research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL SCIENCE

CRYSTAL ENGINEERING

MATERIALS
ISSN: 2052-5206

On the puzzling case of sodium saccharinate 1.875-hydrate: structure description in (3+1)-dimensional superspace

crossmark logo

aLaboratory of Crystallography, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany

*Correspondence e-mail: [email protected]

(Received 8 July 2019; accepted 5 November 2019)

The structure of sodium saccharinate 1.875-hydrate is presented in three- and (3+1)-dimensional space. The present model is more accurate than previously published superstructures, due to an excellent data set collected up to a high resolution of 0.89 Å−1. The present study confirms the unusual complexity of the structure comprising a very large primitive unit cell with Z′ = 16. A much smaller degree of correlated disorder of parts of the unit cell is found than is present in the previously published models. As a result of pseudo-symmetry, the structure can be described in a higher-dimensional space. The X-ray diffraction data clearly indicate a (3+1)-dimensional periodic structure with stronger main reflections and weaker superstructure reflections. Furthermore, the structure is established as being commensurate. The structure description in superspace results in a four times smaller unit cell with an additional base centring of the lattice, resulting in an eightfold substructure (Z′ = 2) of the 3D superstructure. Therefore, such a superspace approach is desirable to work out this high-Z′ structure. The displacement and occupational modulation of the saccharinate anions have been studied, as well as their conformational variation along the fourth dimension.

1. Introduction

Usually, the lattice parameters, space-group symmetry and spatial arrangement of the atoms of the asymmetric unit are sufficient to describe a crystal structure considered as a static idealized state of matter. This formalism is the very essence of crystallography. For molecular crystals, in the vast majority of cases, there is only one molecule (or formula unit in the case of multi-component phases) in the asymmetric unit (Z′ = 1). It has been reported, however, that Z′ > 1 for around 8% of crystal structures (Steed, 2003[Steed, J. W. (2003). CrystEngComm, 5, 169-179.]). It is imaginable that sometimes larger aggregates can form from the constituent molecules. Such aggregates may possess no crystallographic symmetry, or if they do then it does not transfer to the space-group symmetry. For example, it does not seem unusual that efficiently interacting dimers or trimers could exist that are then packed according to some space-group symmetry. More intriguing, however, are cases for which Z′ is high (i.e. Z′ > 4; Brock, 2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]). There have been a number of studies dealing with high-Z′ structures (Steed, 2003[Steed, J. W. (2003). CrystEngComm, 5, 169-179.]; Steed & Steed, 2015[Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895-2933.]; Desiraju, 2007[Desiraju, G. R. (2007). CrystEngComm, 9, 91-92.]; Brock, 2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]) and one of the conclusions is that sometimes such structures must be described as modulated, as considerable pseudo-symmetry can be identified.

Since the pioneering work of de Wolff and co-workers (Brouns et al., 1964[Brouns, E., Visser, J. W. & de Wolff, P. M. (1964). Acta Cryst. 17, 614.]; de Wolff, 1974[de Wolff, P. M. (1974). Acta Cryst. A30, 777-785.]) and Janner & Janssen (1977[Janner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643-658.]), modulated structures are well understood and the mathematical apparatus has been well established (Janssen et al., 2007[Janssen, T., Chapuis, G. & de Boissieu, M. (2007). Aperiodic Crystals. From Modulated Phases to Quasicrystals. Oxford University Press.]; van Smaalen, 2007[van Smaalen, S. (2007). Incommensurate Crystallography. Oxford University Press.]; Petricek et al., 1985[Petricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478-483.]). However, they perhaps do not gain the attention they deserve, especially in the field of chemical crystallography where the studied systems constitute molecular compounds (Schönleber, 2011[Schönleber, A. (2011). Z. Kristallogr. Cryst. Mater. 226, 499-517.]). Moreover, high-Z′ structures of molecular crystals, should they give any indication of the presence of possible modulation, must be treated very cautiously. For example, incommensurately modulated structures may sometimes be relatively well approximated by a sufficiently large supercell in the conventional 3D space (Schönleber & Chapuis, 2004[Schönleber, A. & Chapuis, G. (2004). Acta Cryst. B60, 108-120.]; Wagner & Schönleber, 2009[Wagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249-268.]). However, such an approximated structure model is fundamentally wrong. A description of a commensurately modulated structure in 3D space is fully valid, but a more sophisticated approach in a higher-dimensional space is found to be much more suitable when, for example, consecutive phase transformations including low-Z′ phases are to be analysed (Zuñiga et al., 1989[Zuñiga, F. J., Madariaga, G., Paciorek, W. A., Pérez-Mato, J. M., Ezpeleta, J. M. & Etxebarria, I. (1989). Acta Cryst. B45, 566-576.]; Harris et al., 1994[Harris, P., Larsen, F. K., Lebech, B. & Achiwa, N. (1994). Acta Cryst. B50, 676-684.]; Schönleber et al., 2003[Schönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. Cryst. Mater. 218, 507-513.]) or the origins of the structure formation are to be explained (Dey et al., 2016[Dey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372-380.], 2018[Dey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394-1400.]).

One example of a molecular crystal structure with a high Z′ value is that of sodium saccharinate 1.875-hydrate. The saccharinate chemical scheme is presented in Fig. 1[link]. In spite of this artificial sweetener having been used in the food industry for over 100 years (Baran & Yilmaz, 2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]), its crystal structure has been published only relatively recently (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]; Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]). The reason for that might be the unusual complexity of this Z′ = 16 structure. It is surprising that the large number of crystal constituents, comprising 16 saccharinate anions, 16 sodium cations and 30 water mol­ecules, could be consistently arranged in a reproducible manner, replicated according to the space-group symmetry and then translated in all three directions. Furthermore, some of the entities in the asymmetric unit are disordered. The two independently elucidated structure models for crystals measured at around the same temperature (95 and 100 K) and published at nearly the same time are virtually identical, including the occupancies of the disordered sites. This indicates that the particular structural complexity of this organic salt hydrate is prevalent and does not arise from some specific experimental conditions of crystal growth or other non-equilibrium processes. In one of the studies (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]) it was pointed out that some pseudo-symmetry is present, but this only fully applies to the saccharinate ions. Nevertheless, it means that the structure could be described in a higher-dimensional space with a smaller unit cell and thus higher symmetry.

[Figure 1]

Figure 1

The chemical scheme of the saccharinate anion, with the atom numbering used in this study.

The aim of this study is to gain a deeper understanding of the sodium saccharinate 1.875-hydrate structure by describing it within the superspace approach and establishing its true commensurate or incommensurate nature.

2. Experimental

2.1. Materials

Sodium saccharinate hydrate (assay ≥99%) was purchased from Sigma–Aldrich and used without further purification. Deionized water was treated in a Millipore purification system. Single crystals were grown by slow evaporation from water solution. Transparent prismatic crystals of different sizes were obtained.

2.2. X-ray diffraction data collection

Single-crystal X-ray diffraction data were collected on a mar345dtb diffractometer equipped with an image-plate detector. A Bruker–Nonius rotating-anode X-ray generator was used with a wavelength of 0.56089 Å (Ag Kα radiation). A crystal of dimensions 0.22 × 0.35 × 0.45 mm was glued onto a glass fibre and coated with a thin layer of glue to prevent dehydration of the sample. An open-flow nitrogen cryostat was exploited for temperature regulation and the sample was cooled to 95 K with a cooling rate of 2 K min−1. φ scans were performed with a step size of 1°. In total 360 frames were collected. An exposure time of 100 s per frame was used.

Data indexing and integration (with respect to the supercell structure previously reported in P21/n; Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]; Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]) was performed up to the diffraction limit of 0.89 Å−1 with the CrysAlisPro 39.46 software (Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlis PRO. Rigaku Oxford Diffraction Yarnton, England]). Outlier rejection according to the Laue class 2/m was applied. Empirical absorption correction using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm within the CrysAlisPro 39.46 software, was applied. The data are listed in Table 1[link].

Table 1

Summary of the X-ray diffraction data acquisition

Temperature (K) 95
Radiation type, wavelength (Å) Ag Kα, λ = 0.56089
No. of reflections (cell measurement) 6894
θ range (°) (cell measurement) 2.84–29.89
Crystal size (mm) 0.22 × 0.35 × 0.45
Tmin, Tmax 0.912, 1
No. of measured, unique and observed [I > 3σ(I)] reflections 651 280, 88 532, 59 317
Rint (observed), Rint (unique) 0.0691, 0.0856
θ range (°) (data collection) 2.84–29.89
[sin(θ)/λ]max−1) 0.89
Index ranges −32 → h → 32
  −50 → k → 50
  −51 → l → 51

2.3. Structure refinement

2.3.1. Supercell structure

Structure refinements were performed with the software JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345-352.]). Initial non-H atom positions were taken from a published structure model (Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]). Non-H atoms were refined anisotropically. H atoms were added geometrically or located from the difference Fourier maps. Riding isotropic atomic displacement parameters (ADPs) were applied. No H atoms could be located for a few disordered water molecules with reduced site-occupancy factors. The data are listed in Table 2[link]. The low R1 and Rint values indicate the excellent fit of the refined structure model to the diffraction data. Furthermore, the use of silver radiation allowed the collection of good data up to an exceptionally high resolution of 0.89 Å−1 for this light-atom structure. This is particularly important for an appropriate refinement of e.g. the ADPs. In Fig. 2[link] the number of observed and unobserved reflections [according to I > 3σ(I)] and the R1 and Rint values (all cumulative) are plotted versus the resolution limit [sin(θ)/λ]max. The R1 value drops down to around 0.03 if the conventional limit for light-atom structures of 0.62 Å−1 is chosen. At this limit, the R1 values obtained in previous studies are 0.08 (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]) and 0.045 (Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]).

Table 2

Crystallographic data for the structure models in 3D and (3+1)D space

Parameter 3D (3+1)D
Crystal data
Formula Na(C7H4NO3S)·1.875H2O
Formula weight 238.94
Temperature (K) 95
Crystal system Monoclinic
Space group P21/n C2/c(0,σ2,0)s0
q, t0   (0, 3/4, 0), 0
a (Å) 18.62120 (10) 18.62120 (10)
b (Å) 28.4622 (2) 7.11555 (5)
c (Å) 29.1642 (2) 29.1642 (2)
β (°) 93.4511 (6) 93.4511 (6)
V3) 15429.00 (17) 3857.25 (4)
Z, Z 64, 16 16, 2
F(000) 7845 1904
Dx (g cm−3) 1.6446 1.6446
μ (mm−1) 0.201 0.201
     
Refinement
Refinement method Full-matrix least-squares on F
R1 [F2 > 3σ(F2)], wR(F2), S 0.048, 0.055, 1.57 0.054, 0.065, 1.87
Rm=0 [F2 > 3σ(F2)]   0.050
Rm=±1 [F2 > 3σ(F2)]   0.052
Rm=±2 [F2 > 3σ(F2)]   0.055
Rm=±3 [F2 > 3σ(F2)]   0.056
Rm=±4 [F2 > 3σ(F2)]   0.060
No. of reflections (individual, observed) 88 532, 59 317
No. of parameters 2016 1734
H-atom treatment Mixed Constrained
Weighting scheme w = 1/[σ2(F) + 0.0001F2]
Δρmax, Δρmin (e Å−3) 1.64, −1.30 0.48, −0.21
[Figure 2]

Figure 2

The number of observed and unobserved reflections [according to I > 3σ(I)], R1 and Rint (all cumulative) versus the resolution limit [sin(θ)/λ]max used for refinement.

Owing to the excellent data quality, subtle differences in saccharinate anion conformations were noted. Although it is an aromatic and therefore seemingly rigid molecule, the forces of the different crystallographic environments deform the 16 independent molecules significantly. Using the rigid-body approach for the whole molecule, the R1 value doubled in magnitude. Although this approach is very appealing, since it reduces the number of refinement parameters from 2387 to 1105 or even lower (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]), if the probable mirror plane through the molecule is considered then the conformational variance of the saccharinate anions throughout the crystal structure cannot be neglected. The rigidity of the molecule was studied by generating best overlays of every two molecules. It was found that there can be a deviation as large as 0.1 Å between corresponding atoms (see Fig. 3[link], where the best overlay of molecules 1 and 11 is depicted). Such deviations can be considered large and are most certainly reflected in the increase in the R1 value when the rigid-body approach is applied for the molecule as whole.

[Figure 3]

Figure 3

Best overlays (left: all atoms are matched; right: only phenyl ring atoms are matched) of molecules 1 and 11, showing their non-identical conformations. Deviations between corresponding atoms are given in Å.

It was, however, found that the phenyl ring can be considered rigid. The best overlays of the phenyl ring atoms (taken from the refined structure with no restrictions applied to the atomic positions) showed that the corresponding atoms are usually not more than around 0.01 Å apart (see Fig. 3[link]), and this is also confirmed by calculating the best planes through the six atoms. The distances of the saccharinate anion atoms from the best planes through the corresponding phenyl rings are listed in Table S1 in the supporting information.

In the final structure model a rigid-body approach was applied to the phenyl ring, defining it as a set of six coplanar atoms, but refining its internal structure in terms of bond lengths and angles. The R1 value increased only slightly compared with that of the free-atom model, confirming that the geometries of the phenyl rings are consistently identical and are not influenced by the different crystallographic environments. The number of refinement parameters could be decreased from 2394 to 2016.

Furthermore, one saccharinate anion, three sodium cations and four water molecules are each disordered over two sites. In the previously reported structure models the occupancies were restricted to be equal for all atoms of the major site and all atoms of the minor site with a sum of unity. The reported occupancy ratios from those studies are 0.67:0.33 (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]) and 0.70:0.30 (Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]). It was also established in the present study that the disorder is correlated, as refining it separately (only restricting the sum to be unity for a major and the corresponding minor site) revealed that it is very similar among all the major (and minor) components. The refined unified ratio of 0.88:0.12 for the correlated disordered entity is, however, different from that reported previously.

2.3.2. Superspace structure

From the established superstructure model of sodium saccharinate 1.875-hydrate it was noted that there is pseudo-translation symmetry present in the P21/n unit cell. The particular crystal structure can be described in (3+1)D superspace with the basic cell (bc) and the present supercell (sc) being related by the following transformation:

[\left (a_{\rm bc}, b_{\rm bc}, c_{\rm bc} \right) = \left (a_{\rm sc}, b_{\rm sc}, c_{\rm sc} \right) \left (\matrix{1 & 0 & 0 \cr 0 & {1\over 4} & 0 \cr 0 & 0 & 1} \right). \eqno(1)]

The superspace structure is an eightfold substructure of the one described in 3D space, as the former is represented by a four-times smaller unit cell with an additional base-centring of the lattice.

In Fig. 4[link] a section of the reciprocal layer 0kl is shown, as well as a schematic representation of possible satellite reflection indexing. The 0kl section features strong main reflections and systematically absent reflections according to the C-centre condition h + k = 2n. The modulation wavevector q lies along the b* axis. Assuming that the structure is truly commensurate, the value of q is either ([0, {1\over 4}, 0]) or ([0, {3\over 4}, 0]). Thus, up to the fourth order satellites are present, with m = ±4 satellites coinciding at the positions of the absent main reflections. It can be noted in Fig. 4[link] that the satellite reflections at ±¾ distance from the present main reflections appear stronger than those at ±¼ distance, which are barely visible. Inspection of the intensity statistics of the complete reflection list reveals that the modulation wavevector is most favourably defined as ([0, {3\over 4}, 0]) (see Table 3[link]). The presence of the C-centre is also evident. The intensity statistics and observations in Fig. 4[link] are an indication that this structure is well described in superspace.

Table 3

Intensity statistics of different reflection classes

Condition with respect to the supercell m Iall nall Iobs nobs
4h + k = 8n 0 162 81 978 314 41 596
4h + k = 8n + 4 ± 1 ±1 68 163 894 139 76 905
4h + k = 8n ± 2 ±2 43 163 926 95 69 711
4h + k = 8n ± 1 ±3 49 163 979 108 70 845
4h + k = 8n + 4 ±4 31 82 033 73 31 209
[Figure 4]

Figure 4

Section (0kl) of the reciprocal-space reconstruction of the experimental data, with k indices according to the basic cell (bc) and supercell (sc). The top panel gives a schematic representation of possible indexing, alternately based on different q vectors. Large circles indicate main reflections, small circles satellite reflections, open circles absent reflections and full circles allowed reflections.

Although there is a proper solution of the structure in 3D space suggesting commensurability, it cannot be excluded that the structure might be incommensurate. One indication for that would be splitting of the fourth-order satellite reflections, if the component σ2 of the modulation wavevector q were to deviate from the rational number of ¾. Otherwise (h, k, l, 4) and (h, k + 6, l, −4) describe the same point in reciprocal space (see Fig. 4[link]). Careful examination of the strongest fourth-order satellite reflections in the diffraction data frames showed single peaks with good shapes. Minor splitting of a few peaks recorded at higher 2θ angles was associated with non-monochromaticity of the incident beam. In Fig. 5[link] a few strongest fourth-order satellite reflections located in the raw data frames are shown, confirming the above statement. Commensurability of the structure at the analysed temperature was therefore established, and ultimately proven upon structure refinement.

[Figure 5]

Figure 5

Pairs of equivalent strongest fourth-order satellite reflections ([\in] 4h + k = 8n + 4, indices with respect to the supercell). Slight splitting of the [-12 \, 12 \, 14] reflections is associated with the combination of non-monochromaticity of the incident beam and the geometry of the data collection at higher 2θ angles.

Because of this commensurability, the reflection data for structure refinement in (3+1)D space could be re-indexed by an in-house script using the reflection list from the supercell structure refinement, therefore avoiding new data integration, scaling and corrections. In such a way, different refinement parameters can be more straightforwardly related to those of the refinement in 3D space.

A space-group symmetry test in the JANA2006 software suite indicated the superspace group C2/c(0,σ2,0)s0 [standard setting B2/b(0,0,σ3)s0, No. 15.1.7.3 (Stokes et al., 2011[Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45-55.]; van Smaalen et al., 2013[van Smaalen, S., Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75-90.])]. An origin shift of (¼, ¼, 0, 0) was applied so that the fractional coordinates of the atoms correspond to those of the superstructure. The resulting symmetry operators are: x1, x2, x3, x4; −x1, x2 + ½, −x3 + ½, x4 + ½; −x1, −x2, −x3, −x4; x1, −x2 + ½, x3 + ½, −x4 + ½. Regarding commensurability, there are three inequivalent options for t0, namely general, t0 = 0 and t0 = [1\over 16]. These correspond to the supercell space groups P21, P21/n and P21/c, respectively. The value t0 = 0 was selected, as the presented unit cell is indexed in such a way as to correspond to P21/n.

Structure solution with SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) gave a satisfying starting model. However, such ab initio refinement did not lead to an accurate structure model. Apparently, this failure is due to the presence of an intricate occupational modulation in a crenel function fashion. Initial coordinates for the basic positions and parameters for the modulation and crenel functions were then derived from the supercell structure model. Average positions were used as initial basic positions and, for most atoms, up to fourth-order harmonics were necessary to describe their positional modulation properly. Each harmonic adds up to 2 × 3 parameters, meaning that (together with the three basic position coordinates) three independent atomic positions of the supercell can be described. Coefficients for the highest-order harmonic sine or cosine terms were fixed to 0 values when necessary so as not to exceed the required number of parameters and thus avoid singularities, for example for atoms describing eight independent positions in the supercell. In such a way the initial structure model in (3+1)D superspace was set up for the refinement.

Because of the eightfold relation between the cells and Z′ of 16 for the supercell, the basic cell comprised two saccharinate anions (atoms C1A/B, C2A/B, C3A/B, C4A/B, C5A/B, C6A/B, C7A/B, S1A/B, N1A/B, O1A/B, O2A/B, O3A/B), four sodium cation sites (Na2, Na6, Na14, Na16) and four water O atom sites (O18W, O23W, O24W, O28W) in the asymmetric unit. The occupancy of the sodium cations along the x4 coordinate is thus zero for some intervals as, according to the stoichiometry, formally only two are required for the two saccharinate anions. The situation is similar for the O atom O23W as the hydrate stoichiometry is not exactly two, requiring fewer than four water molecules per two saccharinate anions.

Several additional atoms were included with respective crenel functions to account for the disorder. As for the 3D model, a rigid-body approach was used for the phenyl rings of the two saccharinate ions. Non-H atoms were refined anisotropically applying modulated ADPs using the same order as the corresponding order for positional modulation. Hydrogen atoms of the saccharinate ions were added geometrically. TLS parameters were used for the phenyl ring carbon atoms and their respective H atoms. The ADP values of the minor disorder component of the saccharinate anion were constrained to be equal to those of the major component. No H atoms of the water molecules were added. Crystallographic and refinement data are listed in Table 2[link]. The larger R1 value compared with the 3D model is explained by the absence of water H atoms.

2.4. Density functional theory (DFT) calculations

The single-point energy of the saccharinate anions was calculated with the program GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Revision D.01. Gaussian Inc., Wallingford, Connecticut, USA.]). Atomic coordinates were taken from the superstructure refinement with no restraints. H-atom distances were renorm­alized to 1.09 Å. The M062X level of theory and 6-311++g(d,p) basis set were used. No calculations were performed for the two saccharinate anions superimposed at the disordered site, since the atomic positions are not accurate enough. An additional calculation was performed allowing the atomic positions to relax to obtain the gas-phase reference energy. The obtained energy values are listed in Table S2.

3. Results and discussion

3.1. Superstructure of sodium saccharinate 1.875-hydrate

The asymmetric unit of the title compound at 95 K described in space group P21/n is depicted in Fig. 6[link]. There are a total of 16 saccharinate anions, 16 sodium cations and exactly 30 water molecules. The arrangement of the ions and mol­ecules in the asymmetric unit is somewhat puzzling, as only a part of it can be considered modulated. The saccharinate anions are consistently stacked in a column along b. A regular arrangement is also present for approximately half of the sodium cations and water molecules. However, there is a strong deviation from this modulated pattern as the remaining sodium cations and water molecules are positioned very differently. Furthermore, there is disorder present concerning molecule 13 and neighbouring sodium cations and water molecules. This rather irregular pattern indicates that it is a somewhat of a compromise solution for the crystal structure to form.

[Figure 6]

Figure 6

The asymmetric unit of sodium saccharinate 1.875-hydrate at 95 K, showing the molecule numbering scheme. Minor components of the disordered sites are depicted as partly transparent. C atoms (gray), O atoms (red), N atoms (blue), S atoms (yellow), Na ions (violet).

It is intriguing that such a large, complex and not even fully pseudo-symmetrically consistent aggregate can apparently be found as a regular pattern throughout the crystal structure. The supramolecular arrangement, including the sophisticated disorder of one saccharinate anion, three sodium cations and four water molecules, is identical for several crystals tested within this study. Moreover, it is virtually the same as that found in the previous studies of this very same solid phase at 95 and 100 K (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]; Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]). This rules out the possibility that this high-Z′ structure would be any kind of fossil relic of the solution aggregation process as proposed for some high-Z′ compounds (Steed, 2003[Steed, J. W. (2003). CrystEngComm, 5, 169-179.]; Desiraju, 2007[Desiraju, G. R. (2007). CrystEngComm, 9, 91-92.]). The most notable difference between the present model and previous models is the disorder, with an occupancy ratio of 0.88:0.12 compared with that of around 0.70:0.30 reported previously (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277-1280.]; Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]).

3.2. Superspace structure of sodium saccharinate 1.875-hydrate

3.2.1. Modulation of the asymmetric unit entities

Due to the eightfold relation between the unit cells in 3D and (3+1)D space (see the Experimental section[link]), the asymmetric unit of the superspace structure (Z′ = 2) formally consists of two saccharinate anions, two sodium cations and 3.75 water molecules. However, the basic structure is more complex than that.

There are indeed two saccharinate anions defined, which are denoted A and B (see Fig. 1[link] for the atom numbering). Modulation functions are applied for entity A to define the eight saccharinate positions along the x4 direction, and similarly for entity B. However, at a certain t value the anion is disordered over two positions, hence additional basic positions of the saccharinate anion with reduced site occupancy have been defined, namely B′ and B′′. Corresponding crenel functions to alter the B/B′/B′′ occupancy between 0 and the respective non-zero value have been defined, and these are summarized in a t-plot of the modulations of atoms O1A and O1B as an example (Fig. 7[link]). The largest modulation amplitudes are found for modulation functions uy, but the corresponding unit-cell dimension b is several times smaller than a and c (see Table 2[link]). Modulation functions uz are approximately constant throughout the modulation period. For the saccharinate anion B the dis­ordered molecular site occurs at t = 0.625 where the saccharin­ate anion adopts two slightly different orientations with an occupancy ratio of 0.88:0.12 (corresponding to saccharinate 13 in the superstructure). Only a single position needs to be described for B′ and B′′, which is already defined by the corresponding basic positions (x, y and z values), so no additional displacive modulation function need be added for the atoms of the B′ and B′′ entities.

[Figure 7]

Figure 7

t-Plots of the positional (bottom) and occupational (top) modulation of atoms O1A (vermillion), O1B (blue), O1B′ (yellow), O1B′′ (grey). Commensurate t-sections are indicated by dashed lines.

It can be noted, however, that the position of atom O1B′ fits relatively well within the modulation curve of O1B. Restricting the B′ atoms to have the same basic positions and modulation functions as the B atoms was found to be not feasible since such a refinement resulted in unreasonable basic positions for some atoms and an increase in R1. t-Plots for atoms O1B, O2B, O3B, S1B, N1B and C7B defining the flexible part of the molecule (and their B′ counterparts) are given in the supporting information, showing that the B′ positions deviate rather significantly from the assumed positions according to the modulation function of the B atoms.

It must be added that for the other saccharinate atoms the modulation functions are very similar to each other and possess the same characteristics, as shown for atoms O1A and O1B in Fig. 7[link].

Regarding the sodium cations in the asymmetric unit, the picture is more complex (see Fig. 8[link]). For the two asymmetric sodium ions named Na2 and Na6 there is a severe discontinuity in their modulation functions. Additional sodium cations have therefore been defined in limited crenel intervals. Furthermore, there is an inconsistency in the ion density in the t-sections, as apparently one of the sodium ions is absent at section t = 0.5 and instead an additional cation appears at t = 0.625. Finally, all three atoms at this particular t-section are disordered over two sites.

[Figure 8]

Figure 8

t-Plots of the positional modulation of sodium cations (vermillion: uy + y0; blue: ux + x0; yellow: coordinate uz + z0). Atoms in the shaded area are disordered over two sites and only the major occupancy site is depicted. Commensurate t-sections are indicated by dashed lines.

The modulation of the water molecules (or their respective O atoms) is depicted in Fig. 9[link]. The component uz has been omitted for the sake of clarity. Furthermore, uz is approximately constant, similar to the previously discussed atoms. For one of the water molecules there are two sites empty from the eight sites within one period along the x4 axis, resulting in the unusual stoichiometry of 1:1.875 between the saccharinate (sodium) ions and water molecules. At four t values (shaded grey) the water molecules are disordered over two sites. Here, the major occupancy sites have been restrained to have the same basic positions and modulation function parameters as atoms O18W, O28W and O24W, respectively.

[Figure 9]

Figure 9

t-Plots of the positional modulation of water molecule O atoms (vermillion: uy + y0; blue: ux + x0). Atoms in the shaded areas are disordered over two sites and only the major occupancy site is depicted. Commensurate t-sections are indicated by dashed lines.

From the t-plots discussed above it has been shown that half of the sodium ions, in particular, are inconsistently positioned throughout the structure, albeit in a periodic fashion. The rather odd cation placement and disorder around the section t = 0.625 correlates with the absence and disorder of the water molecules around the same section. Regarding the independent saccharinate anions, the inconsistencies are not so severe, except for the presence of a disordered site and larger deviations from the basic positions in terms of y coordinate (see Fig. 7[link]).

3.2.2. Variation in the saccharinate anion conformation

As already noted in the analysis of the supercell model, the saccharinate anion geometry varies throughout the crystal structure, except for the phenyl ring. The conformational variation of the two independent saccharinate anions can be noted in t-plots where the bond lengths between the constituent atoms are depicted (see Figs. 10[link] and 11[link]). Furthermore, the molecule is not planar, and therefore no internal mirror symmetry can be exploited to reduce the number of refinement parameters. This is proven by t-plots showing the torsion angles S1—N1—C7—O3 and N1—C7—O3—phenyl (Figs. 12[link] and 13[link]). Torsion-angle values for S1—N1—C7—O3 span ranges of around 176°–180° and 176°–184° for molecules A and B, respectively, indicating non-planarity of the saccharin­ate heterocycle. Furthermore, the planar phenyl ring is situated at angles in the ranges of 2°–4° and 2°–6° with respect to the plane N1—C7—O3 for molecules A and B, respectively.

[Figure 10]

Figure 10

t-Plots of the interatomic distances between atom C7 and the respective covalently bonded atoms N1, O3 and C2 (vermillion: molecule A, blue: molecule B, yellow: major component of the disordered site). Commensurate t-sections are indicated by dashed lines.
[Figure 11]

Figure 11

t-Plots of the interatomic distances between atom S1 and the respective covalently bonded atoms C1, O1, O2 and N1 (vermillion: molecule A, blue: molecule B, yellow: major component of the disordered site). Commensurate t-sections are indicated by dashed lines.
[Figure 12]

Figure 12

t-Plots of the torsion angle S1—N1—C7—O3 (vermillion: molecule A, blue: molecule B, yellow: major component of the disordered site). Commensurate t-sections are indicated by dashed lines.
[Figure 13]

Figure 13

t-Plots of the torsion angle N1—C7—O3—phenyl (vermillion: molecule A, blue: molecule B, yellow: major component of the disordered site). Commensurate t-sections are indicated by dashed lines.

DFT calculations of conformer energies show that they vary between 9 and 15 kJ mol−1 compared with the gas-phase conformation (see Table S2). The energy variance for both asymmetric saccharinate anions A and B versus the modulation period t is depicted in Fig. 14[link]. The energy of the site-A saccharinate anions is consistently lower than that of the B anions. This indicates that there is a smaller frustration exerted on the site-A molecules. However, the difference in conformer energy of at least 9 kJ mol−1 compared with the gas-phase conformation shows that the crystal environment exerts a considerable force on the saccharinate anions.

[Figure 14]

Figure 14

Conformer energy versus t (vermillion: molecule A, blue: molecule B). Fourth-order harmonics were used to fit the data points.
3.2.3. Sodium coordination spheres

Most of the sodium ions are octahedrally coordinated. Sodium cation Na2 is coordinated by water molecules O18W and O28W and by saccharinate anions through carbonyl O atoms O3A and O3B. Interatomic distances are presented in Fig. 15[link]. Opposite water molecules O18W and O28W are more consistently located equidistant from the Na2 cation. Deviations from an optimal distance to the central atom are more pronounced in the case of the O atoms of the saccharinate ion, especially those of the asymmetric molecule B.

[Figure 15]

Figure 15

t-Plots of the interatomic distances in the Na2 coordination sphere. Commensurate t-sections are indicated by dashed lines.

Sodium cation Na6 is coordinated by all four asymmetric water molecules, namely, O18W, O23W, O24W and O28W. It also interacts with some of the sulfonyl group O atoms of saccharinate anion B (Fig. 16[link]).

[Figure 16]

Figure 16

t-Plots of the interatomic distances in the Na6 coordination sphere. Commensurate t-sections are indicated by dashed lines.

The remaining sodium cations Na2′, Na14, Na14′, Na16 and Na16′, and the respective minor sites Na14′′ and Na16′′, all interact with neighbouring water molecules and with the O and N atoms of the saccharinate anions, but do not show clear octahedral coordination polyhedra.

4. Conclusions

The analysis of X-ray diffraction data intensity statistics shows that the structure of sodium saccharinate 1.875-hydrate is well described in (3+1)D superspace as a commensurate case in a C-centred lattice with a modulation wavevector q of (0, [3\over 4], 0). The centred unit cell in the superspace group C2/c(0, σ2, 0)s0 corresponds to an eightfold substructure of a four times larger primitive 3D supercell in P21/n. The superspace approach allows Z′ to be reduced from 16 to 2, while the 2 × 8 = 16 different conformations are described by modulation functions. The 3D model is in accordance with the two previously published models, but it is more accurate due to better data quality and considerably higher resolution.

The structure of the title compound possess an intricate organization of constituent entities and it is accompanied by a correlated disorder. Although the saccharinate anion is aromatic and seemingly rigid, a subtle conformation variance has been found involving the heterocyclic part of the molecule. The organic anions are organized uniformly throughout the crystal structure. The sodium cations, by contrast, are only partly consistently positioned. This can be explained by the fact that such single-atom ions can equally well interact with counter-ions in any direction, whilst for the saccharinate anions there is steric hindrance present, and only a limited volume in space around the negatively charged amide entity is accessible to form a favourable interaction. The water mol­ecules follow the arrangement of the sodium ions as they are coordinated around them. The unusual hydrate stoichiometry, however, indicates that they are rather acting as void fillers. It is not clear what causes around half of the 16 crystallographically independent sodium ions not to obey the pseudo-symmetrical arrangement as found for the rest. The overall structure is rather surprising, as such a complex and large asymmetric arrangement consistently spans across the crystal structure.

Supporting information



Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for (I). Cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for (I). Data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for (I).

Sodium Saccharinate 1.875-Hydrate (I) top
Crystal data top
C7H7.75O4.875NSNa F(000) = 7845
Mr = 238.8 Dx = 1.645 Mg m3
Monoclinic, P21/n Ag Kα radiation, λ = 0.56089 Å
Hall symbol: -P 2yabc Cell parameters from 86894 reflections
a = 18.6212 (1) Å θ = 2.8–29.8°
b = 28.4622 (2) Å µ = 0.20 mm1
c = 29.1642 (2) Å T = 95 K
β = 93.4511 (6)° Prism, white translucent
V = 15429.00 (17) Å3 0.45 × 0.35 × 0.22 mm
Z = 64
Data collection top
Mar dtb

diffractometer
88532 independent reflections
Radiation source: X-ray tube 59317 reflections with I > 3σ(I)
Equatorial mounted graphite monochromator Rint = 0.086
φ scans θmax = 29.9°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)

CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3232
Tmin = 0.912, Tmax = 1 k = 5050
651280 measured reflections l = 5151
Refinement top
Refinement on F 38 constraints
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.57 (Δ/σ)max = 0.018
88532 reflections Δρmax = 1.64 e Å3
2010 parameters Δρmin = 1.30 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
Na1 0.00451 (3) 0.880502 (19) 0.252679 (18) 0.01584 (13)
Na2 0.00116 (2) 1.002808 (18) 0.250815 (18) 0.01529 (13)
Na3 0.00472 (3) 1.126766 (19) 0.248782 (18) 0.01521 (13)
Na4 0.16309 (3) 1.210473 (19) 0.197136 (18) 0.01539 (13)
Na5 0.17686 (3) 0.943185 (18) 0.189307 (18) 0.01553 (13)
Na6 0.18552 (3) 1.068630 (18) 0.306019 (18) 0.01553 (13)
Na7 0.08906 (3) 0.387281 (19) 0.158035 (18) 0.01576 (13)
Na8 0.20383 (3) 0.68451 (2) 0.209047 (19) 0.01786 (14)
Na9 0.16671 (3) 0.804005 (18) 0.297547 (18) 0.01558 (13)
Na10 0.19199 (3) 0.332876 (19) 0.294712 (18) 0.01684 (14)
Na11 0.02390 (3) 0.30127 (2) 0.249668 (18) 0.01697 (14)
Na12 0.02330 (3) 0.76275 (2) 0.23912 (2) 0.02402 (17)
Na13 0.15305 (3) 0.440255 (19) 0.277503 (18) 0.01688 (14)
Na14 0.09262 (3) 0.61998 (2) 0.34954 (2) 0.01582 (15) 0.8763 (8)
Na16 0.13587 (3) 0.54676 (3) 0.23679 (2) 0.02122 (19) 0.8763 (8)
Na18 0.10392 (3) 0.56521 (2) 0.21843 (2) 0.01753 (16) 0.8763 (8)
O10w 0.21855 (5) 0.33883 (4) 0.21325 (3) 0.0173 (2)
O11w 0.07988 (5) 0.37399 (4) 0.27368 (3) 0.0182 (2)
O12w 0.14237 (6) 0.82058 (4) 0.37669 (4) 0.0260 (3)
O13w 0.18801 (5) 0.80072 (3) 0.21373 (3) 0.0170 (2)
O14w 0.11443 (5) 0.87684 (3) 0.21546 (3) 0.0160 (2)
O15w 0.11104 (5) 0.87685 (3) 0.28277 (3) 0.0161 (2)
O16w 0.14098 (6) 1.19907 (4) 0.11726 (4) 0.0232 (3)
O17w 0.17018 (6) 0.69835 (4) 0.13099 (4) 0.0237 (3)
O18w 0.11556 (5) 1.13122 (3) 0.28255 (3) 0.0158 (2)
O19w 0.13818 (6) 0.45529 (4) 0.12754 (5) 0.0311 (3)
O20w 0.10939 (5) 1.13274 (3) 0.21260 (3) 0.0170 (2)
O21w 0.22320 (5) 0.67499 (4) 0.29128 (4) 0.0181 (2)
O22w 0.17108 (6) 0.31430 (4) 0.37248 (4) 0.0267 (3)
O23w 0.25352 (5) 1.07212 (4) 0.23276 (3) 0.0179 (2)
O24w 0.15314 (7) 1.06881 (4) 0.38463 (4) 0.0285 (3)
O25w 0.08130 (5) 0.37096 (4) 0.23721 (3) 0.0192 (2)
O26w 0.14408 (5) 0.75469 (3) 0.22490 (3) 0.0174 (2)
O27w 0.14427 (6) 0.95134 (4) 0.11131 (4) 0.0281 (3)
O28w 0.11526 (5) 1.00142 (3) 0.28594 (3) 0.0164 (2)
O29w 0.24345 (5) 0.94233 (4) 0.26423 (3) 0.0170 (2)
O30w 0.11013 (5) 1.00717 (3) 0.21267 (3) 0.0157 (2)
O31w 0.12113 (5) 0.26057 (4) 0.27661 (4) 0.0231 (3)
O32w 0.17771 (5) 1.21697 (3) 0.28022 (3) 0.0166 (2)
O33w 0.05090 (5) 1.24794 (4) 0.20764 (3) 0.0171 (2)
O34w 0.07701 (5) 0.74664 (4) 0.27954 (4) 0.0196 (3)
O35w 0.05536 (6) 0.50591 (4) 0.28687 (4) 0.0250 (3)
O36w 0.08404 (6) 0.61792 (4) 0.27021 (4) 0.0174 (3) 0.8763 (8)
O38w 0.06773 (6) 0.48669 (4) 0.23320 (4) 0.0179 (3) 0.8763 (8)
O40w 0.07341 (8) 0.64227 (5) 0.23614 (5) 0.0294 (4) 0.8763 (8)
O42w 0.14421 (6) 0.55235 (5) 0.37499 (5) 0.0232 (3) 0.8763 (8)
S11 0.045182 (15) 1.072762 (11) 0.086128 (10) 0.01354 (7)
O11 0.08209 (5) 1.11584 (3) 0.07538 (3) 0.0194 (2)
O21 0.07345 (5) 1.03122 (3) 0.06462 (3) 0.0181 (2)
O31 0.04490 (5) 1.06062 (3) 0.19383 (3) 0.0175 (2)
N11 0.04176 (5) 1.06582 (4) 0.14090 (4) 0.0155 (3)
C71 0.02777 (6) 1.06607 (4) 0.15369 (4) 0.0138 (3)
S12 0.241859 (15) 1.192015 (11) 0.170777 (11) 0.01519 (7)
O12 0.28754 (5) 1.15041 (4) 0.16908 (4) 0.0208 (3)
O22 0.27643 (6) 1.23374 (4) 0.18638 (4) 0.0273 (3)
O32 0.04729 (5) 1.17487 (4) 0.18718 (3) 0.0200 (2)
N12 0.16778 (6) 1.18136 (4) 0.20027 (4) 0.0177 (3)
C72 0.11067 (6) 1.18307 (4) 0.17319 (4) 0.0153 (3)
S13 0.028375 (15) 0.314600 (11) 0.082681 (10) 0.01354 (7)
O13 0.07362 (5) 0.35555 (3) 0.07722 (3) 0.0188 (2)
O23 0.05653 (5) 0.27116 (3) 0.06503 (3) 0.0187 (2)
O33 0.08938 (4) 0.31214 (4) 0.17875 (3) 0.0179 (2)
N13 0.00987 (5) 0.31018 (4) 0.13578 (4) 0.0149 (2)
C73 0.06205 (6) 0.31510 (4) 0.14102 (4) 0.0139 (3)
S14 0.204993 (15) 0.461061 (11) 0.173827 (11) 0.01682 (8)
O14 0.26210 (5) 0.42786 (4) 0.18131 (4) 0.0245 (3)
O24 0.22080 (5) 0.50895 (3) 0.18762 (3) 0.0200 (3)
O34 0.01527 (5) 0.42779 (4) 0.17437 (3) 0.0211 (3)
N14 0.12878 (6) 0.44396 (4) 0.19766 (4) 0.0186 (3)
C74 0.07900 (6) 0.43981 (4) 0.16552 (4) 0.0159 (3)
S15 0.062210 (15) 0.576045 (12) 0.090321 (10) 0.01549 (7)
O15 0.10001 (5) 0.61996 (4) 0.08404 (3) 0.0226 (3)
O25 0.09893 (5) 0.53538 (4) 0.07283 (3) 0.0223 (3)
O35 0.05675 (5) 0.56150 (4) 0.18378 (3) 0.0244 (3)
N15 0.04337 (5) 0.56842 (4) 0.14258 (4) 0.0175 (3)
C75 0.02926 (6) 0.56741 (5) 0.14669 (4) 0.0165 (3)
S16 0.205343 (15) 0.677212 (11) 0.175515 (11) 0.01563 (7)
O16 0.22795 (5) 0.62878 (4) 0.17751 (4) 0.0234 (3)
O26 0.25605 (5) 0.71119 (4) 0.19133 (4) 0.0221 (3)
O36 0.01184 (5) 0.70328 (4) 0.18458 (4) 0.0210 (3)
N16 0.12712 (6) 0.68425 (4) 0.20251 (4) 0.0181 (3)
C76 0.07632 (6) 0.69539 (4) 0.17263 (4) 0.0156 (3)
S17 0.064601 (15) 0.819885 (11) 0.089907 (10) 0.01372 (7)
O17 0.10566 (5) 0.86084 (3) 0.07746 (3) 0.0190 (2)
O27 0.09344 (5) 0.77556 (3) 0.07509 (3) 0.0186 (2)
O37 0.04426 (5) 0.82051 (4) 0.19061 (3) 0.0176 (2)
N17 0.05062 (5) 0.81931 (4) 0.14421 (4) 0.0160 (3)
C77 0.02039 (6) 0.82175 (4) 0.15131 (4) 0.0149 (3)
S18 0.230901 (15) 0.946577 (11) 0.171368 (10) 0.01363 (7)
O18 0.27615 (5) 0.90558 (3) 0.16997 (3) 0.0196 (2)
O28 0.26798 (5) 0.99020 (3) 0.18099 (3) 0.0200 (3)
O38 0.03813 (4) 0.93909 (3) 0.20347 (3) 0.0168 (2)
N18 0.16142 (5) 0.94014 (4) 0.20685 (4) 0.0161 (3)
C78 0.09940 (6) 0.94207 (4) 0.18412 (4) 0.0142 (3)
S19 0.232342 (14) 1.067542 (11) 0.322180 (11) 0.01396 (7)
O19 0.27044 (5) 1.02281 (3) 0.32096 (3) 0.0200 (2)
O29 0.27799 (5) 1.10660 (4) 0.31111 (4) 0.0211 (3)
O39 0.03758 (4) 1.06496 (3) 0.29890 (3) 0.0159 (2)
N19 0.15941 (5) 1.06572 (4) 0.28982 (4) 0.0156 (3)
C79 0.10038 (6) 1.06785 (4) 0.31558 (4) 0.0134 (3)
S110 0.059599 (15) 1.192786 (11) 0.408533 (10) 0.01465 (7)
O110 0.10018 (5) 1.23525 (4) 0.41621 (3) 0.0208 (3)
O210 0.08943 (5) 1.15111 (4) 0.42896 (3) 0.0215 (3)
O310 0.04848 (5) 1.17794 (3) 0.30875 (3) 0.0172 (2)
N110 0.04693 (5) 1.18506 (4) 0.35484 (4) 0.0168 (3)
C710 0.02449 (6) 1.18587 (4) 0.34694 (4) 0.0145 (3)
S111 0.218127 (14) 0.337039 (10) 0.338598 (10) 0.01254 (7)
O111 0.28029 (4) 0.30681 (3) 0.33779 (3) 0.0181 (2)
O211 0.23091 (4) 0.38543 (3) 0.32495 (3) 0.0166 (2)
O311 0.03194 (5) 0.29685 (3) 0.32185 (3) 0.0179 (2)
N111 0.14940 (5) 0.31570 (4) 0.30922 (3) 0.0145 (2)
C711 0.09193 (6) 0.31031 (4) 0.33636 (4) 0.0132 (3)
S112 0.063195 (15) 0.427113 (11) 0.412761 (11) 0.01558 (7)
O112 0.11225 (5) 0.46617 (4) 0.41780 (3) 0.0210 (3)
O212 0.08903 (5) 0.38269 (3) 0.42980 (3) 0.0206 (3)
O312 0.06447 (5) 0.42566 (4) 0.32282 (3) 0.0208 (3)
N112 0.03933 (5) 0.42271 (4) 0.36075 (4) 0.0167 (3)
C712 0.03297 (6) 0.42907 (4) 0.35883 (4) 0.0153 (3)
S114 0.030608 (15) 0.702137 (12) 0.412033 (10) 0.01503 (7)
O114 0.07138 (5) 0.74344 (4) 0.42362 (3) 0.0220 (3)
O214 0.06386 (5) 0.65805 (4) 0.42358 (3) 0.0212 (3)
O314 0.08785 (5) 0.70204 (4) 0.31620 (3) 0.0200 (3)
N114 0.01213 (5) 0.70116 (4) 0.35864 (4) 0.0165 (3)
C714 0.06001 (6) 0.70289 (4) 0.35410 (4) 0.0146 (3)
S115 0.247897 (14) 0.824999 (10) 0.331901 (10) 0.01299 (7)
O115 0.29161 (5) 0.78317 (3) 0.33230 (3) 0.0200 (3)
O215 0.28721 (4) 0.86824 (3) 0.32408 (3) 0.0179 (2)
O315 0.05536 (4) 0.81863 (3) 0.29887 (3) 0.0164 (2)
N115 0.17863 (5) 0.82098 (4) 0.29615 (4) 0.0147 (2)
C715 0.11611 (6) 0.82190 (4) 0.31870 (4) 0.0133 (3)
S116 0.057450 (15) 0.943291 (11) 0.414126 (10) 0.01476 (7)
O116 0.09734 (5) 0.98488 (4) 0.42638 (3) 0.0206 (3)
O216 0.08409 (5) 0.89988 (4) 0.43266 (3) 0.0208 (3)
O316 0.03971 (5) 0.94154 (3) 0.30838 (3) 0.0181 (2)
N116 0.05028 (5) 0.93974 (4) 0.35929 (4) 0.0165 (3)
C716 0.01976 (6) 0.94312 (4) 0.34832 (4) 0.0147 (3)
Na15 0.1086 (2) 0.51422 (16) 0.35054 (16) 0.0191 (12) 0.1237 (8)
Na17 0.1419 (3) 0.5805 (2) 0.23032 (19) 0.0325 (18) 0.1237 (8)
Na19 0.0361 (3) 0.5666 (2) 0.24605 (18) 0.0345 (17) 0.1237 (8)
O37w 0.0514 (5) 0.6134 (3) 0.2799 (4) 0.037 (3) 0.1237 (8)
Hao28 0.1042 (8) 0.9856 (6) 0.3109 (6) 0.0196*
Hbo28 0.1385 (8) 0.9843 (6) 0.2664 (6) 0.0196*
Hao24 0.1314 (10) 1.0487 (7) 0.3954 (7) 0.0342*
Hao27 0.1304 (10) 0.9255 (7) 0.0994 (7) 0.0337*
Hao17 0.1512 (9) 0.7221 (7) 0.1202 (6) 0.0284*
Hao22 0.1485 (10) 0.3350 (7) 0.3860 (7) 0.0321*
Hao18 0.1020 (8) 1.1484 (6) 0.3037 (6) 0.019*
Hbo18 0.1388 (8) 1.1476 (6) 0.2615 (6) 0.019*
Hao33 0.0484 (8) 1.2649 (6) 0.1850 (6) 0.0206*
Hao13 0.1459 (9) 0.8048 (6) 0.2033 (6) 0.0203*
Hao21 0.1863 (9) 0.6834 (6) 0.3023 (6) 0.0218*
Hao38 0.0488 (10) 0.4733 (7) 0.2108 (7) 0.0215* 0.8763 (8)
O43w 0.1468 (4) 0.5847 (3) 0.3797 (3) 0.023 (2) 0.1237 (8)
Hao23 0.2551 (9) 1.0945 (6) 0.2164 (6) 0.0214*
Hao15 0.1365 (8) 0.8931 (6) 0.2635 (6) 0.0193*
Hbo15 0.1034 (8) 0.8911 (6) 0.3061 (6) 0.0193*
Hao12 0.1204 (10) 0.8004 (7) 0.3893 (7) 0.0311*
Hao34 0.0649 (9) 0.7331 (6) 0.3060 (6) 0.0236*
Hao31 0.1085 (9) 0.2443 (7) 0.3003 (6) 0.0277*
O41w 0.0920 (4) 0.6335 (3) 0.2157 (4) 0.028 (3) 0.1237 (8)
Hao32 0.1396 (9) 1.2063 (6) 0.2876 (6) 0.02*
Hao29 0.2430 (9) 0.9645 (6) 0.2797 (6) 0.0204*
Hbo29 0.2497 (8) 0.9192 (6) 0.2842 (6) 0.0204*
Hbo25 0.1028 (9) 0.3542 (6) 0.2553 (6) 0.0231*
Hao25 0.0469 (9) 0.3810 (6) 0.2534 (6) 0.0231*
Hao30 0.1339 (8) 1.0256 (6) 0.2335 (6) 0.0188*
Hao16 0.1205 (10) 1.2169 (7) 0.1050 (7) 0.0278*
Hao20 0.1367 (9) 1.1168 (6) 0.2290 (6) 0.0204*
Hbo20 0.0960 (8) 1.1162 (6) 0.1887 (6) 0.0204*
Hbo14 0.1022 (8) 0.8570 (6) 0.1925 (6) 0.0191*
Hao14 0.1423 (8) 0.8624 (6) 0.2344 (6) 0.0191*
Hao11 0.0681 (9) 0.3870 (6) 0.2983 (6) 0.0219*
Hbo11 0.0943 (9) 0.3946 (6) 0.2554 (6) 0.0219*
Hao19 0.1680 (10) 0.4713 (7) 0.1409 (7) 0.0373*
Hao26 0.1643 (8) 0.7706 (6) 0.2481 (6) 0.0208*
Hbo26 0.1535 (9) 0.7678 (6) 0.2044 (6) 0.0208*
Hbo10 0.2280 (9) 0.3641 (6) 0.2067 (6) 0.0208*
Hbo21 0.2279 (9) 0.6495 (6) 0.2962 (6) 0.0218*
Hbo30 0.0952 (8) 1.0229 (6) 0.1907 (6) 0.0188*
Hbo17 0.1457 (9) 0.6754 (7) 0.1190 (6) 0.0284*
Hbo33 0.0232 (9) 1.2264 (6) 0.2011 (6) 0.0206*
Hao10 0.1836 (9) 0.3294 (6) 0.2002 (6) 0.0208*
Hbo12 0.1284 (10) 0.8439 (7) 0.3892 (7) 0.0311*
Hbo13 0.2003 (9) 0.7766 (6) 0.2058 (6) 0.0203*
Hbo34 0.1016 (9) 0.7280 (6) 0.2642 (6) 0.0236*
Hbo27 0.1260 (10) 0.9712 (7) 0.0982 (7) 0.0337*
Hbo23 0.2459 (9) 1.0493 (6) 0.2152 (6) 0.0214*
Hbo22 0.1495 (10) 0.2906 (7) 0.3813 (7) 0.0321*
Hbo19 0.1175 (10) 0.4745 (7) 0.1101 (7) 0.0373*
Hbo32 0.1719 (8) 1.2446 (6) 0.2838 (6) 0.02*
Hao35 0.0358 (9) 0.5250 (7) 0.3046 (6) 0.03*
Hbo38 0.0365 (10) 0.4884 (7) 0.2502 (7) 0.0215* 0.8763 (8)
Hbo24 0.1358 (10) 1.0907 (7) 0.3950 (7) 0.0342*
Hbo31 0.1461 (10) 0.2448 (7) 0.2617 (6) 0.0277*
Hbo16 0.1209 (9) 1.1748 (7) 0.1085 (6) 0.0278*
Hbo35 0.0659 (9) 0.4835 (7) 0.3057 (6) 0.03*
Hbo40 0.0729 (12) 0.6551 (8) 0.2585 (8) 0.0353* 0.8763 (8)
O39w 0.0966 (4) 0.4964 (3) 0.2199 (3) 0.022 (2) 0.1237 (8)
Hao40 0.0496 (12) 0.6572 (8) 0.2185 (8) 0.0353* 0.8763 (8)
Hao42 0.1211 (11) 0.5330 (8) 0.3883 (7) 0.0278* 0.8763 (8)
Hbo42 0.1729 (11) 0.5366 (8) 0.3614 (7) 0.0278* 0.8763 (8)
S1dia 0.20429 (2) 0.54741 (2) 0.32592 (2) 0.01310 (10) 0.8763 (8)
O1dia 0.25412 (6) 0.57836 (4) 0.30419 (4) 0.0225 (3) 0.8763 (8)
O2dia 0.22222 (19) 0.49839 (12) 0.32227 (14) 0.0146 (4) 0.8763 (8)
O3dia 0.01560 (5) 0.57816 (4) 0.33654 (4) 0.0237 (3) 0.8763 (8)
N1dia 0.12260 (7) 0.55647 (5) 0.30681 (5) 0.0180 (3) 0.8763 (8)
C7dia 0.08158 (7) 0.57008 (5) 0.34128 (5) 0.0154 (3) 0.8763 (8)
S1dib 0.1802 (3) 0.54443 (18) 0.32182 (18) 0.0252 (11) 0.1237 (8)
O1dib 0.2141 (5) 0.5787 (3) 0.2918 (3) 0.0225 (3) 0.1237 (8)
O2dib 0.2126 (15) 0.4934 (11) 0.3188 (12) 0.028 (5) 0.1237 (8)
O3dib 0.0029 (4) 0.5538 (3) 0.3655 (3) 0.0237 (3) 0.1237 (8)
N1dib 0.0966 (5) 0.5427 (4) 0.3196 (3) 0.025 (3) 0.1237 (8)
C7dib 0.0681 (5) 0.5551 (5) 0.3594 (4) 0.021 (3) 0.1237 (8)
C1a 0.04797 (3) 1.078592 (18) 0.07310 (2) 0.0140 (12)
C2a 0.08242 (3) 1.073767 (18) 0.11383 (2) 0.0140 (12)
C3a 0.15674 (4) 1.077304 (18) 0.11412 (3) 0.0175 (13)
C4a 0.19512 (4) 1.085804 (18) 0.07236 (3) 0.0203 (12)
C5a 0.15998 (4) 1.090617 (18) 0.03149 (3) 0.0204 (12)
C6a 0.08497 (4) 1.087048 (18) 0.03119 (3) 0.0176 (13)
H1c3a 0.180917 1.074016 0.142099 0.020 (3)
H1c4a 0.246577 1.088401 0.071635 0.024 (2)
H1c5a 0.187717 1.096451 0.003249 0.024 (2)
H1c6a 0.060379 1.090293 0.003362 0.020 (3)
C1b 0.20518 (5) 1.20152 (7) 0.11717 (2) 0.0139 (13)
C2b 0.13116 (5) 1.19578 (7) 0.12406 (2) 0.0138 (13)
C3b 0.08666 (5) 1.20112 (12) 0.08791 (3) 0.0166 (14)
C4b 0.11878 (6) 1.21237 (6) 0.04483 (3) 0.0183 (13)
C5b 0.19338 (6) 1.21808 (7) 0.03821 (3) 0.0187 (13)
C6b 0.23832 (5) 1.21269 (13) 0.07469 (3) 0.0171 (14)
H1c3b 0.035508 1.19722 0.092385 0.022 (3)
H1c4b 0.089176 1.216254 0.019265 0.024 (2)
H1c5b 0.214047 1.225815 0.008205 0.025 (2)
H1c6b 0.28951 1.216534 0.070499 0.023 (3)
C1c 0.06068 (4) 0.32456 (3) 0.05970 (3) 0.0140 (13)
C2c 0.10462 (4) 0.32457 (3) 0.09660 (3) 0.0141 (13)
C3c 0.17811 (5) 0.33221 (4) 0.08974 (3) 0.0170 (14)
C4c 0.20587 (5) 0.33979 (3) 0.04482 (3) 0.0194 (13)
C5c 0.16121 (5) 0.33972 (3) 0.00786 (3) 0.0194 (13)
C6c 0.08703 (5) 0.33202 (4) 0.01478 (3) 0.0169 (14)
H1c3c 0.208806 0.332267 0.115029 0.022 (3)
H1c4c 0.25652 0.345157 0.03916 0.026 (3)
H1c5c 0.181735 0.345034 0.022682 0.026 (3)
H1c6c 0.055971 0.331902 0.010324 0.022 (3)
C1d 0.18102 (6) 0.46019 (13) 0.11645 (2) 0.0161 (14)
C2d 0.10769 (6) 0.45066 (13) 0.11780 (2) 0.0152 (14)
C3d 0.07094 (9) 0.4506 (3) 0.07778 (3) 0.0188 (15)
C4d 0.11008 (7) 0.46039 (12) 0.03657 (3) 0.0230 (14)
C5d 0.18394 (7) 0.46995 (13) 0.03552 (3) 0.0235 (14)
C6d 0.22104 (9) 0.4700 (3) 0.07592 (4) 0.0202 (15)
H1c3d 0.020317 0.444069 0.078424 0.025 (3)
H1c4d 0.085921 0.460574 0.008401 0.032 (3)
H1c5d 0.209539 0.476565 0.006691 0.033 (3)
H1c6d 0.271658 0.47651 0.075563 0.027 (3)
C1e 0.02684 (4) 0.57960 (4) 0.06572 (3) 0.0147 (15)
C2e 0.07210 (4) 0.57443 (4) 0.10160 (3) 0.0150 (15)
C3e 0.14626 (5) 0.57655 (5) 0.09351 (3) 0.0180 (17)
C4e 0.17331 (5) 0.58398 (4) 0.04842 (3) 0.0203 (15)
C5e 0.12732 (5) 0.58914 (4) 0.01249 (3) 0.0201 (15)
C6e 0.05247 (5) 0.58701 (5) 0.02064 (3) 0.0176 (17)
H1c3e 0.177865 0.573014 0.118099 0.029 (3)
H1c4e 0.224409 0.585583 0.041921 0.033 (3)
H1c5e 0.147395 0.594223 0.018205 0.033 (3)
H1c6e 0.020501 0.590508 0.003754 0.028 (4)
C1f 0.17907 (5) 0.69250 (8) 0.12021 (2) 0.0153 (15)
C2f 0.10489 (5) 0.69877 (8) 0.12388 (2) 0.0147 (15)
C3f 0.06772 (5) 0.71017 (16) 0.08555 (4) 0.0189 (16)
C4f 0.10730 (6) 0.71505 (8) 0.04365 (3) 0.0225 (15)
C5f 0.18201 (6) 0.70867 (9) 0.04027 (3) 0.0237 (15)
C6f 0.21954 (5) 0.69716 (17) 0.07895 (4) 0.0207 (16)
H1c3f 0.016512 0.714557 0.0878 0.029 (3)
H1c4f 0.08286 0.722923 0.016625 0.035 (3)
H1c5f 0.207899 0.712242 0.011009 0.037 (3)
H1c6f 0.270741 0.692715 0.076991 0.032 (3)
C1g 0.02619 (4) 0.82657 (4) 0.06962 (3) 0.0145 (17)
C2g 0.06769 (4) 0.82642 (4) 0.10769 (3) 0.0144 (17)
C3g 0.14183 (5) 0.83176 (4) 0.10249 (3) 0.0171 (19)
C4g 0.17275 (5) 0.83723 (3) 0.05802 (3) 0.0206 (17)
C5g 0.13053 (5) 0.83734 (4) 0.01987 (3) 0.0212 (17)
C6g 0.05570 (5) 0.83195 (4) 0.02511 (3) 0.0179 (19)
H1c3g 0.170859 0.831696 0.128597 0.032 (4)
H1c4g 0.223917 0.840996 0.053494 0.038 (3)
H1c5g 0.15321 0.841174 0.010341 0.039 (3)
H1c6g 0.02629 0.831977 0.000825 0.033 (4)
C1h 0.18413 (4) 0.95305 (6) 0.12044 (2) 0.0141 (14)
C2h 0.11141 (5) 0.94886 (6) 0.13364 (2) 0.0139 (14)
C3h 0.05968 (4) 0.95337 (11) 0.10158 (3) 0.0171 (15)
C4h 0.08328 (6) 0.96217 (6) 0.05607 (3) 0.0193 (14)
C5h 0.15664 (6) 0.96633 (6) 0.04307 (3) 0.0193 (14)
C6h 0.20886 (5) 0.96178 (11) 0.07542 (3) 0.0174 (15)
H1c3h 0.00937 0.950527 0.110425 0.024 (3)
H1c4h 0.04857 0.965427 0.033231 0.027 (3)
H1c5h 0.171367 0.972386 0.011516 0.027 (3)
H1c6h 0.259274 0.964576 0.066861 0.024 (3)
C1i 0.19282 (5) 1.07538 (8) 0.37540 (2) 0.0149 (15)
C2i 0.11878 (5) 1.07404 (8) 0.36586 (2) 0.0141 (15)
C3i 0.07196 (4) 1.07885 (15) 0.40084 (3) 0.0170 (17)
C4i 0.10180 (6) 1.08503 (8) 0.44549 (3) 0.0200 (15)
C5i 0.17644 (6) 1.08634 (8) 0.45478 (3) 0.0206 (16)
C6i 0.22371 (4) 1.08149 (15) 0.41948 (4) 0.0186 (17)
H1c3i 0.020782 1.07796 0.394536 0.027 (3)
H1c4i 0.070569 1.088443 0.470291 0.032 (3)
H1c5i 0.195506 1.090637 0.485816 0.033 (3)
H1c6i 0.274953 1.082337 0.425497 0.030 (4)
C1j 0.03124 (4) 1.20016 (3) 0.42788 (3) 0.0142 (15)
C2j 0.07216 (4) 1.19644 (3) 0.38971 (3) 0.0140 (15)
C3j 0.14635 (5) 1.20184 (4) 0.39403 (3) 0.0165 (17)
C4j 0.17791 (5) 1.21105 (3) 0.43772 (3) 0.0186 (15)
C5j 0.13628 (5) 1.21474 (3) 0.47598 (3) 0.0185 (15)
C6j 0.06140 (5) 1.20930 (4) 0.47164 (3) 0.0168 (17)
H1c3j 0.174973 1.199319 0.367838 0.029 (3)
H1c4j 0.22913 1.214926 0.441619 0.033 (3)
H1c5j 0.159404 1.2211 0.505639 0.032 (3)
H1c6j 0.032393 1.211762 0.49765 0.029 (4)
C1k 0.18188 (5) 0.33507 (7) 0.39299 (2) 0.0129 (11)
C2k 0.10995 (6) 0.32247 (7) 0.38568 (2) 0.0124 (11)
C3k 0.06509 (7) 0.32098 (14) 0.42198 (3) 0.0148 (12)
C4k 0.09469 (6) 0.33251 (7) 0.46563 (3) 0.0170 (11)
C5k 0.16719 (6) 0.34516 (8) 0.47268 (3) 0.0172 (12)
C6k 0.21249 (7) 0.34666 (15) 0.43605 (3) 0.0155 (13)
H1c3k 0.015374 0.312317 0.417213 0.018 (3)
H1c4k 0.064788 0.331752 0.491311 0.022 (2)
H1c5k 0.18615 0.352924 0.503073 0.022 (2)
H1c6k 0.262262 0.35529 0.440523 0.019 (3)
C1l 0.02252 (4) 0.44110 (4) 0.43912 (3) 0.0160 (12)
C2l 0.07050 (4) 0.44132 (4) 0.40438 (3) 0.0147 (12)
C3l 0.14255 (5) 0.45207 (5) 0.41401 (3) 0.0173 (13)
C4l 0.16470 (5) 0.46253 (4) 0.45943 (3) 0.0210 (12)
C5l 0.11600 (5) 0.46221 (4) 0.49420 (3) 0.0230 (12)
C6l 0.04328 (5) 0.45137 (5) 0.48450 (3) 0.0207 (14)
H1c3l 0.176007 0.452303 0.390219 0.022 (3)
H1c4l 0.214253 0.470076 0.466982 0.028 (2)
H1c5l 0.132708 0.469544 0.525157 0.031 (2)
H1c6l 0.009482 0.45106 0.50809 0.028 (3)
C1m 0.05857 (4) 0.70639 (3) 0.43594 (3) 0.0137 (12)
C2m 0.10334 (4) 0.70601 (3) 0.39946 (3) 0.0141 (12)
C3m 0.17738 (5) 0.70980 (4) 0.40727 (3) 0.0173 (13)
C4m 0.20484 (5) 0.71396 (3) 0.45268 (3) 0.0198 (12)
C5m 0.15934 (5) 0.71432 (4) 0.48921 (3) 0.0189 (12)
C6m 0.08460 (5) 0.71049 (5) 0.48134 (3) 0.0159 (14)
H1c3m 0.208654 0.709558 0.382278 0.021 (3)
H1c4m 0.255866 0.716635 0.459 0.025 (2)
H1c5m 0.179675 0.717228 0.520116 0.023 (2)
H1c6m 0.052961 0.710703 0.506145 0.018 (3)
C1n 0.20130 (5) 0.83026 (7) 0.38256 (2) 0.0143 (14)
C2n 0.12831 (5) 0.82727 (7) 0.36973 (2) 0.0143 (14)
C3n 0.07729 (5) 0.83077 (12) 0.40236 (3) 0.0185 (16)
C4n 0.10188 (6) 0.83733 (6) 0.44806 (3) 0.0219 (14)
C5n 0.17550 (6) 0.84030 (7) 0.46068 (3) 0.0224 (14)
C6n 0.22701 (5) 0.83677 (12) 0.42775 (3) 0.0190 (16)
H1c3n 0.026803 0.828736 0.393776 0.026 (3)
H1c4n 0.067676 0.839853 0.471293 0.031 (3)
H1c5n 0.190915 0.844825 0.492378 0.032 (3)
H1c6n 0.277592 0.838768 0.436053 0.027 (3)
C1o 0.03487 (4) 0.95116 (3) 0.43006 (3) 0.0149 (15)
C2o 0.07136 (4) 0.94934 (3) 0.38988 (3) 0.0150 (15)
C3o 0.14564 (5) 0.95409 (4) 0.39123 (3) 0.0183 (16)
C4o 0.18188 (4) 0.96070 (3) 0.43404 (4) 0.0213 (15)
C5o 0.14468 (4) 0.96249 (3) 0.47433 (4) 0.0214 (15)
C6o 0.06970 (5) 0.95770 (4) 0.47299 (3) 0.0184 (17)
H1c3o 0.171234 0.952874 0.363645 0.028 (3)
H1c4o 0.233267 0.964088 0.435896 0.034 (3)
H1c5o 0.170968 0.96708 0.503323 0.034 (3)
H1c6o 0.043718 0.958873 0.500413 0.028 (4)
C1p 0.19497 (6) 0.56456 (8) 0.38341 (3) 0.0120 (14) 0.8763 (8)
C2p 0.12249 (7) 0.57482 (8) 0.38687 (3) 0.0122 (14) 0.8763 (8)
C3p 0.09723 (7) 0.58996 (15) 0.42818 (4) 0.0163 (15) 0.8763 (8)
C4p 0.14691 (7) 0.59443 (8) 0.46571 (3) 0.0194 (14) 0.8763 (8)
C5p 0.21982 (7) 0.58402 (8) 0.46191 (3) 0.0213 (14) 0.8763 (8)
C6p 0.24533 (7) 0.56874 (15) 0.42022 (4) 0.0179 (16) 0.8763 (8)
H1c3p 0.047271 0.597111 0.430854 0.021 (3) 0.8763 (8)
H1c4p 0.130799 0.604844 0.494671 0.025 (3) 0.8763 (8)
H1c5p 0.25282 0.58741 0.488284 0.029 (3) 0.8763 (8)
H1c6p 0.295197 0.561513 0.417268 0.023 (3) 0.8763 (8)
C1q 0.1895 (3) 0.5644 (4) 0.37939 (17) 0.03 (2) 0.1237 (8)
C2q 0.1220 (3) 0.5697 (4) 0.39667 (17) 0.02 (2) 0.1237 (8)
C3q 0.11516 (17) 0.5860 (7) 0.4411 (2) 0.02 (2) 0.1237 (8)
C4q 0.1781 (3) 0.5967 (4) 0.46743 (16) 0.02 (2) 0.1237 (8)
C5q 0.2459 (3) 0.5912 (4) 0.44974 (17) 0.02 (2) 0.1237 (8)
C6q 0.25275 (17) 0.5749 (7) 0.4049 (3) 0.03 (2) 0.1237 (8)
H1c3q 0.068747 0.589734 0.45326 0.06 (5) 0.1237 (8)
H1c4q 0.174854 0.607984 0.498248 0.06 (4) 0.1237 (8)
H1c5q 0.288284 0.598875 0.468625 0.06 (4) 0.1237 (8)
H1c6q 0.298962 0.571009 0.392488 0.07 (5) 0.1237 (8)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Na1 0.0101 (2) 0.0193 (2) 0.0183 (2) 0.00201 (17) 0.00348 (17) 0.00084 (19)
Na2 0.0111 (2) 0.0178 (2) 0.0173 (2) 0.00145 (17) 0.00312 (17) 0.00012 (18)
Na3 0.0113 (2) 0.0186 (2) 0.0159 (2) 0.00063 (17) 0.00248 (17) 0.00065 (18)
Na4 0.0112 (2) 0.0173 (2) 0.0179 (2) 0.00030 (17) 0.00275 (17) 0.00009 (18)
Na5 0.0115 (2) 0.0161 (2) 0.0192 (2) 0.00089 (17) 0.00303 (17) 0.00016 (18)
Na6 0.0117 (2) 0.0152 (2) 0.0198 (2) 0.00024 (17) 0.00218 (17) 0.00003 (18)
Na7 0.0106 (2) 0.0186 (2) 0.0182 (2) 0.00179 (17) 0.00176 (17) 0.00061 (19)
Na8 0.0145 (2) 0.0196 (3) 0.0196 (2) 0.00294 (18) 0.00151 (18) 0.0028 (2)
Na9 0.0115 (2) 0.0157 (2) 0.0198 (2) 0.00040 (17) 0.00297 (17) 0.00040 (19)
Na10 0.0121 (2) 0.0193 (2) 0.0195 (2) 0.00000 (18) 0.00378 (17) 0.00065 (19)
Na11 0.0114 (2) 0.0234 (3) 0.0162 (2) 0.00050 (18) 0.00146 (17) 0.0011 (2)
Na12 0.0118 (2) 0.0266 (3) 0.0337 (3) 0.0001 (2) 0.0017 (2) 0.0117 (2)
Na13 0.0104 (2) 0.0215 (3) 0.0191 (2) 0.00122 (18) 0.00393 (17) 0.0009 (2)
Na14 0.0114 (2) 0.0184 (3) 0.0176 (3) 0.0009 (2) 0.00116 (19) 0.0016 (2)
Na16 0.0120 (3) 0.0330 (4) 0.0191 (3) 0.0018 (2) 0.0044 (2) 0.0060 (3)
Na18 0.0178 (3) 0.0182 (3) 0.0165 (3) 0.0009 (2) 0.0001 (2) 0.0000 (2)
O10w 0.0121 (4) 0.0191 (4) 0.0214 (4) 0.0007 (3) 0.0055 (3) 0.0014 (3)
O11w 0.0189 (4) 0.0194 (4) 0.0163 (4) 0.0006 (3) 0.0004 (3) 0.0015 (3)
O12w 0.0303 (5) 0.0223 (5) 0.0247 (5) 0.0000 (4) 0.0030 (4) 0.0021 (4)
O13w 0.0112 (4) 0.0188 (4) 0.0212 (4) 0.0003 (3) 0.0044 (3) 0.0022 (3)
O14w 0.0117 (3) 0.0185 (4) 0.0179 (4) 0.0001 (3) 0.0027 (3) 0.0004 (3)
O15w 0.0126 (4) 0.0177 (4) 0.0181 (4) 0.0001 (3) 0.0027 (3) 0.0003 (3)
O16w 0.0264 (5) 0.0191 (5) 0.0236 (5) 0.0009 (4) 0.0030 (4) 0.0013 (4)
O17w 0.0239 (5) 0.0221 (5) 0.0245 (5) 0.0015 (4) 0.0028 (4) 0.0006 (4)
O18w 0.0119 (3) 0.0183 (4) 0.0172 (4) 0.0010 (3) 0.0012 (3) 0.0008 (3)
O19w 0.0280 (5) 0.0229 (5) 0.0407 (7) 0.0069 (4) 0.0129 (5) 0.0086 (5)
O20w 0.0134 (4) 0.0183 (4) 0.0194 (4) 0.0000 (3) 0.0018 (3) 0.0001 (3)
O21w 0.0132 (4) 0.0184 (4) 0.0234 (5) 0.0010 (3) 0.0062 (3) 0.0006 (4)
O22w 0.0316 (5) 0.0213 (5) 0.0266 (5) 0.0002 (4) 0.0042 (4) 0.0034 (4)
O23w 0.0170 (4) 0.0177 (4) 0.0193 (4) 0.0000 (3) 0.0038 (3) 0.0001 (3)
O24w 0.0366 (6) 0.0200 (5) 0.0278 (6) 0.0010 (4) 0.0079 (4) 0.0002 (4)
O25w 0.0170 (4) 0.0233 (5) 0.0176 (4) 0.0064 (3) 0.0028 (3) 0.0007 (3)
O26w 0.0184 (4) 0.0178 (4) 0.0166 (4) 0.0003 (3) 0.0061 (3) 0.0004 (3)
O27w 0.0359 (6) 0.0203 (5) 0.0268 (5) 0.0030 (4) 0.0086 (4) 0.0005 (4)
O28w 0.0125 (4) 0.0183 (4) 0.0184 (4) 0.0002 (3) 0.0028 (3) 0.0001 (3)
O29w 0.0166 (4) 0.0176 (4) 0.0171 (4) 0.0001 (3) 0.0032 (3) 0.0002 (3)
O30w 0.0120 (3) 0.0173 (4) 0.0179 (4) 0.0012 (3) 0.0015 (3) 0.0002 (3)
O31w 0.0202 (5) 0.0199 (5) 0.0298 (6) 0.0034 (4) 0.0070 (4) 0.0000 (4)
O32w 0.0124 (4) 0.0178 (4) 0.0202 (4) 0.0009 (3) 0.0049 (3) 0.0011 (3)
O33w 0.0129 (4) 0.0187 (4) 0.0201 (4) 0.0006 (3) 0.0029 (3) 0.0031 (3)
O34w 0.0163 (4) 0.0221 (5) 0.0201 (4) 0.0022 (3) 0.0022 (3) 0.0009 (4)
O35w 0.0215 (5) 0.0209 (5) 0.0326 (6) 0.0035 (4) 0.0017 (4) 0.0009 (4)
O36w 0.0119 (4) 0.0222 (5) 0.0184 (5) 0.0021 (4) 0.0044 (4) 0.0007 (4)
O38w 0.0156 (5) 0.0201 (5) 0.0182 (5) 0.0003 (4) 0.0014 (4) 0.0027 (4)
O40w 0.0385 (7) 0.0240 (6) 0.0241 (6) 0.0135 (5) 0.0118 (6) 0.0074 (5)
O42w 0.0216 (5) 0.0219 (6) 0.0257 (6) 0.0025 (4) 0.0015 (4) 0.0024 (5)
S11 0.01001 (10) 0.01620 (12) 0.01459 (12) 0.00011 (9) 0.00217 (9) 0.00057 (10)
O11 0.0168 (4) 0.0202 (4) 0.0216 (4) 0.0053 (3) 0.0029 (3) 0.0016 (3)
O21 0.0159 (4) 0.0197 (4) 0.0191 (4) 0.0033 (3) 0.0045 (3) 0.0016 (3)
O31 0.0171 (4) 0.0213 (4) 0.0145 (4) 0.0019 (3) 0.0047 (3) 0.0012 (3)
N11 0.0112 (4) 0.0206 (5) 0.0147 (4) 0.0012 (3) 0.0021 (3) 0.0005 (4)
C71 0.0124 (4) 0.0145 (5) 0.0147 (5) 0.0013 (4) 0.0021 (3) 0.0001 (4)
S12 0.01240 (11) 0.01587 (13) 0.01776 (13) 0.00281 (9) 0.00463 (9) 0.00160 (10)
O12 0.0132 (4) 0.0222 (5) 0.0273 (5) 0.0027 (3) 0.0035 (3) 0.0060 (4)
O22 0.0310 (5) 0.0224 (5) 0.0297 (6) 0.0122 (4) 0.0127 (4) 0.0003 (4)
O32 0.0120 (4) 0.0233 (5) 0.0241 (5) 0.0013 (3) 0.0030 (3) 0.0050 (4)
N12 0.0153 (4) 0.0213 (5) 0.0167 (5) 0.0002 (4) 0.0021 (3) 0.0018 (4)
C72 0.0132 (5) 0.0151 (5) 0.0175 (5) 0.0009 (4) 0.0003 (4) 0.0016 (4)
S13 0.01084 (11) 0.01675 (13) 0.01331 (12) 0.00032 (9) 0.00296 (9) 0.00053 (9)
O13 0.0137 (4) 0.0223 (5) 0.0206 (4) 0.0046 (3) 0.0025 (3) 0.0023 (3)
O23 0.0184 (4) 0.0205 (4) 0.0177 (4) 0.0045 (3) 0.0055 (3) 0.0014 (3)
O33 0.0121 (4) 0.0280 (5) 0.0139 (4) 0.0026 (3) 0.0041 (3) 0.0005 (3)
N13 0.0095 (4) 0.0206 (5) 0.0147 (4) 0.0018 (3) 0.0022 (3) 0.0002 (4)
C73 0.0104 (4) 0.0174 (5) 0.0143 (5) 0.0011 (4) 0.0026 (3) 0.0001 (4)
S14 0.01073 (11) 0.01817 (13) 0.02226 (14) 0.00328 (10) 0.00680 (10) 0.00356 (11)
O14 0.0131 (4) 0.0218 (5) 0.0397 (6) 0.0006 (3) 0.0112 (4) 0.0077 (4)
O24 0.0155 (4) 0.0202 (4) 0.0248 (5) 0.0055 (3) 0.0071 (3) 0.0003 (4)
O34 0.0117 (4) 0.0286 (5) 0.0232 (5) 0.0073 (3) 0.0023 (3) 0.0001 (4)
N14 0.0140 (4) 0.0229 (5) 0.0195 (5) 0.0060 (4) 0.0067 (4) 0.0039 (4)
C74 0.0117 (4) 0.0180 (5) 0.0184 (5) 0.0032 (4) 0.0044 (4) 0.0004 (4)
S15 0.01051 (11) 0.02178 (14) 0.01436 (12) 0.00022 (10) 0.00236 (9) 0.00256 (10)
O15 0.0173 (4) 0.0286 (5) 0.0218 (5) 0.0087 (4) 0.0004 (3) 0.0047 (4)
O25 0.0190 (4) 0.0297 (5) 0.0188 (4) 0.0092 (4) 0.0057 (3) 0.0023 (4)
O35 0.0206 (4) 0.0365 (6) 0.0168 (4) 0.0022 (4) 0.0078 (3) 0.0007 (4)
N15 0.0127 (4) 0.0250 (5) 0.0149 (4) 0.0000 (4) 0.0018 (3) 0.0017 (4)
C75 0.0151 (5) 0.0191 (5) 0.0156 (5) 0.0008 (4) 0.0041 (4) 0.0013 (4)
S16 0.01154 (11) 0.01673 (13) 0.01923 (13) 0.00247 (9) 0.00598 (9) 0.00269 (10)
O16 0.0227 (5) 0.0195 (5) 0.0293 (5) 0.0082 (4) 0.0128 (4) 0.0041 (4)
O26 0.0142 (4) 0.0241 (5) 0.0289 (5) 0.0007 (3) 0.0091 (3) 0.0064 (4)
O36 0.0110 (4) 0.0243 (5) 0.0274 (5) 0.0005 (3) 0.0018 (3) 0.0039 (4)
N16 0.0154 (4) 0.0200 (5) 0.0191 (5) 0.0006 (4) 0.0025 (4) 0.0009 (4)
C76 0.0110 (4) 0.0152 (5) 0.0207 (5) 0.0001 (4) 0.0014 (4) 0.0021 (4)
S17 0.00936 (10) 0.01696 (13) 0.01515 (12) 0.00045 (9) 0.00331 (9) 0.00014 (10)
O17 0.0141 (4) 0.0208 (4) 0.0227 (4) 0.0047 (3) 0.0051 (3) 0.0009 (3)
O27 0.0165 (4) 0.0188 (4) 0.0208 (4) 0.0035 (3) 0.0049 (3) 0.0011 (3)
O37 0.0127 (4) 0.0255 (5) 0.0150 (4) 0.0024 (3) 0.0048 (3) 0.0018 (3)
N17 0.0089 (4) 0.0232 (5) 0.0163 (4) 0.0011 (3) 0.0032 (3) 0.0008 (4)
C77 0.0110 (4) 0.0175 (5) 0.0165 (5) 0.0019 (4) 0.0032 (4) 0.0013 (4)
S18 0.01005 (11) 0.01477 (12) 0.01633 (12) 0.00053 (9) 0.00287 (9) 0.00001 (10)
O18 0.0151 (4) 0.0186 (4) 0.0252 (5) 0.0053 (3) 0.0021 (3) 0.0021 (4)
O28 0.0173 (4) 0.0196 (4) 0.0234 (5) 0.0040 (3) 0.0036 (3) 0.0033 (4)
O38 0.0111 (3) 0.0189 (4) 0.0201 (4) 0.0001 (3) 0.0010 (3) 0.0009 (3)
N18 0.0123 (4) 0.0208 (5) 0.0154 (4) 0.0012 (3) 0.0022 (3) 0.0008 (4)
C78 0.0114 (4) 0.0138 (5) 0.0174 (5) 0.0003 (3) 0.0014 (4) 0.0004 (4)
S19 0.00909 (10) 0.01484 (12) 0.01801 (13) 0.00014 (9) 0.00121 (9) 0.00108 (10)
O19 0.0149 (4) 0.0181 (4) 0.0267 (5) 0.0052 (3) 0.0005 (3) 0.0039 (4)
O29 0.0149 (4) 0.0208 (5) 0.0278 (5) 0.0057 (3) 0.0020 (3) 0.0022 (4)
O39 0.0092 (3) 0.0189 (4) 0.0194 (4) 0.0003 (3) 0.0003 (3) 0.0008 (3)
N19 0.0106 (4) 0.0201 (5) 0.0162 (4) 0.0005 (3) 0.0015 (3) 0.0014 (4)
C79 0.0104 (4) 0.0142 (5) 0.0157 (5) 0.0009 (3) 0.0011 (3) 0.0001 (4)
S110 0.01023 (11) 0.01868 (13) 0.01535 (12) 0.00157 (9) 0.00331 (9) 0.00193 (10)
O110 0.0151 (4) 0.0252 (5) 0.0225 (5) 0.0055 (3) 0.0029 (3) 0.0027 (4)
O210 0.0201 (4) 0.0236 (5) 0.0214 (5) 0.0084 (4) 0.0073 (3) 0.0013 (4)
O310 0.0143 (4) 0.0225 (4) 0.0153 (4) 0.0035 (3) 0.0052 (3) 0.0032 (3)
N110 0.0106 (4) 0.0238 (5) 0.0163 (4) 0.0031 (3) 0.0033 (3) 0.0034 (4)
C710 0.0110 (4) 0.0164 (5) 0.0163 (5) 0.0025 (4) 0.0034 (4) 0.0012 (4)
S111 0.00894 (10) 0.01438 (12) 0.01471 (12) 0.00018 (9) 0.00407 (8) 0.00019 (9)
O111 0.0111 (3) 0.0210 (4) 0.0226 (4) 0.0046 (3) 0.0052 (3) 0.0017 (3)
O211 0.0125 (3) 0.0163 (4) 0.0214 (4) 0.0019 (3) 0.0051 (3) 0.0024 (3)
O311 0.0118 (4) 0.0224 (4) 0.0192 (4) 0.0036 (3) 0.0009 (3) 0.0003 (3)
N111 0.0122 (4) 0.0180 (5) 0.0136 (4) 0.0007 (3) 0.0030 (3) 0.0008 (3)
C711 0.0113 (4) 0.0146 (5) 0.0137 (5) 0.0006 (3) 0.0016 (3) 0.0008 (4)
S112 0.01244 (11) 0.01734 (13) 0.01767 (13) 0.00102 (10) 0.00671 (9) 0.00025 (10)
O112 0.0165 (4) 0.0213 (5) 0.0259 (5) 0.0058 (3) 0.0074 (3) 0.0001 (4)
O212 0.0198 (4) 0.0190 (4) 0.0239 (5) 0.0022 (3) 0.0094 (3) 0.0020 (4)
O312 0.0147 (4) 0.0314 (5) 0.0172 (4) 0.0020 (4) 0.0074 (3) 0.0015 (4)
N112 0.0104 (4) 0.0226 (5) 0.0175 (5) 0.0007 (3) 0.0045 (3) 0.0007 (4)
C712 0.0117 (4) 0.0173 (5) 0.0173 (5) 0.0003 (4) 0.0047 (4) 0.0002 (4)
S114 0.00924 (11) 0.02257 (14) 0.01352 (12) 0.00042 (10) 0.00286 (9) 0.00162 (10)
O114 0.0153 (4) 0.0308 (5) 0.0203 (4) 0.0088 (4) 0.0036 (3) 0.0033 (4)
O214 0.0179 (4) 0.0274 (5) 0.0190 (4) 0.0088 (4) 0.0056 (3) 0.0034 (4)
O314 0.0169 (4) 0.0278 (5) 0.0160 (4) 0.0013 (3) 0.0068 (3) 0.0016 (4)
N114 0.0105 (4) 0.0247 (5) 0.0146 (4) 0.0021 (3) 0.0018 (3) 0.0008 (4)
C714 0.0129 (4) 0.0170 (5) 0.0144 (5) 0.0014 (4) 0.0039 (4) 0.0003 (4)
S115 0.00816 (10) 0.01469 (12) 0.01629 (12) 0.00025 (9) 0.00207 (9) 0.00021 (9)
O115 0.0151 (4) 0.0191 (4) 0.0261 (5) 0.0062 (3) 0.0027 (3) 0.0012 (4)
O215 0.0115 (3) 0.0191 (4) 0.0230 (4) 0.0043 (3) 0.0012 (3) 0.0035 (3)
O315 0.0091 (3) 0.0190 (4) 0.0208 (4) 0.0007 (3) 0.0001 (3) 0.0002 (3)
N115 0.0107 (4) 0.0186 (5) 0.0149 (4) 0.0009 (3) 0.0029 (3) 0.0009 (3)
C715 0.0098 (4) 0.0130 (5) 0.0174 (5) 0.0006 (3) 0.0026 (3) 0.0002 (4)
S116 0.01177 (11) 0.01743 (13) 0.01528 (12) 0.00027 (9) 0.00256 (9) 0.00085 (10)
O116 0.0161 (4) 0.0233 (5) 0.0225 (5) 0.0054 (3) 0.0034 (3) 0.0025 (4)
O216 0.0211 (4) 0.0219 (5) 0.0198 (4) 0.0065 (3) 0.0046 (3) 0.0011 (4)
O316 0.0177 (4) 0.0216 (4) 0.0156 (4) 0.0001 (3) 0.0047 (3) 0.0005 (3)
N116 0.0115 (4) 0.0221 (5) 0.0159 (4) 0.0008 (3) 0.0021 (3) 0.0006 (4)
C716 0.0136 (5) 0.0151 (5) 0.0156 (5) 0.0003 (4) 0.0028 (4) 0.0005 (4)
Na15 0.0131 (18) 0.021 (2) 0.023 (2) 0.0026 (15) 0.0013 (15) 0.0013 (17)
Na17 0.019 (2) 0.052 (4) 0.028 (3) 0.002 (2) 0.0078 (19) 0.008 (3)
Na19 0.025 (2) 0.055 (4) 0.023 (3) 0.015 (2) 0.0008 (19) 0.010 (2)
O37w 0.015 (4) 0.021 (4) 0.074 (8) 0.000 (3) 0.008 (5) 0.015 (5)
O43w 0.015 (3) 0.020 (4) 0.035 (5) 0.003 (3) 0.002 (3) 0.001 (3)
O41w 0.012 (3) 0.031 (5) 0.041 (6) 0.001 (3) 0.001 (3) 0.011 (4)
O39w 0.020 (4) 0.023 (4) 0.024 (4) 0.007 (3) 0.006 (3) 0.004 (3)
S1dia 0.01156 (18) 0.01352 (17) 0.01469 (19) 0.00112 (16) 0.00468 (17) 0.00004 (13)
O1dia 0.0230 (5) 0.0185 (5) 0.0277 (6) 0.0000 (4) 0.0159 (5) 0.0028 (4)
O2dia 0.0125 (7) 0.0119 (7) 0.0198 (9) 0.0012 (8) 0.0053 (7) 0.0021 (6)
O3dia 0.0096 (4) 0.0281 (6) 0.0328 (6) 0.0053 (4) 0.0038 (4) 0.0084 (5)
N1dia 0.0155 (6) 0.0228 (6) 0.0156 (5) 0.0060 (5) 0.0001 (4) 0.0032 (5)
C7dia 0.0104 (5) 0.0178 (6) 0.0180 (6) 0.0024 (4) 0.0001 (4) 0.0031 (5)
S1dib 0.043 (3) 0.0172 (14) 0.0159 (14) 0.002 (2) 0.004 (2) 0.0017 (10)
O1dib 0.0230 (5) 0.0185 (5) 0.0277 (6) 0.0000 (4) 0.0159 (5) 0.0028 (4)
O2dib 0.031 (10) 0.029 (9) 0.025 (7) 0.013 (5) 0.002 (6) 0.008 (5)
O3dib 0.0096 (4) 0.0281 (6) 0.0328 (6) 0.0053 (4) 0.0038 (4) 0.0084 (5)
N1dib 0.014 (4) 0.042 (6) 0.017 (4) 0.019 (4) 0.001 (3) 0.003 (4)
C7dib 0.009 (4) 0.033 (6) 0.021 (5) 0.007 (4) 0.008 (3) 0.006 (4)
C1a 0.0125 (3) 0.015 (3) 0.0150 (4) 0.0006 (6) 0.0013 (3) 0.0012 (8)
C2a 0.0115 (3) 0.014 (3) 0.0163 (4) 0.0005 (6) 0.0023 (3) 0.0005 (8)
C3a 0.0115 (4) 0.018 (4) 0.0230 (3) 0.0006 (7) 0.0031 (3) 0.0006 (8)
C4a 0.0121 (3) 0.020 (3) 0.0284 (4) 0.0006 (6) 0.0013 (3) 0.0024 (8)
C5a 0.0164 (3) 0.021 (3) 0.0234 (4) 0.0005 (6) 0.0047 (3) 0.0036 (8)
C6a 0.0169 (5) 0.019 (4) 0.0166 (3) 0.0005 (7) 0.0012 (3) 0.0025 (8)
H1c3a 0.0132 (9) 0.020 (8) 0.0263 (5) 0.0000 (15) 0.0065 (6) 0.0004 (16)
H1c4a 0.0120 (6) 0.022 (7) 0.0376 (8) 0.0006 (12) 0.0021 (5) 0.0029 (16)
H1c5a 0.0211 (6) 0.023 (7) 0.0272 (8) 0.0019 (12) 0.0090 (5) 0.0054 (16)
H1c6a 0.0221 (10) 0.022 (8) 0.0155 (6) 0.0017 (15) 0.0007 (6) 0.0029 (17)
C1b 0.0110 (4) 0.014 (4) 0.0167 (3) 0.0003 (6) 0.0022 (3) 0.0010 (7)
C2b 0.0109 (4) 0.014 (4) 0.0167 (3) 0.0006 (6) 0.0019 (3) 0.0009 (7)
C3b 0.0125 (3) 0.018 (4) 0.0200 (5) 0.0008 (5) 0.0046 (2) 0.0012 (8)
C4b 0.0191 (4) 0.019 (4) 0.0175 (3) 0.0013 (6) 0.0057 (3) 0.0009 (7)
C5b 0.0200 (4) 0.020 (4) 0.0163 (3) 0.0008 (6) 0.0007 (3) 0.0019 (7)
C6b 0.0136 (3) 0.019 (4) 0.0189 (5) 0.0007 (5) 0.0002 (2) 0.0024 (8)
H1c3b 0.0123 (3) 0.027 (9) 0.0270 (11) 0.0003 (10) 0.0061 (3) 0.0034 (17)
H1c4b 0.0258 (8) 0.027 (7) 0.0202 (5) 0.0018 (12) 0.0099 (5) 0.0018 (14)
H1c5b 0.0278 (8) 0.029 (7) 0.0174 (5) 0.0012 (12) 0.0016 (5) 0.0042 (14)
H1c6b 0.0141 (3) 0.029 (9) 0.0251 (11) 0.0021 (10) 0.0020 (3) 0.0053 (18)
C1c 0.0125 (4) 0.015 (4) 0.0146 (4) 0.0003 (9) 0.0017 (3) 0.0007 (7)
C2c 0.0107 (4) 0.016 (4) 0.0153 (4) 0.0003 (9) 0.0015 (3) 0.0003 (7)
C3c 0.0107 (4) 0.021 (4) 0.0195 (3) 0.0002 (9) 0.0008 (3) 0.0009 (8)
C4c 0.0129 (4) 0.023 (4) 0.0222 (4) 0.0013 (9) 0.0026 (3) 0.0035 (7)
C5c 0.0172 (4) 0.022 (4) 0.0185 (4) 0.0036 (9) 0.0032 (3) 0.0042 (7)
C6c 0.0169 (5) 0.019 (4) 0.0150 (4) 0.0028 (10) 0.0005 (3) 0.0020 (8)
H1c3c 0.0108 (9) 0.034 (9) 0.0224 (6) 0.002 (2) 0.0026 (7) 0.0010 (16)
H1c4c 0.0134 (7) 0.037 (8) 0.0284 (8) 0.0001 (17) 0.0042 (5) 0.0063 (14)
H1c5c 0.0221 (7) 0.036 (8) 0.0204 (8) 0.0050 (17) 0.0058 (5) 0.0077 (14)
H1c6c 0.0212 (9) 0.031 (9) 0.0149 (6) 0.003 (2) 0.0022 (7) 0.0029 (16)
C1d 0.0116 (4) 0.015 (4) 0.0216 (3) 0.0009 (9) 0.0028 (3) 0.0010 (5)
C2d 0.0118 (4) 0.016 (4) 0.0179 (3) 0.0014 (9) 0.0039 (3) 0.0000 (5)
C3d 0.0173 (3) 0.021 (4) 0.0186 (5) 0.0029 (9) 0.0062 (2) 0.0009 (6)
C4d 0.0274 (5) 0.025 (4) 0.0174 (3) 0.0043 (9) 0.0042 (3) 0.0016 (5)
C5d 0.0265 (5) 0.023 (4) 0.0204 (3) 0.0031 (9) 0.0030 (3) 0.0016 (5)
C6d 0.0160 (3) 0.019 (5) 0.0255 (5) 0.0012 (10) 0.0022 (2) 0.0002 (6)
H1c3d 0.0183 (5) 0.035 (9) 0.0228 (11) 0.0060 (19) 0.0097 (4) 0.0009 (13)
H1c4d 0.0389 (9) 0.041 (8) 0.0181 (4) 0.0092 (18) 0.0081 (5) 0.0002 (10)
H1c5d 0.0369 (9) 0.038 (8) 0.0226 (4) 0.0069 (18) 0.0074 (5) 0.0009 (10)
H1c6d 0.0161 (5) 0.030 (10) 0.0344 (11) 0.003 (2) 0.0043 (4) 0.0028 (13)
C1e 0.0124 (3) 0.016 (5) 0.0157 (4) 0.0003 (6) 0.0025 (3) 0.0012 (10)
C2e 0.0120 (3) 0.016 (5) 0.0177 (4) 0.0001 (6) 0.0039 (3) 0.0008 (10)
C3e 0.0120 (4) 0.019 (5) 0.0232 (4) 0.0001 (6) 0.0037 (3) 0.0014 (11)
C4e 0.0128 (3) 0.022 (5) 0.0260 (4) 0.0004 (6) 0.0002 (3) 0.0005 (10)
C5e 0.0150 (3) 0.023 (5) 0.0221 (4) 0.0009 (6) 0.0017 (3) 0.0027 (10)
C6e 0.0146 (4) 0.021 (5) 0.0172 (4) 0.0008 (6) 0.0004 (3) 0.0031 (11)
H1c3e 0.0124 (8) 0.048 (10) 0.0268 (7) 0.0007 (13) 0.0060 (6) 0.002 (2)
H1c4e 0.0130 (6) 0.054 (9) 0.0323 (8) 0.0004 (11) 0.0008 (5) 0.0049 (19)
H1c5e 0.0177 (6) 0.056 (9) 0.0246 (8) 0.0008 (11) 0.0042 (5) 0.0087 (19)
H1c6e 0.0167 (8) 0.052 (11) 0.0167 (8) 0.0006 (13) 0.0005 (7) 0.009 (2)
C1f 0.0108 (4) 0.017 (4) 0.0185 (3) 0.0007 (7) 0.0028 (3) 0.0018 (7)
C2f 0.0108 (4) 0.015 (4) 0.0187 (3) 0.0007 (7) 0.0035 (3) 0.0015 (7)
C3f 0.0161 (3) 0.019 (5) 0.0227 (5) 0.0024 (7) 0.0083 (2) 0.0020 (8)
C4f 0.0280 (4) 0.021 (4) 0.0193 (3) 0.0018 (7) 0.0083 (3) 0.0003 (7)
C5f 0.0273 (4) 0.025 (4) 0.0184 (3) 0.0014 (7) 0.0004 (3) 0.0003 (7)
C6f 0.0153 (3) 0.025 (5) 0.0216 (5) 0.0008 (7) 0.0012 (2) 0.0023 (9)
H1c3f 0.0167 (3) 0.039 (10) 0.0319 (11) 0.0065 (14) 0.0113 (3) 0.0014 (18)
H1c4f 0.0416 (9) 0.041 (9) 0.0226 (5) 0.0062 (14) 0.0137 (5) 0.0028 (14)
H1c5f 0.0399 (9) 0.049 (9) 0.0207 (5) 0.0011 (14) 0.0054 (5) 0.0031 (14)
H1c6f 0.0154 (3) 0.050 (10) 0.0300 (11) 0.0012 (15) 0.0045 (4) 0.0018 (18)
C1g 0.0110 (4) 0.016 (5) 0.0163 (4) 0.0008 (9) 0.0030 (3) 0.0003 (7)
C2g 0.0102 (4) 0.017 (5) 0.0167 (4) 0.0007 (9) 0.0030 (3) 0.0010 (7)
C3g 0.0103 (4) 0.021 (6) 0.0207 (3) 0.0001 (10) 0.0032 (3) 0.0003 (8)
C4g 0.0114 (4) 0.027 (5) 0.0236 (4) 0.0003 (9) 0.0002 (3) 0.0030 (7)
C5g 0.0150 (4) 0.028 (5) 0.0199 (4) 0.0021 (9) 0.0010 (3) 0.0037 (8)
C6g 0.0148 (5) 0.022 (6) 0.0166 (3) 0.0017 (10) 0.0021 (3) 0.0017 (8)
H1c3g 0.0117 (9) 0.060 (12) 0.0237 (5) 0.005 (2) 0.0057 (6) 0.0019 (16)
H1c4g 0.0120 (7) 0.073 (10) 0.0301 (8) 0.0042 (18) 0.0006 (5) 0.0087 (15)
H1c5g 0.0196 (7) 0.076 (10) 0.0220 (8) 0.0003 (18) 0.0033 (5) 0.0096 (15)
H1c6g 0.0192 (9) 0.063 (12) 0.0168 (6) 0.001 (2) 0.0038 (7) 0.0053 (17)
C1h 0.0112 (4) 0.015 (4) 0.0163 (3) 0.0003 (5) 0.0017 (3) 0.0002 (6)
C2h 0.0108 (4) 0.014 (4) 0.0166 (3) 0.0007 (5) 0.0024 (3) 0.0004 (6)
C3h 0.0126 (3) 0.020 (4) 0.0192 (5) 0.0016 (4) 0.0045 (2) 0.0005 (7)
C4h 0.0182 (4) 0.022 (4) 0.0179 (3) 0.0030 (5) 0.0057 (2) 0.0003 (6)
C5h 0.0200 (4) 0.022 (4) 0.0160 (3) 0.0022 (5) 0.0021 (3) 0.0006 (6)
C6h 0.0149 (3) 0.020 (5) 0.0170 (5) 0.0004 (4) 0.0001 (2) 0.0006 (8)
H1c3h 0.0121 (3) 0.036 (9) 0.0238 (10) 0.0011 (8) 0.0053 (3) 0.0012 (16)
H1c4h 0.0226 (8) 0.039 (8) 0.0206 (5) 0.0041 (10) 0.0090 (5) 0.0012 (12)
H1c5h 0.0266 (8) 0.037 (8) 0.0165 (5) 0.0026 (10) 0.0012 (5) 0.0032 (12)
H1c6h 0.0158 (3) 0.036 (10) 0.0201 (10) 0.0009 (8) 0.0020 (3) 0.0031 (16)
C1i 0.0121 (4) 0.016 (5) 0.0168 (3) 0.0006 (4) 0.0002 (2) 0.0010 (6)
C2i 0.0117 (4) 0.015 (5) 0.0157 (3) 0.0009 (4) 0.0013 (2) 0.0003 (6)
C3i 0.0148 (2) 0.019 (5) 0.0180 (5) 0.0010 (4) 0.0040 (2) 0.0003 (7)
C4i 0.0227 (4) 0.021 (5) 0.0165 (3) 0.0010 (4) 0.0046 (2) 0.0001 (6)
C5i 0.0242 (4) 0.022 (5) 0.0159 (3) 0.0003 (4) 0.0009 (3) 0.0011 (6)
C6i 0.0166 (2) 0.020 (5) 0.0186 (5) 0.0001 (4) 0.0027 (2) 0.0015 (7)
H1c3i 0.0142 (3) 0.044 (10) 0.0232 (10) 0.0011 (5) 0.0056 (3) 0.0021 (14)
H1c4i 0.0296 (8) 0.049 (9) 0.0189 (4) 0.0013 (9) 0.0088 (5) 0.0030 (11)
H1c5i 0.0329 (8) 0.049 (9) 0.0169 (5) 0.0001 (9) 0.0032 (5) 0.0048 (11)
H1c6i 0.0173 (3) 0.047 (11) 0.0242 (11) 0.0006 (5) 0.0056 (3) 0.0052 (15)
C1j 0.0123 (4) 0.015 (5) 0.0153 (4) 0.0002 (8) 0.0023 (3) 0.0006 (10)
C2j 0.0110 (4) 0.015 (5) 0.0160 (4) 0.0006 (8) 0.0023 (3) 0.0009 (10)
C3j 0.0108 (4) 0.020 (5) 0.0190 (4) 0.0001 (9) 0.0018 (3) 0.0010 (11)
C4j 0.0123 (4) 0.022 (5) 0.0208 (4) 0.0007 (8) 0.0008 (3) 0.0013 (10)
C5j 0.0156 (4) 0.021 (5) 0.0182 (4) 0.0015 (8) 0.0016 (3) 0.0018 (10)
C6j 0.0155 (4) 0.019 (5) 0.0157 (4) 0.0013 (9) 0.0011 (4) 0.0013 (11)
H1c3j 0.0112 (9) 0.054 (10) 0.0217 (7) 0.0030 (19) 0.0037 (7) 0.006 (2)
H1c4j 0.0127 (7) 0.059 (9) 0.0259 (9) 0.0026 (16) 0.0016 (6) 0.006 (2)
H1c5j 0.0194 (7) 0.056 (9) 0.0203 (9) 0.0009 (17) 0.0033 (6) 0.008 (2)
H1c6j 0.0190 (9) 0.053 (11) 0.0162 (7) 0.001 (2) 0.0026 (7) 0.006 (2)
C1k 0.0100 (5) 0.014 (3) 0.0147 (3) 0.0004 (10) 0.0028 (3) 0.0003 (5)
C2k 0.0097 (5) 0.014 (3) 0.0137 (3) 0.0001 (10) 0.0028 (3) 0.0007 (5)
C3k 0.0114 (4) 0.018 (4) 0.0158 (4) 0.0002 (10) 0.0047 (3) 0.0014 (6)
C4k 0.0176 (5) 0.020 (3) 0.0143 (3) 0.0004 (10) 0.0055 (3) 0.0010 (5)
C5k 0.0188 (5) 0.019 (3) 0.0138 (3) 0.0001 (10) 0.0012 (3) 0.0002 (5)
C6k 0.0129 (4) 0.017 (4) 0.0164 (4) 0.0008 (10) 0.0004 (3) 0.0009 (6)
H1c3k 0.0113 (6) 0.023 (8) 0.0206 (9) 0.001 (2) 0.0059 (4) 0.0015 (13)
H1c4k 0.0238 (9) 0.026 (7) 0.0163 (4) 0.0002 (19) 0.0092 (5) 0.0010 (10)
H1c5k 0.0262 (9) 0.024 (7) 0.0145 (4) 0.0009 (19) 0.0006 (5) 0.0012 (10)
H1c6k 0.0137 (6) 0.022 (8) 0.0215 (9) 0.002 (2) 0.0013 (4) 0.0023 (14)
C1l 0.0161 (5) 0.016 (4) 0.0166 (4) 0.0017 (10) 0.0050 (3) 0.0004 (9)
C2l 0.0125 (5) 0.015 (4) 0.0168 (4) 0.0003 (10) 0.0035 (3) 0.0005 (9)
C3l 0.0133 (5) 0.017 (4) 0.0216 (4) 0.0007 (11) 0.0014 (4) 0.0010 (10)
C4l 0.0197 (5) 0.018 (4) 0.0247 (4) 0.0007 (10) 0.0031 (3) 0.0017 (9)
C5l 0.0274 (5) 0.021 (4) 0.0203 (4) 0.0028 (10) 0.0019 (4) 0.0043 (9)
C6l 0.0248 (5) 0.021 (4) 0.0169 (4) 0.0044 (11) 0.0041 (4) 0.0017 (10)
H1c3l 0.0121 (9) 0.028 (8) 0.0254 (8) 0.002 (2) 0.0029 (8) 0.002 (2)
H1c4l 0.0217 (9) 0.028 (7) 0.0323 (8) 0.004 (2) 0.0067 (7) 0.0025 (18)
H1c5l 0.0370 (9) 0.034 (7) 0.0225 (8) 0.003 (2) 0.0051 (7) 0.0085 (18)
H1c6l 0.0312 (10) 0.035 (8) 0.0176 (8) 0.006 (2) 0.0075 (8) 0.002 (2)
C1m 0.0103 (3) 0.016 (4) 0.0153 (4) 0.0001 (6) 0.0024 (3) 0.0001 (6)
C2m 0.0106 (3) 0.016 (4) 0.0164 (4) 0.0002 (6) 0.0032 (3) 0.0000 (6)
C3m 0.0106 (4) 0.020 (4) 0.0218 (3) 0.0012 (6) 0.0040 (3) 0.0017 (6)
C4m 0.0109 (3) 0.024 (4) 0.0247 (4) 0.0009 (6) 0.0003 (3) 0.0040 (6)
C5m 0.0141 (4) 0.023 (4) 0.0196 (4) 0.0005 (6) 0.0015 (3) 0.0030 (6)
C6m 0.0136 (4) 0.019 (4) 0.0157 (3) 0.0002 (7) 0.0015 (3) 0.0009 (6)
H1c3m 0.0123 (8) 0.024 (8) 0.0257 (6) 0.0020 (14) 0.0071 (6) 0.0022 (12)
H1c4m 0.0111 (6) 0.032 (7) 0.0321 (7) 0.0013 (12) 0.0009 (5) 0.0070 (11)
H1c5m 0.0187 (7) 0.029 (7) 0.0214 (7) 0.0018 (12) 0.0044 (5) 0.0048 (11)
H1c6m 0.0173 (8) 0.022 (9) 0.0154 (6) 0.0005 (14) 0.0029 (6) 0.0008 (12)
C1n 0.0127 (4) 0.014 (4) 0.0159 (3) 0.0001 (5) 0.0016 (2) 0.0005 (5)
C2n 0.0117 (4) 0.014 (4) 0.0173 (3) 0.0004 (5) 0.0034 (2) 0.0006 (5)
C3n 0.0159 (3) 0.019 (5) 0.0214 (5) 0.0008 (4) 0.0076 (2) 0.0010 (6)
C4n 0.0254 (4) 0.022 (4) 0.0193 (3) 0.0018 (5) 0.0094 (2) 0.0015 (5)
C5n 0.0281 (4) 0.023 (4) 0.0159 (3) 0.0018 (5) 0.0034 (3) 0.0002 (5)
C6n 0.0195 (3) 0.021 (5) 0.0166 (5) 0.0002 (4) 0.0004 (2) 0.0004 (6)
H1c3n 0.0148 (3) 0.035 (10) 0.0282 (10) 0.0005 (7) 0.0094 (3) 0.0012 (13)
H1c4n 0.0326 (8) 0.039 (8) 0.0230 (5) 0.0026 (10) 0.0148 (5) 0.0004 (10)
H1c5n 0.0383 (8) 0.042 (8) 0.0161 (5) 0.0029 (10) 0.0022 (5) 0.0023 (10)
H1c6n 0.0209 (3) 0.038 (10) 0.0202 (10) 0.0005 (7) 0.0040 (3) 0.0035 (14)
C1o 0.0134 (4) 0.015 (4) 0.0167 (4) 0.0003 (8) 0.0016 (3) 0.0012 (8)
C2o 0.0128 (4) 0.015 (4) 0.0177 (4) 0.0001 (8) 0.0023 (3) 0.0001 (8)
C3o 0.0130 (5) 0.019 (5) 0.0232 (3) 0.0009 (9) 0.0031 (3) 0.0003 (8)
C4o 0.0134 (4) 0.023 (4) 0.0272 (4) 0.0008 (8) 0.0007 (3) 0.0015 (8)
C5o 0.0169 (4) 0.024 (4) 0.0228 (4) 0.0004 (8) 0.0032 (3) 0.0024 (8)
C6o 0.0172 (5) 0.020 (5) 0.0177 (3) 0.0004 (9) 0.0002 (3) 0.0021 (8)
H1c3o 0.0148 (9) 0.044 (10) 0.0265 (5) 0.0039 (19) 0.0063 (6) 0.0015 (16)
H1c4o 0.0137 (6) 0.052 (9) 0.0352 (8) 0.0038 (16) 0.0011 (5) 0.0052 (15)
H1c5o 0.0213 (7) 0.053 (9) 0.0258 (8) 0.0012 (16) 0.0064 (5) 0.0066 (15)
H1c6o 0.0218 (10) 0.046 (11) 0.0173 (5) 0.002 (2) 0.0009 (6) 0.0055 (16)
C1p 0.0066 (5) 0.014 (4) 0.0157 (4) 0.0004 (9) 0.0019 (3) 0.0001 (10)
C2p 0.0075 (5) 0.014 (4) 0.0154 (4) 0.0010 (9) 0.0042 (3) 0.0007 (10)
C3p 0.0156 (4) 0.018 (4) 0.0167 (6) 0.0020 (9) 0.0077 (3) 0.0005 (11)
C4p 0.0270 (5) 0.017 (4) 0.0143 (4) 0.0032 (9) 0.0042 (3) 0.0001 (10)
C5p 0.0244 (5) 0.021 (4) 0.0176 (4) 0.0030 (9) 0.0041 (3) 0.0025 (10)
C6p 0.0120 (4) 0.021 (5) 0.0203 (6) 0.0012 (10) 0.0029 (3) 0.0023 (11)
H1c3p 0.0171 (5) 0.024 (9) 0.0223 (13) 0.0037 (19) 0.0119 (6) 0.002 (2)
H1c4p 0.0401 (10) 0.020 (8) 0.0145 (7) 0.0062 (19) 0.0067 (6) 0.0003 (19)
H1c5p 0.0349 (10) 0.029 (8) 0.0217 (7) 0.0059 (19) 0.0107 (7) 0.0056 (19)
H1c6p 0.0112 (5) 0.030 (10) 0.0284 (13) 0.0024 (19) 0.0059 (6) 0.005 (2)
C1q 0.041 (4) 0.02 (6) 0.024 (7) 0.009 (5) 0.001 (3) 0.011 (19)
C2q 0.027 (4) 0.02 (6) 0.026 (7) 0.010 (5) 0.014 (3) 0.005 (19)
C3q 0.010 (3) 0.02 (7) 0.026 (8) 0.002 (4) 0.006 (3) 0.01 (2)
C4q 0.011 (4) 0.02 (6) 0.016 (7) 0.002 (5) 0.002 (3) 0.000 (19)
C5q 0.010 (4) 0.03 (6) 0.025 (7) 0.000 (5) 0.002 (3) 0.006 (19)
C6q 0.024 (3) 0.03 (7) 0.033 (8) 0.001 (4) 0.009 (3) 0.01 (2)
H1c3q 0.010 (4) 0.11 (14) 0.054 (17) 0.001 (8) 0.000 (5) 0.01 (4)
H1c4q 0.024 (9) 0.12 (12) 0.027 (13) 0.002 (10) 0.004 (6) 0.03 (4)
H1c5q 0.012 (9) 0.13 (12) 0.047 (13) 0.008 (10) 0.005 (6) 0.04 (4)
H1c6q 0.033 (4) 0.12 (14) 0.065 (17) 0.003 (8) 0.025 (6) 0.05 (4)
Geometric parameters (Å, º) top
Na1—Na2 3.4831 (7) C712—C2l 1.5045 (14)
Na1—Na12 3.3954 (8) S114—O114 1.4503 (11)
Na1—O14w 2.3763 (10) S114—O214 1.4479 (11)
Na1—O15w 2.3743 (10) S114—N114 1.6151 (11)
Na1—O38 2.3095 (10) S114—C1m 1.7660 (7)
Na1—O315 2.3786 (10) O314—C714 1.2491 (15)
Na1—O316 2.4410 (11) N114—C714 1.3585 (15)
Na2—Na3 3.5291 (7) C714—C2m 1.5101 (14)
Na2—O28w 2.4140 (10) S115—O115 1.4418 (10)
Na2—O30w 2.4135 (10) S115—O215 1.4571 (10)
Na2—O31 2.4435 (10) S115—N115 1.6132 (10)
Na2—O38 2.3570 (10) S115—C1n 1.7642 (8)
Na2—O39 2.3442 (10) O315—C715 1.2427 (13)
Na3—O18w 2.3431 (10) N115—C715 1.3715 (15)
Na3—O20w 2.4347 (10) C715—C2n 1.4994 (14)
Na3—O32 2.3578 (11) S116—O116 1.4534 (10)
Na3—O39 2.3901 (10) S116—O216 1.4482 (10)
Na3—O310 2.4399 (10) S116—N116 1.6159 (11)
Na4—Na8i 3.6547 (7) S116—C1o 1.7678 (7)
Na4—O16w 2.3635 (12) O316—C716 1.2445 (15)
Na4—O21wi 2.3518 (10) N116—C716 1.3650 (15)
Na4—O32w 2.4290 (11) C716—C2o 1.5110 (14)
Na4—O33w 2.3819 (10) Na15—Na17 3.992 (7)
Na4—O115i 2.4119 (11) Na15—O43w 2.305 (10)
Na5—Na13i 3.2567 (7) Na15—Hao35 1.986 (19)
Na5—O14w 2.3675 (11) Na15—Hbo35 1.803 (19)
Na5—O27w 2.3304 (13) Na15—Hao42 1.27 (2)
Na5—O29w 2.4466 (11) Na15—Hbo42 1.41 (2)
Na5—O30w 2.3296 (11) Na15—O3dib 2.382 (9)
Na5—O211i 2.4311 (10) Na17—Na19 3.342 (7)
Na6—Na16ii 3.5370 (8) Na17—O37w 2.343 (11)
Na6—O18w 2.3337 (10) Na19—O37w 2.370 (12)
Na6—O23w 2.4192 (11) Na19—O41w 2.364 (11)
Na6—O24w 2.3350 (13) Na19—Hbo38 2.23 (2)
Na6—O28w 2.4095 (11) Na19—O39w 2.435 (10)
Na6—O24ii 2.4499 (10) Na19—N1dia 2.340 (5)
Na6—O16ii 2.4190 (11) Na19—N1dib 2.456 (11)
Na6—Na17ii 3.340 (5) S1dia—O1dia 1.4503 (15)
Na7—Na13 3.9158 (7) S1dia—O2dia 1.440 (4)
Na7—O19w 2.3392 (13) S1dia—N1dia 1.6094 (14)
Na7—O25w 2.3683 (11) S1dia—S1dib 0.456 (5)
Na7—N13 2.7012 (12) S1dia—O1dib 1.360 (10)
Na7—O34 2.3328 (10) S1dia—C1p 1.7648 (13)
Na7—O215iii 2.3937 (9) S1dia—C1q 1.671 (6)
Na8—Na18 3.8894 (8) O1dia—O1dib 0.831 (13)
Na8—O17w 2.3577 (12) O2dia—S1dib 1.522 (6)
Na8—O21w 2.4189 (12) O2dia—O2dib 0.24 (3)
Na8—O26w 2.3460 (11) O3dia—C7dia 1.2490 (17)
Na8—O32wiii 2.3946 (10) O3dia—O3dib 1.127 (12)
Na8—O29iii 2.3240 (11) O3dia—C7dib 1.324 (11)
Na9—Na10ii 3.7397 (7) N1dia—C7dia 1.355 (2)
Na9—O10wii 2.3592 (10) N1dia—S1dib 1.193 (5)
Na9—O12w 2.3727 (12) N1dia—N1dib 0.736 (11)
Na9—O15w 2.3691 (11) C7dia—N1dib 1.052 (11)
Na9—O34w 2.4160 (11) C7dia—C7dib 0.734 (12)
Na9—O22iv 2.3240 (12) C7dia—C2p 1.4982 (18)
Na10—Na11 3.5817 (7) S1dib—O1dib 1.471 (12)
Na10—O10w 2.4032 (11) S1dib—N1dib 1.562 (11)
Na10—O13wiv 2.4133 (10) S1dib—C1q 1.770 (8)
Na10—O22w 2.3385 (13) O3dib—C7dib 1.237 (13)
Na10—O18iv 2.4019 (11) N1dib—C7dib 1.355 (16)
Na11—O11w 2.4392 (11) C7dib—C2p 1.371 (11)
Na11—O31w 2.3258 (12) C7dib—C2q 1.491 (13)
Na11—O33wv 2.4395 (11) C1a—C2a 1.3905 (9)
Na11—O33 2.3574 (10) C1a—C6a 1.3874 (10)
Na11—O311 2.2946 (10) C2a—C3a 1.3881 (9)
Na12—O26w 2.3227 (11) C3a—C4a 1.3956 (11)
Na12—O34w 2.3138 (11) C3a—H1c3a 0.96
Na12—O36 2.3869 (12) C4a—C5a 1.4005 (12)
Na12—O315 2.4079 (11) C4a—H1c4a 0.96
Na13—O29wiii 2.3412 (11) C5a—C6a 1.4011 (10)
Na13—O38w 2.3861 (12) C5a—H1c5a 0.96
Na13—O312 2.2143 (11) C6a—H1c6a 0.96
Na13—O2dia 2.430 (4) C1b—C2b 1.3905 (13)
Na13—O2dib 2.19 (3) C1b—C6b 1.3874 (15)
Na14—Na16 3.9352 (9) C2b—C3b 1.3881 (13)
Na14—O36w 2.3294 (13) C3b—C4b 1.3956 (15)
Na14—O42w 2.2947 (14) C3b—H1c3b 0.96
Na14—O12iv 2.4247 (10) C4b—C5b 1.4005 (16)
Na14—O214 2.4464 (11) C4b—H1c4b 0.96
Na14—N114 2.7584 (12) C5b—C6b 1.4011 (15)
Na14—Na15 3.025 (5) C5b—H1c5b 0.96
Na14—Na17 3.717 (6) C6b—H1c6b 0.96
Na14—O37w 2.225 (12) C1c—C2c 1.3905 (11)
Na14—O43w 1.705 (8) C1c—C6c 1.3874 (12)
Na14—O3dia 2.3905 (12) C2c—C3c 1.3881 (11)
Na16—O23wiv 2.4028 (11) C3c—C4c 1.3956 (13)
Na16—O35w 2.3379 (13) C3c—H1c3c 0.96
Na16—O36w 2.4232 (14) C4c—C5c 1.4005 (14)
Na16—O24 2.3327 (11) C4c—H1c4c 0.96
Na16—O35 2.2387 (12) C5c—C6c 1.4011 (13)
Na16—Na15 3.452 (5) C5c—H1c5c 0.96
Na16—Na17 0.977 (7) C6c—H1c6c 0.96
Na16—Na19 3.248 (5) C1d—C2d 1.3905 (19)
Na18—O38w 2.3815 (13) C1d—C6d 1.387 (2)
Na18—O40w 2.3321 (16) C2d—C3d 1.3881 (15)
Na18—N15 2.4234 (12) C3d—C4d 1.396 (2)
Na18—Na19 1.537 (5) C3d—H1c3d 0.96
Na18—O41w 1.959 (10) C4d—C5d 1.401 (2)
Na18—O39w 1.964 (8) C4d—H1c4d 0.96
Na18—N1dia 2.5917 (15) C5d—C6d 1.4011 (16)
O10w—Hbo10 0.760 (18) C5d—H1c5d 0.96
O10w—Hao10 0.818 (17) C6d—H1c6d 0.96
O11w—Hao11 0.827 (17) C1e—C2e 1.3905 (11)
O11w—Hbo11 0.829 (17) C1e—C6e 1.3874 (12)
O12w—Hao12 0.784 (19) C2e—C3e 1.3881 (11)
O12w—Hbo12 0.791 (19) C3e—C4e 1.3956 (13)
O13w—Hao13 0.868 (17) C3e—H1c3e 0.96
O13w—Hbo13 0.756 (17) C4e—C5e 1.4005 (14)
O14w—Hbo14 0.894 (17) C4e—H1c4e 0.96
O14w—Hao14 0.843 (16) C5e—C6e 1.4011 (13)
O15w—Hao15 0.848 (16) C5e—H1c5e 0.96
O15w—Hbo15 0.798 (17) C6e—H1c6e 0.96
O16w—Hao16 0.716 (19) C1f—C2f 1.3905 (14)
O16w—Hbo16 0.819 (19) C1f—C6f 1.3874 (13)
O17w—Hao17 0.818 (19) C2f—C3f 1.3881 (18)
O17w—Hbo17 0.860 (18) C3f—C4f 1.3956 (14)
O18w—Hao18 0.813 (17) C3f—H1c3f 0.96
O18w—Hbo18 0.866 (16) C4f—C5f 1.4005 (17)
O19w—Hao19 0.798 (19) C4f—H1c4f 0.96
O19w—Hbo19 0.83 (2) C5f—C6f 1.4011 (19)
O20w—Hao20 0.814 (16) C5f—H1c5f 0.96
O20w—Hbo20 0.865 (17) C6f—H1c6f 0.96
O21w—Hao21 0.806 (17) C1g—C2g 1.3905 (11)
O21w—Hbo21 0.750 (18) C1g—C6g 1.3874 (11)
O22w—Hao22 0.812 (19) C2g—C3g 1.3881 (11)
O22w—Hbo22 0.818 (19) C3g—C4g 1.3956 (13)
O23w—Na17ii 2.292 (5) C3g—H1c3g 0.96
O23w—Hao23 0.794 (18) C4g—C5g 1.4005 (14)
O23w—Hbo23 0.847 (18) C4g—H1c4g 0.96
O24w—Hao24 0.76 (2) C5g—C6g 1.4011 (13)
O24w—Hbo24 0.76 (2) C5g—H1c5g 0.96
O25w—Hbo25 0.802 (17) C6g—H1c6g 0.96
O25w—Hao25 0.865 (17) C1h—C2h 1.3905 (12)
O26w—Hao26 0.880 (17) C1h—C6h 1.3874 (13)
O26w—Hbo26 0.735 (18) C2h—C3h 1.3881 (13)
O27w—Hao27 0.85 (2) C3h—C4h 1.3956 (14)
O27w—Hbo27 0.75 (2) C3h—H1c3h 0.96
O28w—Hao28 0.871 (17) C4h—C5h 1.4005 (15)
O28w—Hbo28 0.850 (16) C4h—H1c4h 0.96
O29w—Hao29 0.775 (18) C5h—C6h 1.4011 (14)
O29w—Hbo29 0.882 (17) C5h—H1c5h 0.96
O30w—Hao30 0.899 (16) C6h—H1c6h 0.96
O30w—Hbo30 0.817 (17) C1i—C2i 1.3905 (13)
O31w—Hao31 0.854 (18) C1i—C6i 1.3874 (13)
O31w—Hbo31 0.764 (18) C2i—C3i 1.3881 (13)
O32w—Hao32 0.814 (17) C3i—C4i 1.3956 (14)
O32w—Hbo32 0.803 (18) C3i—H1c3i 0.96
O33w—Hao33 0.817 (17) C4i—C5i 1.4005 (15)
O33w—Hbo33 0.816 (17) C4i—H1c4i 0.96
O34w—Hao34 0.880 (17) C5i—C6i 1.4011 (15)
O34w—Hbo34 0.816 (17) C5i—H1c5i 0.96
O35w—Na15 2.171 (5) C6i—H1c6i 0.96
O35w—Hao35 0.825 (18) C1j—C2j 1.3905 (11)
O35w—Hbo35 0.869 (19) C1j—C6j 1.3874 (12)
O36w—Na17 1.873 (6) C2j—C3j 1.3881 (11)
O36w—O37w 0.659 (9) C3j—C4j 1.3956 (13)
O38w—Na19 2.384 (6) C3j—H1c3j 0.96
O38w—Hao38 0.81 (2) C4j—C5j 1.4005 (14)
O38w—Hbo38 0.78 (2) C4j—H1c4j 0.96
O38w—O39w 0.732 (9) C5j—C6j 1.4011 (13)
O40w—Na19 2.286 (6) C5j—H1c5j 0.96
O40w—O41w 0.743 (11) C6j—H1c6j 0.96
O40w—Hbo40 0.74 (2) C1k—C2k 1.3905 (16)
O40w—Hao40 0.78 (2) C1k—C6k 1.3874 (16)
O42w—Na15 1.476 (5) C2k—C3k 1.3881 (14)
O42w—O43w 0.931 (9) C3k—C4k 1.3956 (16)
O42w—Hao42 0.78 (2) C3k—H1c3k 0.96
O42w—Hbo42 0.78 (2) C4k—C5k 1.4005 (18)
S11—O11 1.4492 (10) C4k—H1c4k 0.96
S11—O21 1.4520 (10) C5k—C6k 1.4011 (15)
S11—N11 1.6148 (11) C5k—H1c5k 0.96
S11—C1a 1.7611 (6) C6k—H1c6k 0.96
O31—C71 1.2413 (15) C1l—C2l 1.3905 (11)
N11—C71 1.3690 (15) C1l—C6l 1.3874 (12)
C71—C2a 1.5139 (13) C2l—C3l 1.3881 (12)
S12—O12 1.4571 (10) C3l—C4l 1.3956 (13)
S12—O22 1.4376 (11) C3l—H1c3l 0.96
S12—N12 1.6101 (10) C4l—C5l 1.4005 (14)
S12—C1b 1.7642 (8) C4l—H1c4l 0.96
O32—C72 1.2473 (14) C5l—C6l 1.4011 (13)
N12—C72 1.3631 (16) C5l—H1c5l 0.96
C72—C2b 1.5044 (14) C6l—H1c6l 0.96
S13—O13 1.4526 (10) C1m—C2m 1.3905 (11)
S13—O23 1.4495 (10) C1m—C6m 1.3874 (12)
S13—N13 1.6115 (11) C2m—C3m 1.3881 (11)
S13—C1c 1.7737 (7) C3m—C4m 1.3956 (13)
O33—C73 1.2425 (15) C3m—H1c3m 0.96
N13—C73 1.3645 (14) C4m—C5m 1.4005 (14)
C73—C2c 1.5017 (14) C4m—H1c4m 0.96
S14—O14 1.4490 (10) C5m—C6m 1.4011 (12)
S14—O24 1.4563 (10) C5m—H1c5m 0.96
S14—N14 1.6171 (11) C6m—H1c6m 0.96
S14—C1d 1.7577 (8) C1n—C2n 1.3905 (12)
O34—C74 1.2470 (14) C1n—C6n 1.3874 (13)
N14—C74 1.3625 (16) C2n—C3n 1.3881 (13)
C74—C2d 1.4928 (16) C3n—C4n 1.3956 (13)
S15—O15 1.4516 (11) C3n—H1c3n 0.96
S15—O25 1.4525 (11) C4n—C5n 1.4005 (15)
S15—N15 1.5992 (11) C4n—H1c4n 0.96
S15—C1e 1.7696 (7) C5n—C6n 1.4011 (14)
O35—C75 1.2359 (16) C5n—H1c5n 0.96
O35—Na17 2.214 (6) C6n—H1c6n 0.96
O35—Na19 2.435 (5) C1o—C2o 1.3905 (11)
N15—C75 1.3651 (15) C1o—C6o 1.3874 (12)
C75—C2e 1.5098 (14) C2o—C3o 1.3881 (11)
S16—O16 1.4434 (10) C3o—C4o 1.3956 (13)
S16—O26 1.4463 (10) C3o—H1c3o 0.96
S16—C1f 1.7677 (10) C4o—C5o 1.4005 (14)
O36—C76 1.2502 (14) C4o—H1c4o 0.96
N16—C76 1.3618 (16) C5o—C6o 1.4011 (13)
C76—C2f 1.4910 (14) C5o—H1c5o 0.96
S17—O17 1.4520 (10) C6o—H1c6o 0.96
S17—O27 1.4473 (10) C1p—C2p 1.3905 (18)
S17—C1g 1.7675 (7) C1p—C6p 1.3874 (16)
O37—C77 1.2546 (15) C1p—C1q 0.147 (5)
N17—C77 1.3527 (15) C1p—C2q 1.439 (6)
C77—C2g 1.5089 (14) C1p—C6q 1.252 (7)
S18—O18 1.4384 (10) C2p—C3p 1.388 (2)
S18—O28 1.4560 (10) C2p—C1q 1.318 (7)
S18—N18 1.6178 (10) C2p—C2q 0.314 (7)
S18—C1h 1.7760 (8) C3p—C4p 1.3956 (17)
O38—C78 1.2449 (14) C3p—H1c3p 0.96
N18—C78 1.3669 (15) C3p—C2q 1.204 (8)
C78—C2h 1.4881 (14) C3p—C3q 0.494 (7)
S19—O19 1.4589 (10) C3p—H1c3q 0.9223
S19—O29 1.4476 (10) C4p—C5p 1.401 (2)
S19—N19 1.6073 (10) C4p—H1c4p 0.96
S19—C1i 1.7713 (8) C4p—C3q 0.939 (8)
O39—C79 1.2419 (13) C4p—C4q 0.579 (6)
N19—C79 1.3695 (15) C5p—C6p 1.401 (2)
C79—C2i 1.4960 (14) C5p—H1c5p 0.96
S110—O110 1.4499 (10) C5p—C4q 0.884 (8)
S110—O210 1.4529 (11) C5p—C5q 0.646 (7)
S110—N110 1.6125 (11) C6p—H1c6p 0.96
S110—C1j 1.7633 (7) C6p—C1q 1.534 (5)
O310—C710 1.2454 (15) C6p—C5q 1.076 (9)
N110—C710 1.3637 (15) C6p—C6q 0.500 (10)
C710—C2j 1.5169 (14) H1c3p—H1c3q 0.7625
S111—O111 1.4436 (9) H1c4p—H1c4q 0.8173
S111—O211 1.4573 (10) H1c6p—C6q 0.9237
S111—N111 1.6152 (10) H1c6p—H1c6q 0.7677
S111—C1k 1.7618 (8) C1q—C2q 1.390 (9)
O311—C711 1.2313 (14) C1q—C6q 1.387 (9)
N111—C711 1.3777 (15) C2q—C3q 1.388 (11)
C711—C2k 1.4978 (14) C3q—C4q 1.396 (9)
S112—O112 1.4519 (10) C3q—H1c3q 0.96
S112—O212 1.4511 (10) C4q—C5q 1.401 (9)
S112—N112 1.6110 (11) C4q—H1c4q 0.96
S112—C1l 1.7747 (8) C5q—C6q 1.401 (12)
O112—Na15 2.395 (5) C5q—H1c5q 0.96
O312—C712 1.2371 (15) C6q—H1c6q 0.96
N112—C712 1.3630 (15)
Na2—Na1—Na12 171.10 (2) Na16—Na15—O43w 95.2 (3)
Na2—Na1—O14w 93.60 (3) Na16—Na15—Hao35 51.5 (5)
Na2—Na1—O15w 91.28 (3) Na16—Na15—Hbo35 58.5 (6)
Na2—Na1—O38 42.24 (3) Na16—Na15—Hao42 134.4 (10)
Na2—Na1—O315 139.41 (3) Na16—Na15—Hbo42 91.1 (9)
Na2—Na1—O316 46.04 (2) Na16—Na15—O3dib 97.1 (3)
Na12—Na1—O14w 78.80 (3) O35w—Na15—O42w 137.3 (3)
Na12—Na1—O15w 95.85 (3) O35w—Na15—O112 132.5 (2)
Na12—Na1—O38 132.40 (3) O35w—Na15—Na17 49.81 (13)
Na12—Na1—O315 45.17 (3) O35w—Na15—O43w 125.2 (3)
Na12—Na1—O316 138.99 (3) O35w—Na15—Hao35 22.3 (5)
O14w—Na1—O15w 172.56 (4) O35w—Na15—Hbo35 22.9 (6)
O14w—Na1—O38 91.21 (4) O35w—Na15—Hao42 156.1 (10)
O14w—Na1—O315 84.36 (3) O35w—Na15—Hbo42 132.9 (9)
O14w—Na1—O316 97.53 (4) O35w—Na15—O3dib 76.7 (3)
O15w—Na1—O38 88.62 (4) O42w—Na15—O112 89.4 (2)
O15w—Na1—O315 95.57 (4) O42w—Na15—Na17 91.6 (2)
O15w—Na1—O316 89.90 (4) O42w—Na15—O43w 13.2 (2)
O38—Na1—O315 175.32 (4) O42w—Na15—Hao35 123.7 (6)
O38—Na1—O316 88.18 (4) O42w—Na15—Hbo35 159.9 (7)
O315—Na1—O316 93.91 (4) O42w—Na15—Hao42 31.9 (10)
Na1—Na2—Na3 179.334 (18) O42w—Na15—Hbo42 31.3 (9)
Na1—Na2—O28w 90.21 (3) O42w—Na15—O3dib 88.6 (3)
Na1—Na2—O30w 91.87 (3) O112—Na15—Na17 167.67 (18)
Na1—Na2—O31 133.81 (3) O112—Na15—O43w 99.8 (3)
Na1—Na2—O38 41.20 (2) O112—Na15—Hao35 134.0 (6)
Na1—Na2—O39 137.47 (3) O112—Na15—Hbo35 110.7 (6)
Na3—Na2—O28w 90.42 (3) O112—Na15—Hao42 60.9 (10)
Na3—Na2—O30w 87.51 (3) O112—Na15—Hbo42 90.4 (9)
Na3—Na2—O31 46.38 (2) O112—Na15—O3dib 100.9 (3)
Na3—Na2—O38 139.01 (3) Na17—Na15—O43w 83.1 (3)
Na3—Na2—O39 42.30 (2) Na17—Na15—Hao35 53.9 (5)
O28w—Na2—O30w 176.90 (4) Na17—Na15—Hbo35 69.0 (6)
O28w—Na2—O31 91.94 (3) Na17—Na15—Hao42 122.5 (10)
O28w—Na2—O38 90.14 (3) Na17—Na15—Hbo42 84.1 (9)
O28w—Na2—O39 90.31 (3) Na17—Na15—O3dib 91.4 (3)
O30w—Na2—O31 84.96 (3) O43w—Na15—Hao35 110.5 (6)
O30w—Na2—O38 89.90 (4) O43w—Na15—Hbo35 148.2 (7)
O30w—Na2—O39 89.72 (3) O43w—Na15—Hao42 39.5 (10)
O31—Na2—O38 92.64 (4) O43w—Na15—Hbo42 40.3 (9)
O31—Na2—O39 88.66 (3) O43w—Na15—O3dib 78.8 (3)
O38—Na2—O39 178.60 (4) Hao35—Na15—Hbo35 40.1 (8)
Na2—Na3—O18w 93.62 (3) Hao35—Na15—Hao42 134.0 (11)
Na2—Na3—O20w 93.50 (3) Hao35—Na15—Hbo42 134.8 (11)
Na2—Na3—O32 126.76 (3) Hao35—Na15—O3dib 54.9 (6)
Na2—Na3—O39 41.31 (2) Hbo35—Na15—Hao42 163.4 (11)
Na2—Na3—O310 125.33 (3) Hbo35—Na15—Hbo42 143.6 (10)
O18w—Na3—O20w 172.84 (4) Hbo35—Na15—O3dib 86.7 (6)
O18w—Na3—O32 91.41 (4) Hao42—Na15—Hbo42 53.1 (13)
O18w—Na3—O39 92.81 (4) Hao42—Na15—O3dib 81.3 (10)
O18w—Na3—O310 89.79 (3) Hbo42—Na15—O3dib 119.0 (9)
O20w—Na3—O32 83.77 (3) Na6iv—Na17—Na14 120.39 (15)
O20w—Na3—O39 93.00 (3) Na6iv—Na17—Na16 93.5 (3)
O20w—Na3—O310 86.66 (3) Na6iv—Na17—O23wiv 46.42 (9)
O32—Na3—O39 167.60 (4) Na6iv—Na17—O36w 139.4 (3)
O32—Na3—O310 107.63 (4) Na6iv—Na17—O35 119.5 (2)
O39—Na3—O310 84.05 (3) Na6iv—Na17—Na15 109.16 (16)
Na8i—Na4—O16w 141.28 (3) Na6iv—Na17—Na19 163.7 (2)
Na8i—Na4—O21wi 40.68 (3) Na6iv—Na17—O37w 151.0 (3)
Na8i—Na4—O32w 40.39 (2) Na14—Na17—Na16 95.7 (3)
Na8i—Na4—O33w 123.69 (3) Na14—Na17—O23wiv 76.17 (15)
Na8i—Na4—O115i 101.77 (3) Na14—Na17—O36w 31.30 (11)
O16w—Na4—O21wi 100.63 (4) Na14—Na17—O35 120.09 (18)
O16w—Na4—O32w 174.92 (4) Na14—Na17—Na15 46.03 (9)
O16w—Na4—O33w 94.94 (4) Na14—Na17—Na19 73.78 (14)
O16w—Na4—O115i 79.10 (4) Na14—Na17—O37w 34.5 (3)
O21wi—Na4—O32w 81.00 (4) Na16—Na17—O23wiv 84.4 (3)
O21wi—Na4—O33w 164.34 (4) Na16—Na17—O36w 112.6 (4)
O21wi—Na4—O115i 95.08 (4) Na16—Na17—O35 78.7 (3)
O32w—Na4—O33w 83.35 (4) Na16—Na17—Na15 50.4 (3)
O32w—Na4—O115i 105.62 (4) Na16—Na17—Na19 76.0 (3)
O33w—Na4—O115i 89.42 (4) Na16—Na17—O37w 101.9 (4)
Na13i—Na5—O14w 111.80 (3) O23wiv—Na17—O36w 103.9 (3)
Na13i—Na5—O27w 118.95 (4) O23wiv—Na17—O35 157.5 (3)
Na13i—Na5—O29w 45.80 (3) O23wiv—Na17—Na15 68.42 (15)
Na13i—Na5—O30w 117.35 (3) O23wiv—Na17—Na19 142.0 (2)
Na13i—Na5—O211i 49.39 (2) O23wiv—Na17—O37w 110.5 (4)
O14w—Na5—O27w 106.85 (4) O36w—Na17—O35 96.4 (2)
O14w—Na5—O29w 86.37 (4) O36w—Na17—Na15 70.85 (18)
O14w—Na5—O30w 104.38 (4) O36w—Na17—Na19 56.87 (16)
O14w—Na5—O211i 83.19 (3) O36w—Na17—O37w 12.7 (2)
O27w—Na5—O29w 163.93 (4) O35—Na17—Na15 110.3 (2)
O27w—Na5—O30w 95.48 (4) O35—Na17—Na19 46.74 (13)
O27w—Na5—O211i 92.61 (4) O35—Na17—O37w 87.7 (3)
O29w—Na5—O30w 89.84 (4) Na15—Na17—Na19 74.05 (15)
O29w—Na5—O211i 79.67 (3) Na15—Na17—O37w 65.4 (3)
O30w—Na5—O211i 166.74 (4) Na19—Na17—O37w 45.2 (3)
Na16ii—Na6—O18w 124.10 (3) Na16—Na19—Na18 142.1 (3)
Na16ii—Na6—O23w 42.64 (3) Na16—Na19—O38w 94.13 (18)
Na16ii—Na6—O24w 121.92 (4) Na16—Na19—O40w 117.3 (2)
Na16ii—Na6—O28w 106.69 (3) Na16—Na19—O35 43.54 (9)
Na16ii—Na6—O24ii 41.04 (3) Na16—Na19—Na17 16.96 (12)
Na16ii—Na6—O16ii 64.62 (3) Na16—Na19—O37w 55.3 (3)
Na16ii—Na6—Na17ii 15.99 (12) Na16—Na19—O41w 124.2 (3)
O18w—Na6—O23w 88.94 (4) Na16—Na19—Hbo38 80.3 (5)
O18w—Na6—O24w 99.82 (4) Na16—Na19—O39w 107.6 (3)
O18w—Na6—O28w 102.35 (4) Na16—Na19—N1dia 132.2 (2)
O18w—Na6—O24ii 164.59 (4) Na16—Na19—N1dib 115.0 (3)
O18w—Na6—O16ii 84.74 (4) Na18—Na19—O38w 71.1 (2)
O18w—Na6—Na17ii 112.02 (12) Na18—Na19—O40w 72.2 (2)
O23w—Na6—O24w 163.23 (4) Na18—Na19—O35 100.2 (3)
O23w—Na6—O28w 94.64 (4) Na18—Na19—Na17 140.4 (3)
O23w—Na6—O24ii 75.99 (4) Na18—Na19—O37w 147.2 (4)
O23w—Na6—O16ii 80.03 (4) Na18—Na19—O41w 55.5 (3)
O23w—Na6—Na17ii 43.35 (10) Na18—Na19—Hbo38 90.1 (6)
O24w—Na6—O28w 97.38 (4) Na18—Na19—O39w 53.7 (3)
O24w—Na6—O24ii 94.02 (4) Na18—Na19—N1dia 81.0 (2)
O24w—Na6—O16ii 86.51 (4) Na18—Na19—N1dib 95.8 (3)
O24w—Na6—Na17ii 119.89 (10) O38w—Na19—O40w 143.1 (2)
O28w—Na6—O24ii 82.38 (3) O38w—Na19—O35 89.8 (2)
O28w—Na6—O16ii 171.13 (4) O38w—Na19—Na17 109.9 (2)
O28w—Na6—Na17ii 121.83 (12) O38w—Na19—O37w 141.7 (4)
O24ii—Na6—O16ii 89.42 (4) O38w—Na19—O41w 126.4 (3)
O24ii—Na6—Na17ii 54.30 (12) O38w—Na19—Hbo38 19.2 (5)
O16ii—Na6—Na17ii 49.72 (12) O38w—Na19—O39w 17.4 (2)
Na13—Na7—O19w 85.10 (4) O38w—Na19—N1dia 80.58 (19)
Na13—Na7—O25w 40.63 (3) O38w—Na19—N1dib 76.7 (3)
Na13—Na7—N13 131.23 (3) O40w—Na19—O35 99.8 (2)
Na13—Na7—O34 80.83 (3) O40w—Na19—Na17 100.3 (2)
Na13—Na7—O215iii 69.87 (3) O40w—Na19—O37w 75.1 (3)
O19w—Na7—O25w 125.53 (5) O40w—Na19—O41w 18.3 (3)
O19w—Na7—N13 143.24 (4) O40w—Na19—Hbo38 161.4 (6)
O19w—Na7—O34 91.04 (4) O40w—Na19—O39w 125.8 (3)
O19w—Na7—O215iii 82.93 (4) O40w—Na19—N1dia 90.6 (2)
O25w—Na7—N13 90.60 (4) O40w—Na19—N1dib 104.0 (3)
O25w—Na7—O34 78.31 (4) O35—Na19—Na17 41.47 (13)
O25w—Na7—O215iii 81.80 (4) O35—Na19—O37w 82.2 (3)
N13—Na7—O34 90.08 (4) O35—Na19—O41w 94.6 (3)
N13—Na7—O215iii 111.89 (4) O35—Na19—Hbo38 88.9 (5)
O34—Na7—O215iii 150.45 (4) O35—Na19—O39w 92.2 (3)
Na4iii—Na8—Na18 115.435 (18) O35—Na19—N1dia 169.4 (3)
Na4iii—Na8—O17w 144.88 (3) O35—Na19—N1dib 154.5 (4)
Na4iii—Na8—O21w 39.33 (2) Na17—Na19—O37w 44.5 (3)
Na4iii—Na8—O26w 89.34 (3) Na17—Na19—O41w 108.1 (3)
Na4iii—Na8—O32wiii 41.09 (3) Na17—Na19—Hbo38 97.1 (5)
Na4iii—Na8—O29iii 106.25 (3) Na17—Na19—O39w 121.6 (3)
Na18—Na8—O17w 96.51 (3) Na17—Na19—N1dia 138.6 (2)
Na18—Na8—O21w 82.87 (3) Na17—Na19—N1dib 123.4 (3)
Na18—Na8—O26w 119.67 (3) O37w—Na19—O41w 91.7 (4)
Na18—Na8—O32wiii 140.21 (3) O37w—Na19—Hbo38 122.7 (6)
Na18—Na8—O29iii 42.48 (3) O37w—Na19—O39w 159.0 (4)
O17w—Na8—O21w 172.38 (4) O37w—Na19—N1dia 102.5 (3)
O17w—Na8—O26w 86.93 (4) O37w—Na19—N1dib 95.0 (4)
O17w—Na8—O32wiii 104.54 (4) O41w—Na19—Hbo38 145.6 (6)
O17w—Na8—O29iii 87.10 (4) O41w—Na19—O39w 109.0 (4)
O21w—Na8—O26w 86.80 (4) O41w—Na19—N1dia 94.7 (3)
O21w—Na8—O32wiii 80.35 (4) O41w—Na19—N1dib 110.9 (4)
O21w—Na8—O29iii 97.39 (4) Hbo38—Na19—O39w 36.6 (6)
O26w—Na8—O32wiii 95.16 (4) Hbo38—Na19—N1dia 80.6 (5)
O26w—Na8—O29iii 160.10 (4) Hbo38—Na19—N1dib 71.2 (6)
O32wiii—Na8—O29iii 104.71 (4) O39w—Na19—N1dia 80.0 (3)
Na10ii—Na9—O10wii 38.68 (3) O39w—Na19—N1dib 81.4 (4)
Na10ii—Na9—O12w 137.83 (3) N1dia—Na19—N1dib 17.4 (2)
Na10ii—Na9—O15w 88.48 (3) Na14—O37w—O36w 90.8 (11)
Na10ii—Na9—O34w 117.24 (3) Na14—O37w—Na17 108.9 (4)
Na10ii—Na9—O22iv 91.42 (3) Na14—O37w—Na19 135.1 (5)
O10wii—Na9—O12w 99.48 (4) O36w—O37w—Na17 38.5 (7)
O10wii—Na9—O15w 90.62 (4) O36w—O37w—Na19 124.8 (12)
O10wii—Na9—O34w 152.54 (4) Na17—O37w—Na19 90.3 (4)
O10wii—Na9—O22iv 88.19 (4) Na14—O43w—O42w 118.0 (7)
O12w—Na9—O15w 86.73 (4) Na14—O43w—Na15 96.8 (4)
O12w—Na9—O34w 104.59 (4) O42w—O43w—Na15 21.2 (4)
O12w—Na9—O22iv 92.16 (4) Na18—O41w—O40w 111.1 (9)
O15w—Na9—O34w 103.65 (4) Na18—O41w—Na19 40.3 (2)
O15w—Na9—O22iv 178.21 (4) O40w—O41w—Na19 75.0 (8)
O34w—Na9—O22iv 77.98 (4) O35w—Hao35—Na15 91.5 (14)
Na9iv—Na10—Na11 105.872 (17) O38w—Hbo38—Na19 91.5 (16)
Na9iv—Na10—O10w 37.84 (2) O35w—Hbo35—Na15 103.0 (15)
Na9iv—Na10—O13wiv 40.21 (3) Na18—O39w—O38w 116.4 (8)
Na9iv—Na10—O22w 135.81 (3) Na18—O39w—Na19 39.1 (2)
Na9iv—Na10—O18iv 108.47 (3) O38w—O39w—Na19 77.4 (7)
Na11—Na10—O10w 77.73 (3) O42w—Hao42—Na15 89.0 (19)
Na11—Na10—O13wiv 133.75 (3) O42w—Hbo42—Na15 79.2 (16)
Na11—Na10—O22w 101.57 (3) O1dia—S1dia—O2dia 113.53 (16)
Na11—Na10—O18iv 128.14 (3) O1dia—S1dia—N1dia 111.59 (8)
O10w—Na10—O13wiv 77.98 (3) O1dia—S1dia—S1dib 129.1 (7)
O10w—Na10—O22w 170.75 (5) O1dia—S1dia—O1dib 34.2 (6)
O10w—Na10—O18iv 108.78 (4) O1dia—S1dia—C1p 110.36 (9)
O13wiv—Na10—O22w 96.46 (4) O1dia—S1dia—C1q 111.9 (3)
O13wiv—Na10—O18iv 96.86 (4) O2dia—S1dia—N1dia 110.37 (15)
O22w—Na10—O18iv 79.04 (4) O2dia—S1dia—S1dib 91.6 (7)
Na10—Na11—O11w 44.23 (3) O2dia—S1dia—O1dib 122.7 (5)
Na10—Na11—O31w 44.42 (3) O2dia—S1dia—C1p 111.96 (18)
Na10—Na11—O33wv 151.47 (3) O2dia—S1dia—C1q 113.6 (4)
Na10—Na11—O33 82.62 (3) N1dia—S1dia—S1dib 20.5 (6)
Na10—Na11—O311 92.01 (3) N1dia—S1dia—O1dib 78.0 (6)
O11w—Na11—O31w 88.32 (4) N1dia—S1dia—C1p 98.02 (7)
O11w—Na11—O33wv 159.88 (4) N1dia—S1dia—C1q 94.2 (2)
O11w—Na11—O33 86.16 (4) S1dib—S1dia—O1dib 94.9 (9)
O11w—Na11—O311 87.76 (4) S1dib—S1dia—C1p 98.4 (7)
O31w—Na11—O33wv 109.85 (4) S1dib—S1dia—C1q 94.9 (7)
O31w—Na11—O33 89.41 (4) O1dib—S1dia—C1p 123.1 (4)
O31w—Na11—O311 88.95 (4) O1dib—S1dia—C1q 122.4 (6)
O33wv—Na11—O33 85.51 (4) C1p—S1dia—C1q 3.8 (2)
O33wv—Na11—O311 100.72 (4) S1dia—O1dia—O1dib 66.9 (7)
O33—Na11—O311 173.75 (4) Na13—O2dia—S1dia 125.6 (2)
Na1—Na12—O26w 103.06 (3) Na13—O2dia—S1dib 109.3 (3)
Na1—Na12—O34w 92.53 (3) Na13—O2dia—O2dib 14 (7)
Na1—Na12—O36 138.72 (3) S1dia—O2dia—S1dib 17.41 (19)
Na1—Na12—O315 44.47 (3) S1dia—O2dia—O2dib 114 (7)
O26w—Na12—O34w 153.05 (5) S1dib—O2dia—O2dib 97 (7)
O26w—Na12—O36 92.33 (4) Na14—O3dia—C7dia 155.12 (11)
O26w—Na12—O315 89.65 (4) Na14—O3dia—O3dib 88.2 (4)
O34w—Na12—O36 90.10 (4) Na14—O3dia—C7dib 140.4 (5)
O34w—Na12—O315 86.26 (4) C7dia—O3dia—O3dib 93.0 (4)
O36—Na12—O315 175.38 (4) C7dia—O3dia—C7dib 33.0 (5)
Na5iii—Na13—Na7 120.847 (19) O3dib—O3dia—C7dib 60.0 (6)
Na5iii—Na13—O29wiii 48.52 (3) Na18—N1dia—Na19 35.87 (13)
Na5iii—Na13—O38w 138.67 (4) Na18—N1dia—S1dia 115.33 (7)
Na5iii—Na13—O312 125.00 (3) Na18—N1dia—C7dia 131.44 (10)
Na5iii—Na13—O2dia 49.30 (9) Na18—N1dia—S1dib 117.3 (3)
Na5iii—Na13—O2dib 50.8 (8) Na18—N1dia—N1dib 119.8 (8)
Na7—Na13—O29wiii 76.30 (3) Na19—N1dia—S1dia 151.10 (16)
Na7—Na13—O38w 64.81 (3) Na19—N1dia—C7dia 97.67 (16)
Na7—Na13—O312 105.13 (3) Na19—N1dia—S1dib 151.9 (3)
Na7—Na13—O2dia 149.77 (9) Na19—N1dia—N1dib 90.2 (8)
Na7—Na13—O2dib 150.2 (9) S1dia—N1dia—C7dia 110.63 (11)
O29wiii—Na13—O38w 104.30 (4) S1dia—N1dia—S1dib 7.7 (2)
O29wiii—Na13—O312 168.86 (4) S1dia—N1dia—N1dib 112.0 (8)
O29wiii—Na13—O2dia 80.56 (10) C7dia—N1dia—S1dib 110.3 (3)
O29wiii—Na13—O2dib 81.9 (8) C7dia—N1dia—N1dib 50.4 (9)
O38w—Na13—O312 86.05 (4) S1dib—N1dia—N1dib 105.7 (8)
O38w—Na13—O2dia 103.21 (9) O3dia—C7dia—N1dia 124.39 (14)
O38w—Na13—O2dib 102.2 (8) O3dia—C7dia—N1dib 111.5 (5)
O312—Na13—O2dia 101.34 (10) O3dia—C7dia—C7dib 79.1 (8)
O312—Na13—O2dib 100.2 (8) O3dia—C7dia—C2p 121.73 (14)
O2dia—Na13—O2dib 1.5 (8) N1dia—C7dia—N1dib 32.6 (6)
Na16—Na14—O36w 34.88 (3) N1dia—C7dia—C7dib 126.9 (10)
Na16—Na14—O42w 75.94 (4) N1dia—C7dia—C2p 113.87 (12)
Na16—Na14—O12iv 82.12 (3) N1dib—C7dia—C7dib 97.1 (12)
Na16—Na14—O214 174.30 (3) N1dib—C7dia—C2p 117.5 (5)
Na16—Na14—N114 127.37 (3) C7dib—C7dia—C2p 65.8 (9)
Na16—Na14—Na15 57.72 (9) S1dia—S1dib—O2dia 71.0 (6)
Na16—Na14—Na17 14.30 (11) S1dia—S1dib—N1dia 151.8 (9)
Na16—Na14—O37w 41.9 (2) S1dia—S1dib—O1dib 67.1 (8)
Na16—Na14—O43w 91.2 (3) S1dia—S1dib—N1dib 164.7 (9)
Na16—Na14—O3dia 74.68 (3) S1dia—S1dib—C1q 70.2 (7)
O36w—Na14—O42w 110.80 (5) O2dia—S1dib—N1dia 134.3 (4)
O36w—Na14—O12iv 84.46 (4) O2dia—S1dib—O1dib 110.3 (6)
O36w—Na14—O214 149.70 (5) O2dia—S1dib—N1dib 118.7 (6)
O36w—Na14—N114 92.72 (4) O2dia—S1dib—C1q 104.5 (5)
O36w—Na14—Na15 89.86 (9) N1dia—S1dib—O1dib 89.1 (6)
O36w—Na14—Na17 24.70 (10) N1dia—S1dib—N1dib 27.0 (4)
O36w—Na14—O37w 16.4 (2) N1dia—S1dib—C1q 106.9 (4)
O36w—Na14—O43w 125.1 (3) O1dib—S1dib—N1dib 116.0 (7)
O36w—Na14—O3dia 73.79 (4) O1dib—S1dib—C1q 110.0 (6)
O42w—Na14—O12iv 88.54 (4) N1dib—S1dib—C1q 95.2 (5)
O42w—Na14—O214 99.20 (5) S1dia—O1dib—O1dia 78.9 (7)
O42w—Na14—N114 155.14 (5) S1dia—O1dib—S1dib 18.0 (2)
O42w—Na14—Na15 28.19 (9) O1dia—O1dib—S1dib 96.8 (8)
O42w—Na14—Na17 87.84 (11) Na13—O2dib—O2dia 165 (8)
O42w—Na14—O37w 113.5 (2) Na15—O3dib—O3dia 112.0 (6)
O42w—Na14—O43w 21.0 (3) Na15—O3dib—C7dib 147.1 (10)
O42w—Na14—O3dia 90.45 (5) O3dia—O3dib—C7dib 67.9 (8)
O12iv—Na14—O214 100.90 (4) Na19—N1dib—N1dia 72.3 (7)
O12iv—Na14—N114 102.11 (4) Na19—N1dib—C7dia 101.4 (7)
O12iv—Na14—Na15 105.54 (8) Na19—N1dib—S1dib 115.9 (6)
O12iv—Na14—Na17 74.18 (9) Na19—N1dib—C7dib 119.6 (8)
O12iv—Na14—O37w 100.7 (2) N1dia—N1dib—C7dia 96.9 (12)
O12iv—Na14—O43w 76.2 (3) N1dia—N1dib—S1dib 47.3 (6)
O12iv—Na14—O3dia 156.30 (5) N1dia—N1dib—C7dib 126.7 (14)
O214—Na14—N114 56.98 (3) C7dia—N1dib—S1dib 104.7 (8)
O214—Na14—Na15 116.64 (9) C7dia—N1dib—C7dib 32.5 (6)
O214—Na14—Na17 171.39 (11) S1dib—N1dib—C7dib 113.4 (8)
O214—Na14—O37w 140.9 (2) O3dia—C7dib—C7dia 67.9 (9)
O214—Na14—O43w 84.9 (3) O3dia—C7dib—O3dib 52.1 (7)
O214—Na14—O3dia 102.64 (4) O3dia—C7dib—N1dib 90.7 (8)
N114—Na14—Na15 152.35 (8) O3dia—C7dib—C2p 126.1 (10)
N114—Na14—Na17 116.56 (10) O3dia—C7dib—C2q 132.2 (11)
N114—Na14—O37w 86.8 (2) C7dia—C7dib—O3dib 120.0 (13)
N114—Na14—O43w 141.2 (3) C7dia—C7dib—N1dib 50.4 (9)
N114—Na14—O3dia 88.46 (4) C7dia—C7dib—C2p 85.0 (10)
Na15—Na14—Na17 71.79 (14) C7dia—C7dib—C2q 96.6 (11)
Na15—Na14—O37w 88.0 (3) O3dib—C7dib—N1dib 123.7 (11)
Na15—Na14—O43w 49.2 (3) O3dib—C7dib—C2p 128.6 (11)
Na15—Na14—O3dia 65.87 (8) O3dib—C7dib—C2q 121.9 (11)
Na17—Na14—O37w 36.6 (3) N1dib—C7dib—C2p 107.0 (8)
Na17—Na14—O43w 100.5 (3) N1dib—C7dib—C2q 114.4 (8)
Na17—Na14—O3dia 82.12 (9) C2p—C7dib—C2q 11.7 (4)
O37w—Na14—O43w 131.9 (4) S11—C1a—C2a 107.78 (4)
O37w—Na14—O3dia 58.3 (2) S11—C1a—C6a 129.55 (5)
O43w—Na14—O3dia 108.6 (3) C2a—C1a—C6a 122.66 (5)
Na6iv—Na16—Na14 110.02 (2) C71—C2a—C1a 110.30 (6)
Na6iv—Na16—O23wiv 43.00 (3) C71—C2a—C3a 129.06 (7)
Na6iv—Na16—O35w 149.55 (4) C1a—C2a—C3a 120.62 (6)
Na6iv—Na16—O36w 109.73 (4) C2a—C3a—C4a 117.76 (7)
Na6iv—Na16—O24 43.60 (3) C2a—C3a—H1c3a 121.12
Na6iv—Na16—O35 111.54 (3) C4a—C3a—H1c3a 121.12
Na6iv—Na16—Na15 117.86 (7) C3a—C4a—C5a 121.24 (7)
Na6iv—Na16—Na17 70.5 (3) C3a—C4a—H1c4a 119.38
Na6iv—Na16—Na19 154.20 (11) C5a—C4a—H1c4a 119.38
Na14—Na16—O23wiv 70.66 (3) C4a—C5a—C6a 121.02 (7)
Na14—Na16—O35w 69.52 (3) C4a—C5a—H1c5a 119.49
Na14—Na16—O36w 33.35 (3) C6a—C5a—H1c5a 119.49
Na14—Na16—O24 148.76 (3) C1a—C6a—C5a 116.70 (7)
Na14—Na16—O35 111.56 (4) C1a—C6a—H1c6a 121.65
Na14—Na16—Na15 47.79 (8) C5a—C6a—H1c6a 121.65
Na14—Na16—Na17 70.0 (3) S12—C1b—C2b 106.69 (6)
Na14—Na16—Na19 71.79 (10) S12—C1b—C6b 130.65 (7)
O23wiv—Na16—O35w 116.76 (5) C2b—C1b—C6b 122.66 (8)
O23wiv—Na16—O36w 85.95 (4) C72—C2b—C1b 110.99 (8)
O23wiv—Na16—O24 78.53 (4) C72—C2b—C3b 128.39 (9)
O23wiv—Na16—O35 144.41 (5) C1b—C2b—C3b 120.62 (8)
O23wiv—Na16—Na15 78.77 (7) C2b—C3b—C4b 117.76 (9)
O23wiv—Na16—Na17 71.7 (3) C2b—C3b—H1c3b 121.12
O23wiv—Na16—Na19 141.29 (11) C4b—C3b—H1c3b 121.12
O35w—Na16—O36w 86.55 (4) C3b—C4b—C5b 121.24 (9)
O35w—Na16—O24 122.71 (5) C3b—C4b—H1c4b 119.38
O35w—Na16—O35 95.78 (4) C5b—C4b—H1c4b 119.38
O35w—Na16—Na15 38.27 (8) C4b—C5b—C6b 121.02 (9)
O35w—Na16—Na17 131.8 (3) C4b—C5b—H1c5b 119.49
O35w—Na16—Na19 56.13 (11) C6b—C5b—H1c5b 119.49
O36w—Na16—O24 150.61 (5) C1b—C6b—C5b 116.70 (9)
O36w—Na16—O35 81.85 (5) C1b—C6b—H1c6b 121.65
O36w—Na16—Na15 78.80 (8) C5b—C6b—H1c6b 121.65
O36w—Na16—Na17 45.5 (3) S13—C1c—C2c 106.74 (5)
O36w—Na16—Na19 56.95 (11) S13—C1c—C6c 130.59 (6)
O24—Na16—O35 96.43 (4) C2c—C1c—C6c 122.66 (7)
O24—Na16—Na15 121.49 (8) C73—C2c—C1c 111.28 (7)
O24—Na16—Na17 105.4 (3) C73—C2c—C3c 128.10 (8)
O24—Na16—Na19 139.45 (11) C1c—C2c—C3c 120.62 (7)
O35—Na16—Na15 130.47 (7) C2c—C3c—C4c 117.76 (8)
O35—Na16—Na17 75.9 (3) C2c—C3c—H1c3c 121.12
O35—Na16—Na19 48.52 (10) C4c—C3c—H1c3c 121.12
Na15—Na16—Na17 117.0 (3) C3c—C4c—C5c 121.24 (8)
Na15—Na16—Na19 83.10 (12) C3c—C4c—H1c4c 119.38
Na17—Na16—Na19 87.0 (3) C5c—C4c—H1c4c 119.38
Na8—Na18—O38w 166.91 (4) C4c—C5c—C6c 121.02 (8)
Na8—Na18—O40w 47.03 (4) C4c—C5c—H1c5c 119.49
Na8—Na18—N15 95.80 (3) C6c—C5c—H1c5c 119.49
Na8—Na18—Na19 115.2 (2) C1c—C6c—C5c 116.70 (8)
Na8—Na18—O41w 35.4 (2) C1c—C6c—H1c6c 121.65
Na8—Na18—O39w 155.2 (2) C5c—C6c—H1c6c 121.65
Na8—Na18—N1dia 96.75 (4) S14—C1d—C2d 106.32 (6)
O38w—Na18—O40w 140.10 (6) S14—C1d—C6d 130.85 (13)
O38w—Na18—N15 94.55 (4) C2d—C1d—C6d 122.66 (10)
O38w—Na18—Na19 71.3 (2) C74—C2d—C1d 111.25 (8)
O38w—Na18—O41w 154.9 (3) C74—C2d—C3d 128.10 (15)
O38w—Na18—O39w 16.0 (3) C1d—C2d—C3d 120.62 (12)
O38w—Na18—N1dia 75.68 (5) C2d—C3d—C4d 117.76 (17)
O40w—Na18—N15 93.48 (5) C2d—C3d—H1c3d 121.12
O40w—Na18—Na19 69.0 (2) C4d—C3d—H1c3d 121.12
O40w—Na18—O41w 17.3 (3) C3d—C4d—C5d 121.24 (11)
O40w—Na18—O39w 156.1 (3) C3d—C4d—H1c4d 119.38
O40w—Na18—N1dia 83.67 (5) C5d—C4d—H1c4d 119.38
N15—Na18—Na19 97.19 (19) C4d—C5d—C6d 121.02 (13)
N15—Na18—O41w 83.3 (3) C4d—C5d—H1c5d 119.49
N15—Na18—O39w 91.6 (2) C6d—C5d—H1c5d 119.49
N15—Na18—N1dia 159.82 (5) C1d—C6d—C5d 116.70 (17)
Na19—Na18—O41w 84.2 (4) C1d—C6d—H1c6d 121.65
Na19—Na18—O39w 87.2 (3) C5d—C6d—H1c6d 121.65
Na19—Na18—N1dia 63.10 (19) S15—C1e—C2e 106.52 (5)
O41w—Na18—O39w 169.3 (3) S15—C1e—C6e 130.80 (6)
O41w—Na18—N1dia 98.1 (3) C2e—C1e—C6e 122.66 (7)
O39w—Na18—N1dia 83.5 (2) C75—C2e—C1e 110.92 (7)
Na9iv—O10w—Na10 103.48 (4) C75—C2e—C3e 128.46 (8)
Na9iv—O10w—Hbo10 99.7 (12) C1e—C2e—C3e 120.62 (7)
Na9iv—O10w—Hao10 122.6 (12) C2e—C3e—C4e 117.76 (8)
Na10—O10w—Hbo10 110.2 (13) C2e—C3e—H1c3e 121.12
Na10—O10w—Hao10 108.3 (11) C4e—C3e—H1c3e 121.12
Hbo10—O10w—Hao10 111.9 (18) C3e—C4e—C5e 121.24 (8)
Na11—O11w—Hao11 122.2 (12) C3e—C4e—H1c4e 119.38
Na11—O11w—Hbo11 123.0 (12) C5e—C4e—H1c4e 119.38
Hao11—O11w—Hbo11 107.7 (17) C4e—C5e—C6e 121.02 (9)
Na9—O12w—Hao12 112.0 (14) C4e—C5e—H1c5e 119.49
Na9—O12w—Hbo12 130.6 (14) C6e—C5e—H1c5e 119.49
Hao12—O12w—Hbo12 104.5 (19) C1e—C6e—C5e 116.70 (8)
Na10ii—O13w—Hao13 139.9 (11) C1e—C6e—H1c6e 121.65
Na10ii—O13w—Hbo13 93.0 (12) C5e—C6e—H1c6e 121.65
Hao13—O13w—Hbo13 106.3 (17) S16—C1f—C2f 106.84 (6)
Na1—O14w—Na5 124.43 (4) S16—C1f—C6f 130.48 (9)
Na1—O14w—Hbo14 100.4 (10) C2f—C1f—C6f 122.66 (10)
Na1—O14w—Hao14 103.6 (11) C76—C2f—C1f 111.15 (8)
Na5—O14w—Hbo14 111.6 (11) C76—C2f—C3f 128.05 (10)
Na5—O14w—Hao14 107.8 (11) C1f—C2f—C3f 120.62 (8)
Hbo14—O14w—Hao14 107.8 (15) C2f—C3f—C4f 117.76 (10)
Na1—O15w—Na9 121.45 (4) C2f—C3f—H1c3f 121.12
Na1—O15w—Hao15 102.4 (11) C4f—C3f—H1c3f 121.12
Na1—O15w—Hbo15 100.1 (11) C3f—C4f—C5f 121.24 (10)
Na9—O15w—Hao15 111.3 (11) C3f—C4f—H1c4f 119.38
Na9—O15w—Hbo15 110.3 (12) C5f—C4f—H1c4f 119.38
Hao15—O15w—Hbo15 110.5 (17) C4f—C5f—C6f 121.02 (9)
Na4—O16w—Hao16 116.7 (15) C4f—C5f—H1c5f 119.49
Na4—O16w—Hbo16 118.2 (13) C6f—C5f—H1c5f 119.49
Hao16—O16w—Hbo16 102.8 (19) C1f—C6f—C5f 116.70 (10)
Na8—O17w—Hao17 126.4 (13) C1f—C6f—H1c6f 121.65
Na8—O17w—Hbo17 111.8 (12) C5f—C6f—H1c6f 121.65
Hao17—O17w—Hbo17 105.4 (17) S17—C1g—C2g 107.38 (5)
Na3—O18w—Na6 127.11 (4) S17—C1g—C6g 129.95 (6)
Na3—O18w—Hao18 96.3 (11) C2g—C1g—C6g 122.66 (7)
Na3—O18w—Hbo18 98.6 (11) C77—C2g—C1g 110.44 (7)
Na6—O18w—Hao18 112.9 (12) C77—C2g—C3g 128.90 (8)
Na6—O18w—Hbo18 110.7 (11) C1g—C2g—C3g 120.62 (7)
Hao18—O18w—Hbo18 109.5 (16) C2g—C3g—C4g 117.76 (8)
Na7—O19w—Hao19 124.2 (15) C2g—C3g—H1c3g 121.12
Na7—O19w—Hbo19 127.2 (13) C4g—C3g—H1c3g 121.12
Hao19—O19w—Hbo19 102 (2) C3g—C4g—C5g 121.24 (8)
Na3—O20w—Hao20 103.7 (12) C3g—C4g—H1c4g 119.38
Na3—O20w—Hbo20 95.4 (11) C5g—C4g—H1c4g 119.38
Hao20—O20w—Hbo20 108.3 (16) C4g—C5g—C6g 121.02 (8)
Na4iii—O21w—Na8 99.99 (4) C4g—C5g—H1c5g 119.49
Na4iii—O21w—Hao21 126.3 (12) C6g—C5g—H1c5g 119.49
Na4iii—O21w—Hbo21 107.7 (13) C1g—C6g—C5g 116.70 (8)
Na8—O21w—Hao21 106.2 (12) C1g—C6g—H1c6g 121.65
Na8—O21w—Hbo21 107.8 (13) C5g—C6g—H1c6g 121.65
Hao21—O21w—Hbo21 107.5 (18) S18—C1h—C2h 106.14 (5)
Na10—O22w—Hao22 110.9 (14) S18—C1h—C6h 131.18 (7)
Na10—O22w—Hbo22 122.8 (14) C2h—C1h—C6h 122.66 (7)
Hao22—O22w—Hbo22 102.7 (19) C78—C2h—C1h 111.77 (8)
Na6—O23w—Na16ii 94.36 (4) C78—C2h—C3h 127.53 (8)
Na6—O23w—Na17ii 90.24 (14) C1h—C2h—C3h 120.62 (7)
Na6—O23w—Hao23 124.1 (12) C2h—C3h—C4h 117.76 (8)
Na6—O23w—Hbo23 113.8 (11) C2h—C3h—H1c3h 121.12
Na16ii—O23w—Na17ii 23.86 (18) C4h—C3h—H1c3h 121.12
Na16ii—O23w—Hao23 117.7 (12) C3h—C4h—C5h 121.24 (9)
Na16ii—O23w—Hbo23 99.9 (11) C3h—C4h—H1c4h 119.38
Na17ii—O23w—Hao23 101.7 (12) C5h—C4h—H1c4h 119.38
Na17ii—O23w—Hbo23 122.7 (11) C4h—C5h—C6h 121.02 (8)
Hao23—O23w—Hbo23 104.7 (17) C4h—C5h—H1c5h 119.49
Na6—O24w—Hao24 120.4 (15) C6h—C5h—H1c5h 119.49
Na6—O24w—Hbo24 118.3 (15) C1h—C6h—C5h 116.70 (8)
Hao24—O24w—Hbo24 104 (2) C1h—C6h—H1c6h 121.65
Na7—O25w—Hbo25 134.5 (13) C5h—C6h—H1c6h 121.65
Na7—O25w—Hao25 123.8 (11) S19—C1i—C2i 106.29 (5)
Hbo25—O25w—Hao25 101.2 (17) S19—C1i—C6i 131.05 (7)
Na8—O26w—Na12 126.51 (5) C2i—C1i—C6i 122.66 (7)
Na8—O26w—Hao26 114.0 (11) C79—C2i—C1i 111.42 (8)
Na8—O26w—Hbo26 97.6 (13) C79—C2i—C3i 127.95 (9)
Na12—O26w—Hao26 100.7 (11) C1i—C2i—C3i 120.62 (7)
Na12—O26w—Hbo26 112.1 (13) C2i—C3i—C4i 117.76 (8)
Hao26—O26w—Hbo26 104.6 (17) C2i—C3i—H1c3i 121.12
Na5—O27w—Hao27 111.6 (13) C4i—C3i—H1c3i 121.12
Na5—O27w—Hbo27 130.8 (15) C3i—C4i—C5i 121.24 (9)
Hao27—O27w—Hbo27 109.1 (19) C3i—C4i—H1c4i 119.38
Na2—O28w—Na6 126.49 (4) C5i—C4i—H1c4i 119.38
Na2—O28w—Hao28 101.0 (10) C4i—C5i—C6i 121.02 (8)
Na2—O28w—Hbo28 98.6 (11) C4i—C5i—H1c5i 119.49
Na6—O28w—Hao28 108.2 (11) C6i—C5i—H1c5i 119.49
Na6—O28w—Hbo28 110.8 (11) C1i—C6i—C5i 116.70 (8)
Hao28—O28w—Hbo28 110.9 (16) C1i—C6i—H1c6i 121.65
Na5—O29w—Na13i 85.69 (4) C5i—C6i—H1c6i 121.65
Na5—O29w—Hao29 119.0 (12) S110—C1j—C2j 107.22 (5)
Na5—O29w—Hbo29 129.5 (11) S110—C1j—C6j 130.10 (6)
Na13i—O29w—Hao29 111.3 (12) C2j—C1j—C6j 122.66 (7)
Na13i—O29w—Hbo29 104.5 (11) C710—C2j—C1j 110.59 (7)
Hao29—O29w—Hbo29 103.2 (17) C710—C2j—C3j 128.79 (8)
Na2—O30w—Na5 125.63 (4) C1j—C2j—C3j 120.62 (7)
Na2—O30w—Hao30 96.8 (10) C2j—C3j—C4j 117.76 (8)
Na2—O30w—Hbo30 97.1 (11) C2j—C3j—H1c3j 121.12
Na5—O30w—Hao30 113.9 (10) C4j—C3j—H1c3j 121.12
Na5—O30w—Hbo30 111.4 (12) C3j—C4j—C5j 121.24 (8)
Hao30—O30w—Hbo30 110.0 (16) C3j—C4j—H1c4j 119.38
Na11—O31w—Hao31 111.1 (12) C5j—C4j—H1c4j 119.38
Na11—O31w—Hbo31 124.1 (14) C4j—C5j—C6j 121.02 (8)
Hao31—O31w—Hbo31 106.0 (19) C4j—C5j—H1c5j 119.49
Na4—O32w—Na8i 98.52 (4) C6j—C5j—H1c5j 119.49
Na4—O32w—Hao32 100.9 (11) C1j—C6j—C5j 116.70 (8)
Na4—O32w—Hbo32 101.4 (12) C1j—C6j—H1c6j 121.65
Na8i—O32w—Hao32 129.4 (12) C5j—C6j—H1c6j 121.65
Na8i—O32w—Hbo32 119.4 (11) S111—C1k—C2k 106.73 (5)
Hao32—O32w—Hbo32 101.8 (17) S111—C1k—C6k 130.43 (10)
Na4—O33w—Na11vi 151.03 (5) C2k—C1k—C6k 122.66 (9)
Na4—O33w—Hao33 99.8 (12) C711—C2k—C1k 111.41 (8)
Na4—O33w—Hbo33 100.2 (12) C711—C2k—C3k 127.94 (12)
Na11vi—O33w—Hao33 91.7 (12) C1k—C2k—C3k 120.62 (9)
Na11vi—O33w—Hbo33 102.5 (12) C2k—C3k—C4k 117.76 (13)
Hao33—O33w—Hbo33 104.6 (16) C2k—C3k—H1c3k 121.12
Na9—O34w—Na12 124.53 (5) C4k—C3k—H1c3k 121.12
Na9—O34w—Hao34 104.5 (11) C3k—C4k—C5k 121.24 (10)
Na9—O34w—Hbo34 100.8 (12) C3k—C4k—H1c4k 119.38
Na12—O34w—Hao34 111.1 (11) C5k—C4k—H1c4k 119.38
Na12—O34w—Hbo34 107.0 (12) C4k—C5k—C6k 121.02 (10)
Hao34—O34w—Hbo34 107.6 (17) C4k—C5k—H1c5k 119.49
Na16—O35w—Na15 99.89 (12) C6k—C5k—H1c5k 119.49
Na16—O35w—Hao35 107.9 (13) C1k—C6k—C5k 116.70 (13)
Na16—O35w—Hbo35 126.9 (11) C1k—C6k—H1c6k 121.65
Na15—O35w—Hao35 66.2 (13) C5k—C6k—H1c6k 121.65
Na15—O35w—Hbo35 54.1 (13) S112—C1l—C2l 106.62 (6)
Hao35—O35w—Hbo35 101.4 (18) S112—C1l—C6l 130.70 (7)
Na14—O36w—Na16 111.77 (5) C2l—C1l—C6l 122.66 (8)
Na14—O36w—Na17 124.00 (18) C712—C2l—C1l 110.95 (8)
Na14—O36w—O37w 72.8 (11) C712—C2l—C3l 128.43 (8)
Na16—O36w—Na17 21.8 (2) C1l—C2l—C3l 120.62 (8)
Na16—O36w—O37w 109.9 (9) C2l—C3l—C4l 117.76 (8)
Na17—O36w—O37w 128.8 (9) C2l—C3l—H1c3l 121.12
Na13—O38w—Na18 115.53 (5) C4l—C3l—H1c3l 121.12
Na13—O38w—Na19 127.29 (13) C3l—C4l—C5l 121.24 (9)
Na13—O38w—Hao38 114.5 (14) C3l—C4l—H1c4l 119.38
Na13—O38w—Hbo38 100.8 (14) C5l—C4l—H1c4l 119.38
Na13—O38w—O39w 90.7 (6) C4l—C5l—C6l 121.02 (9)
Na18—O38w—Na19 37.64 (13) C4l—C5l—H1c5l 119.49
Na18—O38w—Hao38 114.1 (14) C6l—C5l—H1c5l 119.49
Na18—O38w—Hbo38 106.6 (15) C1l—C6l—C5l 116.70 (8)
Na18—O38w—O39w 47.6 (7) C1l—C6l—H1c6l 121.65
Na19—O38w—Hao38 118.2 (14) C5l—C6l—H1c6l 121.65
Na19—O38w—Hbo38 69.3 (15) S114—C1m—C2m 106.87 (5)
Na19—O38w—O39w 85.2 (7) S114—C1m—C6m 130.45 (6)
Hao38—O38w—Hbo38 103 (2) C2m—C1m—C6m 122.66 (7)
Hao38—O38w—O39w 92.8 (16) C714—C2m—C1m 110.94 (7)
Hbo38—O38w—O39w 154.0 (16) C714—C2m—C3m 128.41 (8)
Na18—O40w—Na19 38.87 (14) C1m—C2m—C3m 120.62 (7)
Na18—O40w—O41w 51.6 (8) C2m—C3m—C4m 117.76 (8)
Na18—O40w—Hbo40 132.2 (18) C2m—C3m—H1c3m 121.12
Na18—O40w—Hao40 120.0 (17) C4m—C3m—H1c3m 121.12
Na19—O40w—O41w 86.7 (8) C3m—C4m—C5m 121.24 (8)
Na19—O40w—Hbo40 109.6 (18) C3m—C4m—H1c4m 119.38
Na19—O40w—Hao40 115.4 (16) C5m—C4m—H1c4m 119.38
O41w—O40w—Hbo40 152.0 (18) C4m—C5m—C6m 121.02 (8)
O41w—O40w—Hao40 86.1 (19) C4m—C5m—H1c5m 119.49
Hbo40—O40w—Hao40 106 (2) C6m—C5m—H1c5m 119.49
Na14—O42w—Na15 104.56 (19) C1m—C6m—C5m 116.70 (8)
Na14—O42w—O43w 41.0 (5) C1m—C6m—H1c6m 121.65
Na14—O42w—Hao42 121.6 (15) C5m—C6m—H1c6m 121.65
Na14—O42w—Hbo42 127.0 (16) S115—C1n—C2n 106.95 (5)
Na15—O42w—O43w 145.5 (6) S115—C1n—C6n 130.39 (7)
Na15—O42w—Hao42 59.1 (16) C2n—C1n—C6n 122.66 (7)
Na15—O42w—Hbo42 69.5 (16) C715—C2n—C1n 111.14 (7)
O43w—O42w—Hao42 130.2 (17) C715—C2n—C3n 128.21 (8)
O43w—O42w—Hbo42 126.7 (16) C1n—C2n—C3n 120.62 (7)
Hao42—O42w—Hbo42 101 (2) C2n—C3n—C4n 117.76 (8)
O11—S11—O21 113.99 (6) C2n—C3n—H1c3n 121.12
O11—S11—N11 111.40 (6) C4n—C3n—H1c3n 121.12
O11—S11—C1a 110.33 (4) C3n—C4n—C5n 121.24 (9)
O21—S11—N11 111.38 (6) C3n—C4n—H1c4n 119.38
O21—S11—C1a 111.20 (4) C5n—C4n—H1c4n 119.38
N11—S11—C1a 97.36 (4) C4n—C5n—C6n 121.02 (8)
Na2—O31—C71 129.16 (8) C4n—C5n—H1c5n 119.49
S11—N11—C71 111.29 (8) C6n—C5n—H1c5n 119.49
O31—C71—N11 123.86 (10) C1n—C6n—C5n 116.70 (8)
O31—C71—C2a 122.89 (9) C1n—C6n—H1c6n 121.65
N11—C71—C2a 113.25 (9) C5n—C6n—H1c6n 121.65
O12—S12—O22 114.24 (6) S116—C1o—C2o 106.89 (5)
O12—S12—N12 110.17 (6) S116—C1o—C6o 130.45 (6)
O12—S12—C1b 110.54 (7) C2o—C1o—C6o 122.66 (7)
O22—S12—N12 111.83 (6) C716—C2o—C1o 111.16 (7)
O22—S12—C1b 111.00 (8) C716—C2o—C3o 128.21 (8)
N12—S12—C1b 97.89 (5) C1o—C2o—C3o 120.62 (7)
Na14ii—O12—S12 145.63 (6) C2o—C3o—C4o 117.76 (8)
Na9ii—O22—S12 173.14 (7) C2o—C3o—H1c3o 121.12
Na3—O32—C72 128.76 (8) C4o—C3o—H1c3o 121.12
S12—N12—C72 110.91 (9) C3o—C4o—C5o 121.24 (8)
O32—C72—N12 124.01 (11) C3o—C4o—H1c4o 119.38
O32—C72—C2b 122.50 (11) C5o—C4o—H1c4o 119.38
N12—C72—C2b 113.49 (9) C4o—C5o—C6o 121.02 (9)
O13—S13—O23 114.90 (5) C4o—C5o—H1c5o 119.49
O13—S13—N13 109.08 (6) C6o—C5o—H1c5o 119.49
O13—S13—C1c 111.45 (5) C1o—C6o—C5o 116.70 (8)
O23—S13—N13 112.17 (6) C1o—C6o—H1c6o 121.65
O23—S13—C1c 110.62 (5) C5o—C6o—H1c6o 121.65
N13—S13—C1c 97.26 (4) S1dia—C1p—C2p 106.17 (7)
Na11—O33—C73 124.62 (7) S1dia—C1p—C6p 131.16 (11)
Na7—N13—S13 91.27 (5) S1dia—C1p—C1q 49 (3)
Na7—N13—C73 114.52 (8) S1dia—C1p—C2q 115.4 (2)
S13—N13—C73 111.57 (8) S1dia—C1p—C6q 114.4 (4)
O33—C73—N13 123.31 (10) C2p—C1p—C6p 122.66 (12)
O33—C73—C2c 123.58 (9) C2p—C1p—C1q 58 (3)
N13—C73—C2c 113.11 (9) C2p—C1p—C2q 12.6 (3)
O14—S14—O24 113.98 (6) C2p—C1p—C6q 136.5 (6)
O14—S14—N14 111.83 (6) C6p—C1p—C1q 176 (4)
O14—S14—C1d 111.40 (10) C6p—C1p—C2q 113.0 (2)
O24—S14—N14 110.47 (6) C6p—C1p—C6q 21.1 (5)
O24—S14—C1d 110.09 (13) C1q—C1p—C2q 68 (2)
N14—S14—C1d 97.96 (7) C1q—C1p—C6q 156 (3)
Na6iv—O24—Na16 95.36 (4) C2q—C1p—C6q 129.7 (5)
Na6iv—O24—S14 145.75 (6) C7dia—C2p—C7dib 29.2 (5)
Na16—O24—S14 117.42 (5) C7dia—C2p—C1p 111.15 (10)
Na7—O34—C74 152.53 (9) C7dia—C2p—C3p 128.13 (12)
S14—N14—C74 110.25 (9) C7dia—C2p—C1q 105.7 (2)
O34—C74—N14 124.05 (11) C7dia—C2p—C2q 135.6 (16)
O34—C74—C2d 122.16 (11) C7dib—C2p—C1p 123.9 (5)
N14—C74—C2d 113.79 (10) C7dib—C2p—C3p 110.9 (5)
O15—S15—O25 113.56 (6) C7dib—C2p—C1q 119.2 (6)
O15—S15—N15 111.91 (6) C7dib—C2p—C2q 106.4 (16)
O15—S15—C1e 110.44 (5) C1p—C2p—C3p 120.62 (10)
O25—S15—N15 111.20 (6) C1p—C2p—C1q 5.4 (2)
O25—S15—C1e 110.64 (5) C1p—C2p—C2q 92.4 (12)
N15—S15—C1e 98.06 (5) C3p—C2p—C1q 126.0 (3)
Na16—O35—C75 162.66 (9) C3p—C2p—C2q 48.7 (19)
Na16—O35—Na17 25.33 (18) C1q—C2p—C2q 96.7 (13)
Na16—O35—Na19 87.94 (13) C2p—C3p—C4p 117.76 (13)
C75—O35—Na17 148.64 (18) C2p—C3p—H1c3p 121.12
C75—O35—Na19 109.34 (15) C2p—C3p—C2q 11.3 (5)
Na17—O35—Na19 91.79 (19) C2p—C3p—C3q 109.4 (12)
Na18—N15—S15 139.32 (6) C2p—C3p—H1c3q 156.93
Na18—N15—C75 109.15 (8) C4p—C3p—H1c3p 121.12
S15—N15—C75 111.22 (8) C4p—C3p—C2q 112.2 (3)
O35—C75—N15 122.99 (11) C4p—C3p—C3q 18 (2)
O35—C75—C2e 123.74 (10) C4p—C3p—H1c3q 77.01
N15—C75—C2e 113.27 (10) H1c3p—C3p—C2q 125.67
O16—S16—O26 115.34 (6) H1c3p—C3p—C3q 126.68
O16—S16—C1f 111.67 (9) H1c3p—C3p—H1c3q 47.74
O26—S16—C1f 110.39 (8) C2q—C3p—C3q 101.3 (15)
Na6iv—O16—S16 152.04 (6) C2q—C3p—H1c3q 150.15
Na12—O36—C76 122.22 (8) C3q—C3p—H1c3q 79.04
O36—C76—N16 123.79 (12) C3p—C4p—C5p 121.24 (12)
O36—C76—C2f 122.39 (11) C3p—C4p—H1c4p 119.38
N16—C76—C2f 113.80 (10) C3p—C4p—C3q 9.5 (12)
O17—S17—O27 114.50 (6) C3p—C4p—C4q 133.3 (5)
O17—S17—C1g 109.72 (5) C5p—C4p—H1c4p 119.38
O27—S17—C1g 111.00 (5) C5p—C4p—C3q 117.1 (6)
O37—C77—N17 122.82 (10) C5p—C4p—C4q 20.8 (11)
O37—C77—C2g 123.50 (9) H1c4p—C4p—C3q 122.74
N17—C77—C2g 113.69 (10) H1c4p—C4p—C4q 104.65
O18—S18—O28 114.41 (5) C3q—C4p—C4q 132.3 (7)
O18—S18—N18 111.77 (6) C4p—C5p—C6p 121.02 (10)
O18—S18—C1h 112.10 (6) C4p—C5p—H1c5p 119.49
O28—S18—N18 110.10 (6) C4p—C5p—C4q 13.5 (6)
O28—S18—C1h 109.56 (7) C4p—C5p—C5q 137.5 (8)
N18—S18—C1h 97.65 (5) C6p—C5p—H1c5p 119.49
Na10ii—O18—S18 147.78 (6) C6p—C5p—C4q 129.3 (3)
Na1—O38—Na2 96.55 (4) C6p—C5p—C5q 47.5 (9)
Na1—O38—C78 127.04 (8) H1c5p—C5p—C4q 110.14
Na2—O38—C78 116.14 (8) H1c5p—C5p—C5q 86.44
S18—N18—C78 110.59 (8) C4q—C5p—C5q 132.0 (12)
O38—C78—N18 123.73 (11) C1p—C6p—C5p 116.70 (13)
O38—C78—C2h 122.44 (10) C1p—C6p—H1c6p 121.65
N18—C78—C2h 113.83 (9) C1p—C6p—C1q 0.4 (4)
O19—S19—O29 111.83 (5) C1p—C6p—C5q 130.3 (5)
O19—S19—N19 110.64 (6) C1p—C6p—C6q 64.1 (8)
O19—S19—C1i 111.08 (8) C5p—C6p—H1c6p 121.65
O29—S19—N19 112.37 (6) C5p—C6p—C1q 116.7 (3)
O29—S19—C1i 112.27 (8) C5p—C6p—C5q 26.3 (4)
N19—S19—C1i 97.91 (5) C5p—C6p—C6q 142 (2)
Na8i—O29—S19 152.33 (6) H1c6p—C6p—C1q 121.61
Na2—O39—Na3 96.39 (4) H1c6p—C6p—C5q 103.82
Na2—O39—C79 122.20 (8) H1c6p—C6p—C6q 70.62
Na3—O39—C79 117.31 (8) C1q—C6p—C5q 130.1 (6)
S19—N19—C79 110.75 (8) C1q—C6p—C6q 63.8 (8)
O39—C79—N19 123.38 (11) C5q—C6p—C6q 121 (2)
O39—C79—C2i 123.13 (10) C3p—H1c3p—H1c3q 63.54
N19—C79—C2i 113.50 (9) C4p—H1c4p—H1c4q 77.53
O110—S110—O210 113.68 (6) C6p—H1c6p—C6q 30.72
O110—S110—N110 111.82 (6) C6p—H1c6p—H1c6q 99.11
O110—S110—C1j 110.49 (5) C6q—H1c6p—H1c6q 68.45
O210—S110—N110 111.64 (6) S1dia—C1q—S1dib 14.86 (17)
O210—S110—C1j 110.44 (5) S1dia—C1q—C1p 128 (3)
N110—S110—C1j 97.67 (4) S1dia—C1q—C2p 115.3 (4)
Na3—O310—C710 126.67 (8) S1dia—C1q—C6p 127.4 (4)
S110—N110—C710 111.28 (8) S1dia—C1q—C2q 124.5 (5)
O310—C710—N110 123.65 (10) S1dia—C1q—C6q 112.7 (5)
O310—C710—C2j 123.21 (9) S1dib—C1q—C1p 141 (3)
N110—C710—C2j 113.13 (10) S1dib—C1q—C2p 101.0 (4)
O111—S111—O211 114.48 (5) S1dib—C1q—C6p 141.5 (5)
O111—S111—N111 112.20 (5) S1dib—C1q—C2q 109.7 (5)
O111—S111—C1k 110.29 (6) S1dib—C1q—C6q 127.6 (5)
O211—S111—N111 110.34 (5) C1p—C1q—C2p 117 (3)
O211—S111—C1k 110.73 (8) C1p—C1q—C6p 4 (4)
N111—S111—C1k 97.55 (5) C1p—C1q—C2q 106 (2)
Na5iii—O211—S111 144.54 (5) C1p—C1q—C6q 22 (3)
Na11—O311—C711 130.52 (8) C2p—C1q—C6p 117.2 (4)
S111—N111—C711 110.81 (8) C2p—C1q—C2q 13.0 (3)
O311—C711—N111 123.87 (11) C2p—C1q—C6q 130.3 (7)
O311—C711—C2k 123.23 (10) C6p—C1q—C2q 107.3 (4)
N111—C711—C2k 112.89 (9) C6p—C1q—C6q 18.9 (4)
O112—S112—O212 114.14 (6) C2q—C1q—C6q 122.7 (6)
O112—S112—N112 111.45 (6) C7dib—C2q—C1p 112.6 (6)
O112—S112—C1l 109.84 (5) C7dib—C2q—C2p 61.9 (14)
O212—S112—N112 111.75 (6) C7dib—C2q—C3p 114.6 (6)
O212—S112—C1l 110.80 (5) C7dib—C2q—C1q 107.2 (6)
N112—S112—C1l 97.67 (5) C7dib—C2q—C3q 132.2 (6)
S112—O112—Na15 107.79 (12) C1p—C2q—C2p 75.0 (11)
Na13—O312—C712 154.19 (9) C1p—C2q—C3p 131.8 (6)
S112—N112—C712 110.94 (8) C1p—C2q—C1q 5.6 (2)
O312—C712—N112 122.99 (11) C1p—C2q—C3q 115.2 (4)
O312—C712—C2l 123.30 (10) C2p—C2q—C3p 120 (2)
N112—C712—C2l 113.71 (10) C2p—C2q—C1q 70.3 (12)
O114—S114—O214 114.28 (6) C2p—C2q—C3q 134 (3)
O114—S114—N114 112.55 (6) C3p—C2q—C1q 136.6 (7)
O114—S114—C1m 110.21 (5) C3p—C2q—C3q 20.4 (4)
O214—S114—N114 109.16 (6) C1q—C2q—C3q 120.6 (5)
O214—S114—C1m 111.88 (5) C3p—C3q—C4p 152 (4)
N114—S114—C1m 97.58 (4) C3p—C3q—C2q 58.3 (12)
Na14—O214—S114 104.63 (5) C3p—C3q—C4q 150 (3)
Na14—N114—S114 87.77 (5) C3p—C3q—H1c3q 70.6
Na14—N114—C714 123.77 (8) C4p—C3q—C2q 135.5 (5)
S114—N114—C714 111.26 (8) C4p—C3q—C4q 17.9 (3)
O314—C714—N114 123.43 (11) C4p—C3q—H1c3q 103.36
O314—C714—C2m 123.24 (10) C2q—C3q—C4q 117.8 (5)
N114—C714—C2m 113.33 (10) C2q—C3q—H1c3q 121.12
O115—S115—O215 114.20 (5) C4q—C3q—H1c3q 121.12
O115—S115—N115 112.07 (6) C4p—C4q—C5p 145.7 (17)
O115—S115—C1n 111.67 (7) C4p—C4q—C3q 29.8 (5)
O215—S115—N115 110.39 (5) C4p—C4q—C5q 150.8 (10)
O215—S115—C1n 109.67 (7) C4p—C4q—H1c4q 89.7
N115—S115—C1n 97.63 (5) C5p—C4q—C3q 122.1 (9)
Na4iii—O115—S115 156.18 (6) C5p—C4q—C5q 20.0 (5)
Na7i—O215—S115 130.03 (5) C5p—C4q—H1c4q 114.55
Na1—O315—Na12 90.37 (4) C3q—C4q—C5q 121.2 (6)
Na1—O315—C715 121.90 (8) C3q—C4q—H1c4q 119.38
Na12—O315—C715 124.43 (8) C5q—C4q—H1c4q 119.38
S115—N115—C715 110.94 (8) C5p—C5q—C6p 106.3 (12)
O315—C715—N115 123.39 (11) C5p—C5q—C4q 28.0 (7)
O315—C715—C2n 123.30 (10) C5p—C5q—C6q 121.1 (12)
N115—C715—C2n 113.31 (9) C5p—C5q—H1c5q 111.88
O116—S116—O216 114.30 (6) C6p—C5q—C4q 113.4 (7)
O116—S116—N116 111.61 (6) C6p—C5q—C6q 17.8 (8)
O116—S116—C1o 109.60 (5) C6p—C5q—H1c5q 124.35
O216—S116—N116 111.50 (6) C4q—C5q—C6q 121.0 (5)
O216—S116—C1o 111.07 (5) C4q—C5q—H1c5q 119.49
N116—S116—C1o 97.54 (5) C6q—C5q—H1c5q 119.49
Na1—O316—C716 124.43 (8) C1p—C6q—C6p 94.9 (11)
S116—N116—C716 111.38 (8) C1p—C6q—H1c6p 141.98
O316—C716—N116 124.05 (11) C1p—C6q—C1q 2.5 (3)
O316—C716—C2o 122.95 (10) C1p—C6q—C5q 114.9 (5)
N116—C716—C2o 113.00 (10) C1p—C6q—H1c6q 123.39
Na14—Na15—Na16 74.50 (10) C6p—C6q—H1c6p 78.66
Na14—Na15—O35w 92.86 (16) C6p—C6q—C1q 97.3 (11)
Na14—Na15—O42w 47.25 (14) C6p—C6q—C5q 41.1 (16)
Na14—Na15—O112 125.74 (18) C6p—C6q—H1c6q 126.6
Na14—Na15—Na17 62.18 (13) H1c6p—C6q—C1q 142.73
Na14—Na15—O43w 34.0 (2) H1c6p—C6q—C5q 84.59
Na14—Na15—Hao35 76.5 (6) H1c6p—C6q—H1c6q 48.05
Na14—Na15—Hbo35 115.3 (6) C1q—C6q—C5q 116.7 (5)
Na14—Na15—Hao42 66.9 (10) C1q—C6q—H1c6q 121.65
Na14—Na15—Hbo42 68.6 (9) C5q—C6q—H1c6q 121.65
Na14—Na15—O3dib 56.2 (3) C3p—H1c3q—H1c3p 68.72
Na16—Na15—O35w 41.84 (9) C3p—H1c3q—C3q 30.36
Na16—Na15—O42w 102.8 (2) H1c3p—H1c3q—C3q 99.02
Na16—Na15—O112 158.43 (18) H1c4p—H1c4q—C4q 88.11
Na16—Na15—Na17 12.58 (10) H1c6p—H1c6q—C6q 63.5
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
O28w—Hao28···N116 0.871 (17) 2.128 (16) 2.9682 (14) 162.0 (15)
O28w—Hbo28···N18 0.850 (16) 2.164 (17) 2.9772 (14) 160.2 (15)
O24w—Hao24···O116 0.76 (2) 2.11 (2) 2.8492 (15) 165 (2)
O27w—Hao27···O17 0.85 (2) 1.99 (2) 2.8356 (15) 172.9 (18)
O17w—Hao17···O27 0.818 (19) 2.243 (18) 3.0412 (14) 165.4 (18)
O22w—Hao22···O212 0.812 (19) 2.129 (19) 2.9344 (15) 171.6 (19)
O18w—Hao18···N110 0.813 (17) 2.046 (16) 2.8464 (14) 167.8 (16)
O18w—Hbo18···N12 0.866 (16) 2.071 (17) 2.9085 (14) 162.5 (15)
O33w—Hao33···N13vi 0.817 (17) 2.028 (17) 2.8143 (14) 161.5 (16)
O13w—Hao13···O37 0.868 (17) 1.998 (16) 2.8556 (12) 169.3 (15)
O21w—Hao21···O314 0.806 (17) 1.979 (17) 2.7738 (13) 168.3 (16)
O38w—Hao38···O34 0.81 (2) 2.021 (19) 2.7968 (15) 159 (2)
O39w—Hao38···O34 1.12 (2) 2.021 (19) 3.093 (8) 158.8 (17)
O23w—Hao23···O12 0.794 (18) 2.170 (17) 2.9453 (14) 165.3 (16)
O15w—Hao15···N18 0.848 (16) 2.157 (17) 2.9626 (14) 158.5 (15)
O15w—Hbo15···N116 0.798 (17) 2.261 (17) 3.0266 (14) 160.8 (16)
O12w—Hao12···O114 0.784 (19) 2.087 (19) 2.8678 (15) 174.5 (19)
O34w—Hao34···N114 0.880 (17) 1.991 (17) 2.8499 (14) 164.8 (16)
O32w—Hao32···O310 0.814 (17) 2.008 (17) 2.8209 (13) 176.6 (16)
O29w—Hao29···O19 0.775 (18) 2.097 (17) 2.8527 (14) 165.0 (16)
O29w—Hbo29···O215 0.882 (17) 1.962 (17) 2.8259 (13) 165.8 (15)
O25w—Hbo25···N111 0.802 (17) 2.063 (17) 2.8584 (14) 171.4 (17)
O25w—Hao25···O11w 0.865 (17) 2.476 (17) 3.2453 (14) 148.5 (15)
O25w—Hao25···O312 0.865 (17) 2.400 (17) 2.9748 (14) 124.4 (13)
O30w—Hao30···N19 0.899 (16) 2.032 (16) 2.9040 (14) 162.9 (15)
O16w—Hao16···O23vi 0.716 (19) 2.236 (19) 2.9520 (14) 178 (2)
O20w—Hao20···N19 0.814 (16) 2.313 (17) 3.0538 (14) 151.6 (16)
O20w—Hbo20···N11 0.865 (17) 2.203 (17) 3.0443 (14) 164.3 (16)
O14w—Hbo14···N17 0.894 (17) 1.974 (16) 2.8486 (14) 165.7 (15)
O14w—Hao14···N115 0.843 (16) 2.223 (17) 3.0259 (14) 159.4 (15)
O11w—Hao11···N112 0.827 (17) 2.124 (17) 2.9513 (15) 177.9 (16)
O11w—Hbo11···N14 0.829 (17) 2.254 (17) 3.0769 (15) 172.0 (17)
O19w—Hao19···O19iii 0.798 (19) 2.14 (2) 2.9220 (15) 169 (2)
O26w—Hao26···N115 0.880 (17) 2.011 (17) 2.8512 (14) 159.5 (15)
O26w—Hbo26···O111i 0.735 (18) 2.109 (17) 2.7996 (14) 156.6 (17)
O10w—Hbo10···O14 0.760 (18) 2.048 (18) 2.8030 (14) 171.8 (17)
O21w—Hbo21···O1dia 0.750 (18) 2.088 (18) 2.8315 (17) 171.2 (18)
O21w—Hbo21···O1dib 0.750 (18) 2.03 (2) 2.750 (9) 160.2 (17)
O30w—Hbo30···N11 0.817 (17) 2.101 (16) 2.9098 (14) 170.6 (16)
O17w—Hbo17···O15 0.860 (18) 2.036 (18) 2.8888 (15) 171.4 (17)
O33w—Hbo33···O32 0.816 (17) 1.994 (17) 2.8095 (13) 177.3 (17)
O10w—Hao10···O33 0.818 (17) 1.961 (17) 2.7687 (13) 169.2 (16)
O12w—Hbo12···O216 0.791 (19) 2.171 (19) 2.9534 (15) 170.4 (19)
O13w—Hbo13···O26 0.756 (17) 2.161 (17) 2.9029 (14) 167.3 (17)
O34w—Hbo34···N16 0.816 (17) 2.216 (18) 2.9696 (15) 153.7 (17)
O27w—Hbo27···O21 0.75 (2) 2.17 (2) 2.9233 (15) 176 (2)
O23w—Hbo23···O28 0.847 (18) 1.984 (17) 2.7820 (14) 156.7 (15)
O22w—Hbo22···O110v 0.818 (19) 2.062 (19) 2.8686 (15) 168.7 (19)
O19w—Hbo19···O25 0.83 (2) 2.06 (2) 2.8524 (16) 159.7 (18)
O32w—Hbo32···N111vi 0.803 (18) 2.203 (18) 2.9907 (14) 167.1 (17)
O35w—Hao35···Na15 0.825 (18) 1.986 (19) 2.171 (5) 91.5 (14)
O35w—Hao35···O3dia 0.825 (18) 1.988 (19) 2.8012 (16) 168.7 (19)
O35w—Hao35···O3dib 0.825 (18) 2.04 (2) 2.829 (11) 158.8 (19)
O38w—Hbo38···O35w 0.78 (2) 2.13 (2) 2.9038 (16) 167 (2)
O38w—Hbo38···Na19 0.78 (2) 2.23 (2) 2.384 (6) 91.5 (16)
O24w—Hbo24···O210 0.76 (2) 2.14 (2) 2.8949 (15) 176 (2)
O16w—Hbo16···O11 0.819 (19) 2.046 (19) 2.8537 (14) 168.7 (18)
O35w—Hbo35···N112 0.869 (19) 2.393 (19) 3.2035 (16) 155.4 (15)
O35w—Hbo35···Na15 0.869 (19) 1.803 (19) 2.171 (5) 103.0 (15)
O40w—Hbo40···O314 0.74 (2) 2.16 (2) 2.8876 (17) 168 (2)
O40w—Hao40···O36 0.78 (2) 1.97 (2) 2.7402 (17) 169 (2)
O41w—Hao40···O36 1.04 (2) 1.97 (2) 2.880 (9) 144 (2)
O42w—Hao42···O112 0.78 (2) 2.09 (2) 2.7999 (16) 151 (2)
Na15—Hao42···O43w 1.27 (2) 1.55 (2) 2.305 (10) 109.2 (15)
O42w—Hbo42···O28iv 0.78 (2) 2.08 (2) 2.8538 (16) 169 (2)
C4d—H1c4d···O25vii 0.96 2.37 3.2119 (13) 146.17
C6d—H1c6d···O116iv 0.96 2.45 3.405 (2) 174.42
C4f—H1c4f···O23vii 0.96 2.47 3.3845 (13) 160.12
C6h—H1c6h···O112ii 0.96 2.46 3.3511 (12) 154.21
C3p—H1c3p···O3dib 0.96 2.37 2.662 (10) 96.71
C3q—H1c3p···O3dib 1.32 2.37 3.078 (13) 109.70
C4p—H1c4p···O212viii 0.96 2.41 3.3564 (15) 170.51
C4q—H1c4p···O212viii 1.24 2.41 3.558 (6) 153.39
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x, y+1, z+1.
Sodium Saccharinate 1.875-Hydrate (II) top
Crystal data top
C7H4NNaO4.875S F(000) = 1904
Mr = 235.2 Dx = 1.661 Mg m3
Monoclinic, C2/c(0β0)s0† Ag Kα radiation, λ = 0.56089 Å
q = 0.750000b* Cell parameters from 86894 reflections
a = 18.6212 (1) Å θ = 2.8–29.8°
b = 7.11555 (5) Å µ = 0.20 mm1
c = 29.1642 (2) Å T = 95 K
β = 93.4511 (6)° Prism, white translucent
V = 3857.25 (4) Å3 0.45 × 0.35 × 0.22 mm
Z = 16
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3+1/2, x4+1/2; (3) −x1, −x2, −x3, −x4; (4) x1, −x2+1/2, x3+1/2, −x4+1/2; (5) x1+1/2, x2+1/2, x3, x4; (6) −x1+1/2, x2, −x3+1/2, x4+1/2; (7) −x1+1/2, −x2+1/2, −x3, −x4; (8) x1+1/2, −x2, x3+1/2, −x4+1/2.



Data collection top
Mar dtb

diffractometer
88532 independent reflections
Radiation source: X-ray tube 59317 reflections with I > 3σ(I)
Equatorial mounted graphite monochromator Rint = 0.086
φ scans θmax = 29.9°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)

CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 3232
Tmin = 0.912, Tmax = 1 k = 1514
651280 measured reflections l = 5151
Refinement top
Refinement on F 146 constraints
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.065 Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.87 (Δ/σ)max = 0.006
88532 reflections Δρmax = 0.48 e Å3
1734 parameters Δρmin = 0.21 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq Occ. (<1)
S1a 0.051378 (6) 0.774301 (19) 0.412309 (4) 0.01458 (3)
O1a 0.09281 (2) 0.94098 (6) 0.421285 (15) 0.02064 (11)
O2a 0.08111 (2) 0.60253 (6) 0.429721 (14) 0.02027 (11)
O3a 0.05950 (2) 0.75096 (6) 0.313632 (14) 0.01925 (11)
N1a 0.03675 (2) 0.75623 (7) 0.358753 (16) 0.01640 (11)
C7a 0.03458 (3) 0.76565 (7) 0.351979 (18) 0.01482 (12)
S1b 0.220778 (9) 0.77689 (3) 0.172867 (7) 0.01537 (4) 0.875
S1b' 0.20444 (3) 0.68935 (6) 0.174131 (15) 0.01307 (9) 0.11045 (10)
S1b'' 0.1799 (2) 0.6783 (5) 0.17754 (13) 0.01307 (9) 0.01455 (10)
O1b 0.26345 (3) 0.61265 (8) 0.17443 (2) 0.02211 (16) 0.875
O1b' 0.22205 (16) 0.4934 (4) 0.17836 (10) 0.0156 (5) 0.11045 (10)
O1b'' 0.2143 (5) 0.8168 (13) 0.2082 (3) 0.0156 (5) 0.01455 (10)
O2b 0.25533 (3) 0.94392 (8) 0.18655 (2) 0.02233 (16) 0.875
O2b' 0.25410 (7) 0.81336 (19) 0.19572 (5) 0.0227 (4) 0.11045 (10)
O2b'' 0.2151 (17) 0.477 (4) 0.1743 (11) 0.0227 (4) 0.01455 (10)
O3b 0.02813 (3) 0.74498 (8) 0.18734 (2) 0.01982 (15) 0.875
O3b' 0.01547 (6) 0.8124 (2) 0.16341 (5) 0.0241 (4) 0.11045 (10)
O3b'' 0.0021 (5) 0.7148 (16) 0.1345 (4) 0.0241 (4) 0.01455 (10)
N1b 0.14630 (3) 0.74976 (10) 0.20180 (2) 0.01764 (16) 0.875
N1b' 0.12252 (8) 0.7257 (2) 0.19314 (5) 0.0182 (4) 0.11045 (10)
N1b'' 0.0968 (6) 0.6675 (17) 0.1802 (4) 0.0182 (4) 0.01455 (10)
C7b 0.09133 (4) 0.76035 (10) 0.17387 (3) 0.01533 (17) 0.875
C7b' 0.08162 (8) 0.7802 (2) 0.15869 (6) 0.0159 (4) 0.11045 (10)
C7b'' 0.0675 (6) 0.7180 (19) 0.1400 (5) 0.0159 (4) 0.01455 (10)
O28w 0.09339 (2) 0.51822 (6) 0.221566 (15) 0.02104 (15) 0.875
O28w' 0.09339 (2) 0.51822 (6) 0.221566 (15) 0.0290 (4) 0.11045 (10)
O28w'' 0.0903 (6) 0.5460 (17) 0.2184 (4) 0.025 (2)* 0.01455 (10)
O18w 0.09530 (2) 0.49866 (6) 0.278892 (14) 0.0183 (8) 0.75
O18w' 0.09530 (2) 0.49866 (6) 0.278892 (14) 0.0182 (2) 0.2209 (2)
O18w'' 0.0988 (6) 0.4812 (17) 0.2782 (5) 0.026 (2) 0.0291 (2)
O24w 0.15022 (3) 0.78020 (7) 0.122161 (17) 0.02629 (18) 0.875
O24w' 0.15022 (3) 0.78020 (7) 0.122161 (17) 0.0236 (4) 0.11045 (10)
O24w'' 0.1474 (5) 0.8363 (15) 0.1213 (4) 0.023 (2)* 0.01455 (10)
O23w 0.23860 (7) 0.8068 (2) 0.27618 (5) 0.0174 (3) 0.75
Na6 0.19724 (4) 0.81167 (10) 0.19827 (3) 0.01728 (18) 0.75
Na2 0.00275 (8) 0.7026 (2) 0.25644 (6) 0.0236 (4) 0.625
Na2' 0.10396 (4) 0.76082 (10) 0.28157 (3) 0.01800 (19) 0.11045 (10)
Na2'' 0.0358 (3) 0.7665 (11) 0.2537 (2) 0.030 (2) 0.01455 (10)
Na16' 0.13582 (4) 0.68727 (13) 0.26322 (3) 0.0218 (2) 0.11045 (10)
Na16'' 0.1414 (3) 0.8248 (11) 0.2697 (2) 0.028 (2) 0.01455 (10)
Na16 0.15301 (3) 0.76094 (9) 0.27748 (2) 0.01699 (16) 0.125
Na14' 0.09263 (3) 0.97995 (10) 0.15045 (2) 0.01633 (18) 0.11045 (10)
Na14'' 0.1085 (3) 0.5571 (8) 0.14943 (19) 0.0163 (14) 0.01455 (10)
Na14 0.08910 (3) 0.54926 (9) 0.15799 (2) 0.01582 (16) 0.125
C1a 0.038545 (17) 0.80383 (3) 0.432924 (13) 0.0146 (6)
C2a 0.08073 (2) 0.79595 (3) 0.395629 (18) 0.0145 (6)
C3a 0.15420 (3) 0.81753 (3) 0.40100 (2) 0.0174 (6)
C4a 0.18437 (3) 0.84743 (3) 0.44511 (2) 0.0202 (6)
C5a 0.14191 (3) 0.85537 (3) 0.48268 (2) 0.0204 (6)
C6a 0.06753 (3) 0.83349 (3) 0.47718 (2) 0.0178 (7)
H1c3a 0.183631 0.812103 0.375114 0.0229 (13)
H1c4a 0.235503 0.862899 0.449754 0.0277 (11)
H1c5a 0.16413 0.876204 0.512811 0.0280 (12)
H1c6a 0.037736 0.838739 0.502892 0.0235 (14)
C1b 0.18765 (3) 0.8071 (2) 0.118756 (15) 0.0149 (8) 0.875
C2b 0.11370 (4) 0.79418 (19) 0.124733 (15) 0.0145 (8) 0.875
C3b 0.07090 (4) 0.8153 (4) 0.08822 (3) 0.0178 (8) 0.875
C4b 0.10457 (4) 0.84994 (19) 0.04526 (2) 0.0207 (8) 0.875
C5b 0.17904 (4) 0.8629 (2) 0.03922 (2) 0.0213 (8) 0.875
C6b 0.22229 (4) 0.8415 (4) 0.07623 (3) 0.0190 (8) 0.875
H1c3b 0.019473 0.806386 0.092301 0.0271 (17) 0.875
H1c4b 0.075889 0.865193 0.019243 0.0318 (15) 0.875
H1c5b 0.200952 0.886982 0.009156 0.0328 (15) 0.875
H1c6b 0.27375 0.850233 0.072429 0.0291 (18) 0.875
C1c 0.19477 (6) 0.7565 (3) 0.11664 (3) 0.0129 (15) 0.11045 (10)
C2c 0.12290 (7) 0.7978 (3) 0.11296 (3) 0.0127 (15) 0.11045 (10)
C3c 0.09788 (7) 0.8585 (6) 0.07205 (4) 0.0163 (16) 0.11045 (10)
C4c 0.14727 (7) 0.8767 (3) 0.03470 (3) 0.0204 (15) 0.11045 (10)
C5c 0.21965 (7) 0.8351 (3) 0.03839 (3) 0.0226 (15) 0.11045 (10)
C6c 0.24489 (7) 0.7737 (6) 0.07984 (4) 0.0187 (16) 0.11045 (10)
H1c3c 0.047928 0.887316 0.069414 0.019 (3) 0.11045 (10)
H1c4c 0.131139 0.918823 0.005781 0.024 (3) 0.11045 (10)
H1c5c 0.252669 0.848932 0.012034 0.029 (3) 0.11045 (10)
H1c6c 0.294756 0.744628 0.082744 0.023 (3) 0.11045 (10)
C1d 0.1910 (4) 0.775 (2) 0.11637 (18) 0.0129 (15) 0.01455 (10)
C2d 0.1234 (4) 0.797 (2) 0.10003 (18) 0.0127 (15) 0.01455 (10)
C3d 0.11505 (18) 0.857 (4) 0.0558 (3) 0.0163 (16) 0.01455 (10)
C4d 0.1768 (4) 0.895 (2) 0.02828 (18) 0.0204 (15) 0.01455 (10)
C5d 0.2448 (4) 0.874 (2) 0.04473 (19) 0.0226 (15) 0.01455 (10)
C6d 0.25321 (19) 0.813 (4) 0.0895 (3) 0.0187 (16) 0.01455 (10)
H1c3d 0.068102 0.871616 0.044385 0.019 (3) 0.01455 (10)
H1c4d 0.172318 0.937386 0.002687 0.024 (3) 0.01455 (10)
H1c5d 0.286598 0.901459 0.024978 0.029 (3) 0.01455 (10)
H1c6d 0.299964 0.797807 0.101186 0.023 (3) 0.01455 (10)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1a 0.01061 (5) 0.01849 (6) 0.01494 (5) 0.00004 (4) 0.00325 (4) 0.00099 (4)
O1a 0.01580 (16) 0.0241 (2) 0.02232 (19) 0.00621 (14) 0.00358 (14) 0.00237 (15)
O2a 0.01884 (17) 0.02258 (19) 0.01997 (18) 0.00584 (14) 0.00603 (14) 0.00013 (15)
O3a 0.01588 (17) 0.0268 (2) 0.01559 (17) 0.00143 (14) 0.00564 (13) 0.00074 (15)
N1a 0.01068 (16) 0.0230 (2) 0.01574 (18) 0.00058 (15) 0.00278 (13) 0.00094 (16)
C7a 0.01220 (19) 0.0169 (2) 0.0157 (2) 0.00025 (15) 0.00344 (15) 0.00023 (16)
S1b 0.01124 (7) 0.01644 (8) 0.01893 (8) 0.00076 (6) 0.00507 (6) 0.00065 (6)
S1b' 0.01004 (17) 0.01422 (16) 0.01544 (16) 0.00105 (15) 0.00474 (15) 0.00016 (12)
S1b'' 0.01004 (17) 0.01422 (16) 0.01544 (16) 0.00105 (15) 0.00474 (15) 0.00016 (12)
O1b 0.0161 (2) 0.0206 (3) 0.0303 (3) 0.0042 (2) 0.0073 (2) 0.0029 (2)
O1b' 0.0151 (9) 0.0132 (8) 0.0193 (8) 0.0012 (5) 0.0070 (5) 0.0004 (6)
O1b'' 0.0151 (9) 0.0132 (8) 0.0193 (8) 0.0012 (5) 0.0070 (5) 0.0004 (6)
O2b 0.0194 (3) 0.0216 (3) 0.0267 (3) 0.0056 (2) 0.0078 (2) 0.0025 (2)
O2b' 0.0231 (6) 0.0190 (6) 0.0277 (7) 0.0003 (5) 0.0153 (5) 0.0025 (5)
O2b'' 0.0231 (6) 0.0190 (6) 0.0277 (7) 0.0003 (5) 0.0153 (5) 0.0025 (5)
O3b 0.0113 (2) 0.0241 (3) 0.0238 (3) 0.00150 (19) 0.00094 (19) 0.0003 (2)
O3b' 0.0099 (5) 0.0286 (7) 0.0332 (7) 0.0057 (5) 0.0041 (5) 0.0087 (6)
O3b'' 0.0099 (5) 0.0286 (7) 0.0332 (7) 0.0057 (5) 0.0041 (5) 0.0087 (6)
N1b 0.0142 (3) 0.0214 (3) 0.0176 (3) 0.0009 (2) 0.0034 (2) 0.0015 (2)
N1b' 0.0155 (6) 0.0230 (7) 0.0161 (6) 0.0059 (5) 0.0002 (5) 0.0031 (5)
N1b'' 0.0155 (6) 0.0230 (7) 0.0161 (6) 0.0059 (5) 0.0002 (5) 0.0031 (5)
C7b 0.0119 (3) 0.0158 (3) 0.0184 (3) 0.0005 (2) 0.0018 (2) 0.0003 (2)
C7b' 0.0103 (6) 0.0182 (7) 0.0190 (7) 0.0025 (5) 0.0005 (5) 0.0037 (6)
C7b'' 0.0103 (6) 0.0182 (7) 0.0190 (7) 0.0025 (5) 0.0005 (5) 0.0037 (6)
O28w 0.0165 (2) 0.0207 (3) 0.0263 (3) 0.0002 (2) 0.0037 (2) 0.0006 (2)
O28w' 0.0371 (8) 0.0239 (7) 0.0248 (7) 0.0114 (6) 0.0088 (6) 0.0067 (6)
O18w 0.0175 (12) 0.0182 (14) 0.0198 (14) 0.0026 (10) 0.0051 (10) 0.0001 (11)
O18w' 0.0146 (4) 0.0210 (4) 0.0193 (4) 0.0014 (3) 0.0026 (3) 0.0010 (3)
O18w'' 0.019 (3) 0.017 (3) 0.039 (5) 0.002 (3) 0.014 (3) 0.002 (3)
O24w 0.0278 (3) 0.0224 (3) 0.0278 (3) 0.0008 (2) 0.0051 (2) 0.0014 (2)
O24w' 0.0223 (6) 0.0227 (7) 0.0257 (7) 0.0019 (5) 0.0009 (5) 0.0018 (5)
O23w 0.0144 (5) 0.0198 (6) 0.0185 (6) 0.0004 (5) 0.0043 (4) 0.0012 (5)
Na6 0.0132 (3) 0.0197 (3) 0.0192 (3) 0.0022 (2) 0.0026 (2) 0.0012 (3)
Na2 0.0127 (7) 0.0274 (8) 0.0307 (8) 0.0013 (6) 0.0004 (6) 0.0095 (6)
Na2' 0.0185 (3) 0.0184 (3) 0.0169 (3) 0.0011 (3) 0.0001 (2) 0.0001 (3)
Na2'' 0.019 (3) 0.050 (4) 0.021 (3) 0.014 (3) 0.003 (2) 0.010 (3)
Na16' 0.0124 (3) 0.0340 (5) 0.0194 (4) 0.0020 (3) 0.0043 (3) 0.0063 (3)
Na16'' 0.019 (3) 0.042 (4) 0.024 (3) 0.002 (3) 0.006 (2) 0.007 (3)
Na16 0.0108 (2) 0.0214 (3) 0.0191 (3) 0.0012 (2) 0.0037 (2) 0.0008 (2)
Na14' 0.0121 (3) 0.0190 (3) 0.0179 (3) 0.0009 (2) 0.0013 (2) 0.0017 (3)
Na14'' 0.010 (2) 0.018 (2) 0.020 (3) 0.0022 (17) 0.0014 (17) 0.000 (2)
Na14 0.0107 (2) 0.0188 (3) 0.0181 (3) 0.0019 (2) 0.0018 (2) 0.0005 (2)
C1a 0.01275 (16) 0.0155 (17) 0.01581 (18) 0.0003 (3) 0.00252 (13) 0.0006 (3)
C2a 0.01156 (16) 0.0153 (17) 0.01677 (18) 0.0001 (3) 0.00278 (13) 0.0001 (3)
C3a 0.01158 (19) 0.0192 (19) 0.02163 (15) 0.0004 (4) 0.00262 (14) 0.0001 (4)
C4a 0.01319 (16) 0.0224 (17) 0.02478 (18) 0.0001 (3) 0.00099 (12) 0.0023 (3)
C5a 0.01720 (16) 0.0229 (17) 0.02070 (18) 0.0017 (3) 0.00236 (13) 0.0033 (3)
C6a 0.01687 (19) 0.0200 (19) 0.01652 (16) 0.0016 (4) 0.00101 (14) 0.0019 (4)
H1c3a 0.0122 (4) 0.032 (4) 0.0248 (3) 0.0015 (8) 0.0050 (3) 0.0005 (8)
H1c4a 0.0135 (3) 0.037 (3) 0.0317 (4) 0.0013 (6) 0.0023 (2) 0.0047 (7)
H1c5a 0.0219 (3) 0.038 (3) 0.0230 (4) 0.0021 (6) 0.0053 (2) 0.0067 (7)
H1c6a 0.0211 (4) 0.033 (4) 0.0162 (3) 0.0018 (8) 0.0023 (3) 0.0035 (8)
C1b 0.0116 (2) 0.015 (2) 0.01814 (16) 0.0001 (3) 0.00241 (14) 0.0002 (4)
C2b 0.0116 (2) 0.015 (2) 0.01701 (16) 0.0000 (3) 0.00269 (14) 0.0001 (4)
C3b 0.01430 (15) 0.020 (2) 0.0200 (3) 0.0004 (2) 0.00578 (12) 0.0006 (4)
C4b 0.0232 (2) 0.022 (2) 0.01758 (16) 0.0006 (3) 0.00647 (14) 0.0002 (4)
C5b 0.0243 (2) 0.022 (2) 0.01706 (17) 0.0005 (3) 0.00023 (14) 0.0003 (4)
C6b 0.01537 (15) 0.021 (2) 0.0207 (3) 0.0007 (2) 0.00128 (12) 0.0003 (4)
H1c3b 0.01404 (15) 0.041 (5) 0.0275 (6) 0.0004 (4) 0.00786 (17) 0.0017 (9)
H1c4b 0.0324 (4) 0.044 (4) 0.0206 (2) 0.0003 (6) 0.0116 (3) 0.0027 (7)
H1c5b 0.0347 (4) 0.044 (4) 0.0187 (3) 0.0022 (6) 0.0034 (3) 0.0037 (7)
H1c6b 0.01579 (15) 0.042 (5) 0.0287 (6) 0.0024 (4) 0.00397 (17) 0.0032 (9)
C1c 0.0086 (6) 0.013 (4) 0.0171 (5) 0.0006 (10) 0.0027 (4) 0.0010 (10)
C2c 0.0088 (6) 0.016 (4) 0.0140 (5) 0.0002 (10) 0.0039 (4) 0.0032 (10)
C3c 0.0167 (4) 0.019 (5) 0.0142 (7) 0.0007 (10) 0.0071 (4) 0.0018 (12)
C4c 0.0302 (6) 0.018 (4) 0.0129 (5) 0.0019 (10) 0.0022 (4) 0.0012 (10)
C5c 0.0268 (6) 0.020 (4) 0.0199 (5) 0.0006 (10) 0.0073 (4) 0.0024 (10)
C6c 0.0130 (4) 0.018 (5) 0.0246 (7) 0.0002 (10) 0.0036 (4) 0.0007 (12)
H1c3c 0.0183 (5) 0.020 (10) 0.0189 (15) 0.001 (2) 0.0125 (6) 0.000 (2)
H1c4c 0.0467 (12) 0.015 (8) 0.0117 (7) 0.005 (2) 0.0048 (7) 0.001 (2)
H1c5c 0.0392 (12) 0.021 (9) 0.0258 (8) 0.001 (2) 0.0159 (7) 0.003 (2)
H1c6c 0.0120 (6) 0.018 (10) 0.0364 (15) 0.000 (2) 0.0055 (6) 0.002 (3)
C1d 0.0104 (5) 0.013 (4) 0.0156 (6) 0.0000 (6) 0.0048 (3) 0.0006 (13)
C2d 0.0112 (5) 0.015 (4) 0.0121 (6) 0.0012 (6) 0.0051 (3) 0.0027 (13)
C3d 0.0197 (4) 0.019 (5) 0.0110 (7) 0.0003 (5) 0.0057 (3) 0.0015 (14)
C4d 0.0285 (5) 0.019 (4) 0.0135 (6) 0.0026 (6) 0.0024 (3) 0.0022 (13)
C5d 0.0216 (5) 0.020 (4) 0.0252 (6) 0.0000 (6) 0.0074 (3) 0.0035 (13)
C6d 0.0118 (4) 0.018 (5) 0.0265 (7) 0.0011 (5) 0.0004 (3) 0.0006 (14)
H1c3d 0.0239 (5) 0.020 (10) 0.0127 (15) 0.0020 (8) 0.0108 (6) 0.001 (3)
H1c4d 0.0434 (10) 0.017 (9) 0.0122 (10) 0.0081 (12) 0.0052 (6) 0.001 (2)
H1c5d 0.0282 (10) 0.021 (9) 0.0365 (10) 0.0014 (12) 0.0163 (7) 0.005 (3)
H1c6d 0.0107 (5) 0.018 (10) 0.0386 (15) 0.0004 (9) 0.0019 (6) 0.002 (3)
 

Acknowledgements

We thank Professor Carolyn Brock for bringing this system to our attention. We acknowledge the Faculty of Chemistry, University of Latvia, for providing access to the GAUSSIAN09 software. Open access funding enabled and organized by Projekt DEAL.

Funding information

Funding for this research was provided by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) – 389490692.

References

First citationBanerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515–2520.  Web of Science CSD CrossRef CAS Google Scholar

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar

First citationBrock, C. P. (2016). Acta Cryst. B72, 807–821.  Web of Science CrossRef IUCr Journals Google Scholar

First citationBrouns, E., Visser, J. W. & de Wolff, P. M. (1964). Acta Cryst. 17, 614.  CrossRef IUCr Journals Web of Science Google Scholar

First citationDesiraju, G. R. (2007). CrystEngComm, 9, 91–92.  Web of Science CrossRef CAS Google Scholar

First citationde Wolff, P. M. (1974). Acta Cryst. A30, 777–785.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationDey, S., Schönleber, A., Mondal, S., Ali, S. I. & van Smaalen, S. (2018). Cryst. Growth Des. 18, 1394–1400.  Web of Science CSD CrossRef CAS Google Scholar

First citationDey, S., Schönleber, A., Mondal, S., Prathapa, S. J., van Smaalen, S. & Larsen, F. K. (2016). Acta Cryst. B72, 372–380.  Web of Science CrossRef IUCr Journals Google Scholar

First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Revision D.01. Gaussian Inc., Wallingford, Connecticut, USA.  Google Scholar

First citationHarris, P., Larsen, F. K., Lebech, B. & Achiwa, N. (1994). Acta Cryst. B50, 676–684.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationJanner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643–658.  CrossRef CAS Web of Science Google Scholar

First citationJanssen, T., Chapuis, G. & de Boissieu, M. (2007). Aperiodic Crystals. From Modulated Phases to Quasicrystals. Oxford University Press.  Google Scholar

First citationNaumov, P., Jovanovski, G., Grupče, O., Kaitner, B., Rae, A. D. & Ng, S. W. (2005). Angew. Chem. 117, 1277–1280.  CrossRef Google Scholar

First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationPetricek, V., Coppens, P. & Becker, P. (1985). Acta Cryst. A41, 478–483.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352.  Google Scholar

First citationRigaku Oxford Diffraction (2018). CrysAlis PRO. Rigaku Oxford Diffraction Yarnton, England  Google Scholar

First citationSchönleber, A. (2011). Z. Kristallogr. Cryst. Mater. 226, 499–517.  Google Scholar

First citationSchönleber, A. & Chapuis, G. (2004). Acta Cryst. B60, 108–120.  Web of Science CrossRef IUCr Journals Google Scholar

First citationSchönleber, A., Pattison, P. & Chapuis, G. (2003). Z. Kristallogr. Cryst. Mater. 218, 507–513.  Google Scholar

First citationSteed, J. W. (2003). CrystEngComm, 5, 169–179.  Web of Science CrossRef CAS Google Scholar

First citationSteed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933.  Web of Science CrossRef CAS PubMed Google Scholar

First citationStokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45–55.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationvan Smaalen, S. (2007). Incommensurate Crystallography. Oxford University Press.  Google Scholar

First citationvan Smaalen, S., Campbell, B. J. & Stokes, H. T. (2013). Acta Cryst. A69, 75–90.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationWagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249–268.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationZuñiga, F. J., Madariaga, G., Paciorek, W. A., Pérez-Mato, J. M., Ezpeleta, J. M. & Etxebarria, I. (1989). Acta Cryst. B45, 566–576.  CrossRef ICSD Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL SCIENCE

CRYSTAL ENGINEERING

MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds