Avi 74.010 (6) O4iv—H5B—H6A 167.235 (4)
O3iv—O5—H6Bvi 105.187 (8) O4iv—H5B—H6Avi 39.264 (5)
O3iv—O5—H6Bi 91.862 (8) O4iv—H5B—H6Ax 63.506 (5)
O2—O5—O4v 143.376 (11) O4iv—H5B—H6Bvi 72.116 (5)
O2—O5—H6A 87.644 (7) C4v—H5B—H6A 97.444 (4)
O2—O5—H6Avi 130.541 (8) C4v—H5B—H6Avi 80.014 (4)
O2—O5—H6Bvi 136.747 (10) C4v—H5B—H6Ax 61.431 (3)
O2—O5—H6Bi 75.518 (8) C4v—H5B—H6Bvi 78.075 (4)
O4v—O5—H6A 79.044 (8) H6A—H5B—H6Avi 153.0462
O4v—O5—H6Avi 69.358 (7) H6A—H5B—H6Ax 109.2594
O4v—O5—H6Bvi 78.141 (7) H6A—H5B—H6Bvi 120.1949
O4v—O5—H6Bi 139.621 (9) H6Avi—H5B—H6Ax 93.2074
H6A—O5—H6Avi 141.815 (6) H6Avi—H5B—H6Bvi 32.8790
H6A—O5—H6Bvi 120.350 (6) H6Ax—H5B—H6Bvi 118.9351
H6A—O5—H6Bi 123.677 (5) Fe1—H5A—O2 79.589 (5)
H6Avi—O5—H6Bvi 33.438 (2) Fe1—H5A—O4iv 130.547 (4)
H6Avi—O5—H6Bi 74.556 (5) Fe1—H5A—C4iv 152.892 (4)
H6Bvi—O5—H6Bi 61.677 (4) Fe1—H5A—H3iii 128.4197
O6—O1—O6ii 82.974 (6) Fe1—H5A—H3Aiv 158.5347
O6—O1—O5i 64.056 (6) Fe1—H5A—H6Avi 92.1802
O6—O1—C2 140.944 (11) Fe1i—H5A—O2 79.589 (5)
O6—O1—H2 132.442 (9) Fe1i—H5A—O4iv 130.547 (4)
O6—O1—H5Bi 82.437 (5) Fe1i—H5A—C4iv 152.892 (4)
O6—O1—H6A 18.334 (3) Fe1i—H5A—H3iii 128.4197
O6ii—O1—O5i 66.790 (6) Fe1i—H5A—H3Aiv 158.5347
O6ii—O1—C2 90.973 (8) Fe1i—H5A—H6Avi 92.1802
O6ii—O1—H2 65.555 (5) O2—H5A—O4iv 144.487 (6)
O6ii—O1—H5Bi 65.329 (5) O2—H5A—C4iv 120.229 (6)
O6ii—O1—H6A 88.287 (6) O2—H5A—H3iii 90.500 (8)
O5i—O1—C2 146.342 (10) O2—H5A—H3Aiv 81.506 (5)
O5i—O1—H2 125.075 (7) O2—H5A—H6Avi 150.459 (8)
O5i—O1—H5Bi 18.447 (4) O4iv—H5A—C4iv 25.004 (5)
O5i—O1—H6A 82.289 (6) O4iv—H5A—H3iii 83.366 (5)
C2—O1—H2 25.500 (4) O4iv—H5A—H3Aiv 64.795 (4)
C2—O1—H5Bi 129.512 (9) O4iv—H5A—H6Avi 38.934 (4)
C2—O1—H6A 123.706 (10) C4iv—H5A—H3iii 73.237 (4)
H2—O1—H5Bi 112.193 (6) C4iv—H5A—H3Aiv 39.821 (3)
H2—O1—H6A 121.332 (8) C4iv—H5A—H6Avi 61.317 (4)
H5Bi—O1—H6A 100.592 (5) H3iii—H5A—H3Aiv 61.5778
O5iv—O3—O2 145.324 (10) H3iii—H5A—H6Avi 116.0921
O5iv—O3—C3 137.709 (10) H3Aiv—H5A—H6Avi 99.3591
O5iv—O3—H3vi 75.655 (7) Fe1—H6A—O5viii 119.767 (4)
O2—O3—C3 76.873 (8) Fe1—H6A—O5 44.239 (3)
O2—O3—H3vi 89.348 (12) Fe1—H6A—O1 45.060 (4)
C3—O3—H3vi 112.450 (12) Fe1—H6A—C4iii 108.547 (4)
O5—O2—O3 143.530 (11) Fe1—H6A—H3v 89.9963
O5—O2—C2 133.759 (10) Fe1—H6A—H5Bviii 139.9948
O5—O2—H2vi 88.360 (8) Fe1—H6A—H5B 59.9427
O5—O2—H5A 17.559 (3) Fe1—H6A—H5Bx 130.6822
O3—O2—C2 77.440 (8) Fe1—H6A—H5Aviii 115.8270
O3—O2—H2vi 90.676 (11) Fe1i—H6A—O5viii 119.767 (4)
O3—O2—H5A 126.494 (10) Fe1i—H6A—O5 44.239 (3)
C2—O2—H2vi 118.296 (12) Fe1i—H6A—O1 45.060 (4)
C2—O2—H5A 149.570 (11) Fe1i—H6A—C4iii 108.547 (4)
H2vi—O2—H5A 83.206 (7) Fe1i—H6A—H3v 89.9963
O6iii—O4—O5vii 101.369 (8) Fe1i—H6A—H5Bviii 139.9948
O6iii—O4—C3 144.309 (13) Fe1i—H6A—H5B 59.9427
O6iii—O4—H3 134.316 (12) Fe1i—H6A—H5Bx 130.6822
O6iii—O4—H5Biii 62.279 (6) Fe1i—H6A—H5Aviii 115.8270
O6iii—O4—H5Biv 65.303 (5) O5viii—H6A—O5 141.815 (6)
O6iii—O4—H5Aiv 74.495 (6) O5viii—H6A—O1 80.504 (5)
O5vii—O4—C3 105.234 (9) O5viii—H6A—C4iii 77.092 (5)
O5vii—O4—H3 86.078 (7) O5viii—H6A—H3v 136.669 (4)
O5vii—O4—H5Biii 90.089 (8) O5viii—H6A—H5Bviii 20.813 (4)
O5vii—O4—H5Biv 97.473 (8) O5viii—H6A—H5B 153.517 (3)
O5vii—O4—H5Aiv 125.488 (11) O5viii—H6A—H5Bx 103.901 (4)
C3—O4—H3 28.645 (5) O5viii—H6A—H5Aviii 19.832 (3)
C3—O4—H5Biii 94.104 (10) O5—H6A—O1 66.390 (5)
C3—O4—H5Biv 132.436 (10) O5—H6A—C4iii 78.543 (5)
C3—O4—H5Aiv 107.388 (8) O5—H6A—H3v 81.516 (3)
H3—O4—H5Biii 72.819 (7) O5—H6A—H5Bviii 154.306 (4)
H3—O4—H5Biv 159.130 (10) O5—H6A—H5B 19.169 (3)
H3—O4—H5Aiv 135.864 (7) O5—H6A—H5Bx 87.301 (3)
H5Biii—O4—H5Biv 127.509 (7) O5—H6A—H5Aviii 124.072 (3)
H5Biii—O4—H5Aiv 128.959 (8) O1—H6A—C4iii 79.404 (5)
H5Biv—O4—H5Aiv 30.355 (3) O1—H6A—H3v 135.056 (4)
C2—C4—H5Bvii 119.783 (7) O1—H6A—H5Bviii 100.931 (4)
C2—C4—H5Aiv 136.666 (7) O1—H6A—H5B 85.340 (3)
C2—C4—H6Aiii 155.038 (9) O1—H6A—H5Bx 134.085 (3)
H5Bvii—C4—H5Aiv 99.807 (5) O1—H6A—H5Aviii 71.467 (4)
H5Bvii—C4—H6Aiii 60.449 (3) C4iii—H6A—H3v 125.380 (3)
H5Aiv—C4—H6Aiii 60.036 (3) C4iii—H6A—H5Bviii 77.110 (4)
C3—C1—H6Bii 108.490 (7) C4iii—H6A—H5B 78.378 (4)
O1—C2—O2 55.619 (7) C4iii—H6A—H5Bx 58.119 (3)
O1—C2—C4 132.139 (9) C4iii—H6A—H5Aviii 58.647 (3)
O1—C2—H3A 87.998 (7) H3v—H6A—H5Bviii 119.7076
O2—C2—C4 76.564 (8) H3v—H6A—H5B 67.4662
O2—C2—H3A 32.379 (5) H3v—H6A—H5Bx 70.6880
C4—C2—H3A 44.225 (5) H3v—H6A—H5Aviii 152.0556
O3—C3—O4 55.273 (8) H5Bviii—H6A—H5B 153.0462
O3—C3—C1 76.205 (8) H5Bviii—H6A—H5Bx 86.7926
O3—C3—H3A 24.970 (5) H5Bviii—H6A—H5Aviii 32.6268
O4—C3—C1 131.312 (10) H5B—H6A—H5Bx 70.7406
O4—C3—H3A 80.152 (8) H5B—H6A—H5Aviii 133.6938
C1—C3—H3A 51.242 (5) H5Bx—H6A—H5Aviii 97.2445
O6ii—H2—O1 63.008 (5) Fe1—H6B—O5viii 116.224 (4)
O6ii—H2—O2viii 77.967 (5) Fe1—H6B—O5i 42.780 (3)
O6ii—H2—H2ix 96.634 (3) Fe1—H6B—C1ii 132.931 (4)
O6ii—H2—H3 161.453 (3) Fe1—H6B—H2ii 109.7071
O6ii—H2—H3ix 48.139 (3) Fe1—H6B—H3v 82.5220
O6ii—H2—H6Bii 18.808 (3) Fe1—H6B—H5Bviii 127.0576
O1—H2—O2viii 111.892 (6) Fe1—H6B—H6Bii 69.6730
O1—H2—H2ix 150.102 (5) Fe1i—H6B—O5viii 116.224 (4)
O1—H2—H3 135.517 (4) Fe1i—H6B—O5i 42.780 (3)
O1—H2—H3ix 105.156 (4) Fe1i—H6B—C1ii 132.931 (4)
O1—H2—H6Bii 44.204 (4) Fe1i—H6B—H2ii 109.7071
O2viii—H2—H2ix 82.267 (5) Fe1i—H6B—H3v 82.5220
O2viii—H2—H3 91.124 (4) Fe1i—H6B—H5Bviii 127.0576
O2viii—H2—H3ix 81.497 (5) Fe1i—H6B—H6Bii 69.6730
O2viii—H2—H6Bii 88.094 (4) O5viii—H6B—O5i 118.323 (4)
H2ix—H2—H3 66.7554 O5viii—H6B—C1ii 94.526 (5)
H2ix—H2—H3ix 49.1437 O5viii—H6B—H2ii 133.872 (4)
H2ix—H2—H6Bii 113.9761 O5viii—H6B—H3v 123.017 (3)
H3—H2—H3ix 115.8991 O5viii—H6B—H5Bviii 19.997 (4)
H3—H2—H6Bii 178.8327 O5viii—H6B—H6Bii 64.501 (4)
H3ix—H2—H6Bii 64.8390 O5i—H6B—C1ii 92.056 (5)
O6vii—H3—O3viii 97.171 (6) O5i—H6B—H2ii 92.467 (3)
O6vii—H3—O4 100.028 (5) O5i—H6B—H3v 111.069 (3)
O6vii—H3—H2 127.232 (3) O5i—H6B—H5Bviii 138.258 (3)
O6vii—H3—H2ix 64.306 (3) O5i—H6B—H6Bii 53.823 (3)
O6vii—H3—H3Aviii 107.940 (4) C1ii—H6B—H2ii 47.920 (3)
O6vii—H3—H5Aiii 101.052 (4) C1ii—H6B—H3v 110.729 (3)
O6vii—H3—H6Avii 20.884 (4) C1ii—H6B—H5Bviii 93.966 (4)
O6vii—H3—H6Bvii 17.479 (3) C1ii—H6B—H6Bii 96.267 (3)
O3viii—H3—O4 111.026 (8) H2ii—H6B—H3v 66.0208
O3viii—H3—H2 88.561 (4) H2ii—H6B—H5Bviii 121.3950
O3viii—H3—H2ix 84.793 (4) H2ii—H6B—H6Bii 132.8158
O3viii—H3—H3Aviii 20.598 (4) H3v—H6B—H5Bviii 105.1724
O3viii—H3—H5Aiii 40.038 (4) H3v—H6B—H6Bii 150.2567
O3viii—H3—H6Avii 85.418 (4) H5Bviii—H6B—H6Bii 84.4549
O3viii—H3—H6Bvii 86.652 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1; (v) x, y, z1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x1, y, z; (ix) x, y+1, z+1; (x) x+1, y+2, z.
 

Conflict of interest

There are no conflicts of interest.

Funding information

The following funding is acknowledged: Fundação de Amparo à Pesquisa do Estado de Minas Gerais; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Financiadora de Estudos e Projetos.

References

First citationAbramov, Yu. A. (1997). Acta Cryst. A53, 264–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBader, R. (1994). Atoms in Molecules: A Quantum Theory. Oxford: Clarendon Press.  Google Scholar
First citationBarman, R. K., Chakrabarty, R. & Das, B. K. (2002). Polyhedron, 21, 1189–1195.  CrossRef CAS Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 148–153.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBojarowski, S. A., Gruza, B., Trzybiński, D., Kamiński, R., Hoser, A. A., Kumar, P., Woźniak, K. & Dominiak, P. M. (2022). https://doi.org/10.26434/chemrxiv-2022-l5ql7Google Scholar
First citationBrock, C. P., Dunitz, J. D. & Hirshfeld, F. L. (1991). Acta Cryst. B47, 789–797.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrüx, D., Ebel, B., Pelzer, N., Kalf, I. & Kleemiss, F. (2025). Chem. A Eur. J. 31, e202404017.  Google Scholar
First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationChęcińska, L., Morgenroth, W., Paulmann, C., Jayatilaka, D. & Dittrich, B. (2013). CrystEngComm, 15, 2084.  Google Scholar
First citationCoppens, P. (1997). X-ray Charge Densities and Chemical Bonding. Oxford: International Union of Crystallography/Oxford University Press.  Google Scholar
First citationDittrich, B., Lübben, J., Mebs, S., Wagner, A., Luger, P. & Flaig, R. (2017). Chem. A Eur. J. 23, 4605–4614.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDominiak, P. M., Volkov, A., Li, X., Messerschmidt, M. & Coppens, P. (2007). J. Chem. Theory Comput. 3, 232–247.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDos Santos, L. H. R., Rodrigues, B. L., Idemori, Y. M. & Fernandes, N. G. (2012). J. Mol. Struct. 1014, 102–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationEspinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542.  Web of Science CrossRef CAS Google Scholar
First citationEspinosa, E., Souhassou, M., Lachekar, H. & Lecomte, C. (1999). Acta Cryst. B55, 563–572.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. & Evans, C. (2005). J. Phys. Chem. A 109, 8834–8848.   CrossRef PubMed CAS Google Scholar
First citationGenoni, A., Bučinský, L., Claiser, N., Contreras–García, J., Dittrich, B., Dominiak, P. M., Espinosa, E., Gatti, C., Giannozzi, P., Gillet, J., Jayatilaka, D., Macchi, P., Madsen, A. Ø., Massa, L., Matta, C. F., Merz, K. M., Nakashima, P. N. H., Ott, H., Ryde, U., Schwarz, K., Sierka, M. & Grabowsky, S. (2018). Chem. A Eur. J. 24, 10881–10905.  Web of Science CrossRef CAS Google Scholar
First citationGilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationGrabowsky, S., Genoni, A. & Bürgi, H.-B. (2017). Chem. Sci. 8, 4159–4176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGrabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776–6779.  Web of Science CSD CrossRef ICSD CAS Google Scholar
First citationHansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHatcher, L. E., Saunders, L. K. & Coulson, B. A. (2023). Faraday Discuss. 244, 370–390.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHoser, A. A., Dominiak, P. M. & Woźniak, K. (2009). Acta Cryst. A65, 300–311.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayatilaka, D. & Grimwood, D. J. (2001). Acta Cryst. A57, 76–86.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJha, K. K., Gruza, B., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2020). Acta Cryst. B76, 296–306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116–127.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKleemiss, F., Peyerimhoff, N. & Bodensteiner, M. (2024). J. Appl. Cryst. 57, 161–174.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583–1628.   Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationMacchi, P. & Coppens, P. (2001). Acta Cryst. A57, 656–662.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø. (2006). J. Appl. Cryst. 39, 757–758.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, D., Flensburg, C. & Larsen, S. (1998). J. Phys. Chem. A, 102, 2177–2188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalaspina, L. A., Edwards, A. J., Woińska, M., Jayatilaka, D., Turner, M. J., Price, J. R., Herbst-Irmer, R., Sugimoto, K., Nishibori, E. & Grabowsky, S. (2017). Cryst. Growth Des. 17, 3812–3825.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalaspina, L. A., Genoni, A. & Grabowsky, S. (2021a). J. Appl. Cryst. 54, 987–995.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalaspina, L. A., Genoni, A., Jayatilaka, D., Turner, M. J., Sugimoto, K., Nishibori, E. & Grabowsky, S. (2021b). J. Appl. Cryst. 54, 718–729.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalaspina, L. A., Hoser, A. A., Edwards, A. J., Woińska, M., Turner, M. J., Price, J. R., Sugimoto, K., Nishibori, E., Bürgi, H.-B., Jayatilaka, D. & Grabowsky, S. (2020). CrystEngComm, 22, 4778–4789.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalaspina, L. A., Wieduwilt, E. K., Bergmann, J., Kleemiss, F., Meyer, B., Ruiz-López, M. F., Pal, R., Hupf, E., Beckmann, J., Piltz, R. O., Edwards, A. J., Grabowsky, S. & Genoni, A. (2019). J. Phys. Chem. Lett. 10, 6973–6982.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMassa, L., Huang, L. & Karle, J. (1995). Int. J. Quantum Chem. S29, 371–384.   CrossRef Google Scholar
First citationMeyer, B. & Genoni, A. (2018). J. Phys. Chem. A, 122, 8965–8981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeyer, B., Guillot, B., Ruiz-Lopez, M. F., Jelsch, C. & Genoni, A. (2016). J. Chem. Theory Comput. 12, 1068–1081.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.  Google Scholar
First citationOlovsson, G., Olovsson, I. & Lehmann, M. S. (1984). Acta Cryst. C40, 1521–1526.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2023). Acta Cryst. B79, 281–295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSanjuan-Szklarz, W. F., Woińska, M., Domagała, S., Dominiak, P. M., Grabowsky, S., Jayatilaka, D., Gutmann, M. & Woźniak, K. (2020). IUCrJ, 7, 920–933.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationSequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1192–1197.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSovago, I., Gutmann, M. J., Hill, J. G., Senn, H. M., Thomas, L. H., Wilson, C. C. & Farrugia, L. J. (2014). Cryst. Growth Des. 14, 1227–1239.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSu, Z. & Coppens, P. (1998). Acta Cryst. A54, 646–652.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. (2016). XD2016. University at Buffalo, State University of New York, NY, USA; University of Milan, Italy; University of Glasgow, UK; CNRISTM, Milan, Italy; Middle Tennessee State University, TN, USA; and Freie Universität, Berlin, Germany.  Google Scholar
First citationVolkov, A., Messerschmidt, M. & Coppens, P. (2007). Acta Cryst. D63, 160–170.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875–888.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.  Web of Science PubMed Google Scholar
First citationWoińska, M., Jayatilaka, D., Spackman, M. A., Edwards, A. J., Dominiak, P. M., Woźniak, K., Nishibori, E., Sugimoto, K. & Grabowsky, S. (2014). Acta Cryst. A70, 483–498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWoolfson, M. M. (1997). An Introduction to X-ray Crystallography, 2nd ed. Cambridge, New York: Cambridge University Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds