research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo JOURNAL OF

APPLIED

CRYSTALLOGRAPHY
ISSN: 1600-5767

Indium Kα radiation from a MetalJet X-ray source: comparison of the Eiger2 CdTe and Photon III detectors

crossmark logo

aInstitut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany

*Correspondence e-mail: [email protected]

Edited by A. Borbély, Ecole National Supérieure des Mines, Saint-Etienne, France (Received 10 March 2023; accepted 16 August 2023; online 5 September 2023)

Dedicated to Professor George M. Sheldrick on the occasion of his 80th birthday.

The MetalJet source makes available new Kα radiation wavelengths for use in X-ray diffraction experiments. The purpose of this paper is to demonstrate the application of indium Kα radiation in independent-atom model refinement, as well as approaches using aspherical atomic form factors. The results vary greatly depending on the detector employed, as the energy cut-off of the Eiger2 CdTe provides a solution to a unique energy contamination problem of the MetalJet In radiation, which the Photon III detector cannot provide.

1. Introduction

In the first set of X-ray diffraction images ever reported, Friedrich, Knipping and Laue used the white beam of commercially available X-ray tubes (Friedrich et al., 1912[Friedrich, W., Knipping, P. & von Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. München: Verlag der Königlich-Bayerischen Akademie der Wissenschaften.]). However, only shortly afterwards it was reported that using monochromatic X-ray radiation was beneficial for the interpretability of structures (Bragg & Bragg, 1913[Bragg, W. H. & Bragg, W. L. (1913). Proc. R. Soc. London Ser. A, 88, 428-438.]). For single-crystal X-ray diffraction, this has held until today, and the latest and most consequential contribution to this development with in-house instrumentation is the recent report of using copper Kβ (Meurer et al., 2022[Meurer, F., von Essen, C., Kühn, C., Puschmann, H. & Bodensteiner, M. (2022). IUCrJ, 9, 349-354.]) to avoid even the Kα1Kα2 splitting for the employed X-ray radiation. Sometimes instrumentation has led to unexpected contamination, leading to lower monochromaticity, such as the reported contamination by a higher harmonic of the monochromator, i.e. λ/2 contamination (Kirschbaum et al., 1997[Kirschbaum, K., Martin, A. & Pinkerton, A. A. (1997). J. Appl. Cryst. 30, 514-516.]), or the lower-wavelength contamination in microfocus sources, which has been eliminated by attenuation (Macchi et al., 2011[Macchi, P., Bürgi, H.-B., Chimpri, A. S., Hauser, J. & Gál, Z. (2011). J. Appl. Cryst. 44, 763-771.]) or can be accounted for with an empirical correction (Krause et al., 2015b[Krause, L., Herbst-Irmer, R. & Stalke, D. (2015b). J. Appl. Cryst. 48, 1907-1913.]).

In this publication we evaluate the performance of a setup consisting of an Excillum MetalJet D2 source coupled with either a Bruker Photon III or a Dectris Eiger2 CdTe detector. Despite the high-quality Incoatec Helios optics optimized for indium radiation, there is still significant low-energy gallium contamination. Subsequently, we want to compare the traditional approach of suppressing this radiation with an absorber, as required for the Bruker Photon III detector, with the application of the energy cut-off feature of the Dectris Eiger2 CdTe detector, with an additional discussion of other influences on the overall detectable intensity. In order to provide tests representing potential applications of this setup, we want to evaluate the influence of the detector on this specific setup for independent-atom model (IAM) evaluations of reference compounds with both high and low absorption, coupled with aspherical density refinements of the well known YLID crystal (2-dimethylsulfuranylidene-l,3-indanedione) at 110 K.

2. Experimental

2.1. Investigated structures

Scandium cobalt carbide (Jeitschko et al., 1989[Jeitschko, W., Gerss, M. H., Hoffmann, R.-D. & Lee, S. (1989). J. Less-Common Met. 156, 397-412.]), [ScCoC4]n, 1, has been the subject of a number of investigations of the solid state (Zhang et al., 2007[Zhang, L., Fehse, C., Eckert, H., Vogt, C., Hoffmann, R.-D. & Pöttgen, R. (2007). Solid State Sci. 9, 699-705.]; He et al., 2015[He, M., Wong, C. H., Shi, D., Tse, P. L., Scheidt, E.-W., Eickerling, G., Scherer, W., Sheng, P. & Lortz, R. (2015). J. Phys. Condens. Matter, 27, 075702.]), including high-resolution X-ray diffraction studies (Rohrmoser et al., 2007[Rohrmoser, B., Eickerling, G., Presnitz, M., Scherer, W., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Vogt, C. & Pöttgen, R. (2007). J. Am. Chem. Soc. 129, 9356-9365.]; Eickerling et al., 2013[Eickerling, G., Hauf, C., Scheidt, E.-W., Reichardt, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Humberto Romero, A., Porcher, F., André, G., Pöttgen, R. & Scherer, W. (2013). Z. Anorg. Allg. Chem. 639, 1985-1995.]; Langmann et al., 2021[Langmann, J., Vöst, M., Schmitz, D., Haas, C., Eickerling, G., Jesche, A., Nicklas, M., Lanza, A., Casati, N., Macchi, P. & Scherer, W. (2021). Phys. Rev. B, 103, 184101.]), and was therefore chosen together with scandium platinum silicide, [ScPt9Si3]n, 2, and sodium tungstate dihydrate, [Na2WO4·2H2O]n, 3, to represent inorganic salts with particularly high absorption coefficients. As a contrast, L-alanine (L-Ala), 4, was chosen, because it diffracts reasonably well while having a low absorption coefficient. Finally, a C11H10O2S YLID crystal, 5, was used to compare the two detectors and the setup with a second machine using aspherical refinements. The YLID crystal is an established benchmark for IAM refinements but can also be used for benchmarks at low temperatures (Guzei et al., 2008[Guzei, I. A., Bikzhanova, G. A., Spencer, L. C., Timofeeva, T. V., Kinnibrugh, T. L. & Campana, C. F. (2008). Cryst. Growth Des. 8, 2411-2418.]), which enables the use of aspherical models. Depictions of the structures within this investigation are shown in Fig. 1[link] and crystallographic details are given in Table 1[link].

Table 1

Crystal properties and measurement settings for the comparison measurements

Values for μ and μr are given for In Kα for structures 1 to 4. Values for structure 5 are given for In Kα/Ag Kα.

  Space group Crystal dimensions (mm) μ (mm−1) μr dmin (Å) T (K)
1 [ScCoC4]n Immm 0.592 × 0.063 × 0.031 3.9 0.06 0.39 100
2 [ScPt9Si3]n C2/c 0.059 × 0.049 × 0.041 64.3 1.29 0.38 100
3 [Na2WO4·2H2O]n Pbca 0.208 × 0.157 × 0.086 8.2 0.35 0.36 100
4 L-Ala P212121 0.214 × 0.155 × 0.128 0.06 0.00 0.45 150
5 YLID P212121 0.395 × 0.387 × 0.312 0.13/0.16 0.03/0.02 0.45 110
[Figure 1]

Figure 1

Structures of the compounds 1 to 5.

2.2. Measurement

The diffraction data with indium radiation were collected on a Bruker D8 Venture four-circle diffractometer with an Excillum MetalJet D2 source using ExAlloy-I3 (75% gallium and 25% indium) and Incoatec Helios optics. With the Bruker Photon III detector, gallium contamination was filtered using a palladium foil of 40 µm thickness. For the Eiger2 CdTe 1M detector, a custom solution within the D8 Venture was implemented. Steering using .exp files as written by Bruker APEX4 was implemented in Python, while the triggering was implemented using a custom trigger box. As a result, empty Bruker frames containing the goniometer information were collected at the same time as the Eiger2 collected its frames using the same exposure times. Another Python script was used to merge the two frames together. The Eiger2 measurements used no attenuation, but did use an energy cut-off of 12.1 keV to avoid the gallium contamination.

Diffraction data with silver radiation were collected using a Bruker D8 Venture four-circle diffractometer with an Incoatec IμS 3.0 Ag source and a Bruker Photon III detector as is.

2.3. Data processing and refinement for the IAM refinements

Measurements for the IAM refinement were integrated with SAINT (Bruker, 2019[Bruker (2019). SAINT. Version 8.40B. Bruker AXS Inc., Madison, Wisconsin, USA.]) using an automatically determined box size. Photon III data sets were integrated using profile fitting for the weak reflections, while the Eiger2 CdTe data sets were integrated without profile fitting (Krause et al., 2020[Krause, L., Tolborg, K., Grønbech, T. B. E., Sugimoto, K., Iversen, B. B. & Overgaard, J. (2020). J. Appl. Cryst. 53, 635-649.]). Otherwise, settings were kept to identical defaults. Absorption correction and scaling were done in SADABS (Krause et al., 2015a[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3-10.]). The radius for the spherical absorption correction was assumed at half the lowest crystal dimension (Krause et al., 2015a[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3-10.]). Structures were solved using SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and refined against F2 using SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]). Initial refinement was done in ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and afterwards the refinement was automated using a script in Python.

All refinements were carried out against the complete data and against multiplicity normalized data. Normalization was achieved by creating sets of symmetry-equivalent reflections with the same exposure time for both the Eiger2 and Photon III detectors after scaling and absorption correction. The smaller set was included as is, whereas the same number of reflections were drawn randomly from the larger of the two for each symmetry-equivalent reflection/exposure time combination. To quantify any potential bias by the individual random selections, the procedure was repeated 100 times. These sets were subsequently analysed with XPREP (Sheldrick, 2015c[Sheldrick, G. M. (2015c). XPREP. University of Göttingen, Germany.]) and individual refinements were conducted using SHELXL starting from the refinement against the complete data.

2.4. Data processing and refinement for the aspherical refinements

Measurements for the aspherical atom model refinements were integrated with SAINT using a variable box size. Subsequently, the measurements were scaled and corrected for absorption using SADABS. It has been shown that it is important to check for resolution-dependent errors such as thermal diffuse scattering (Niepötter et al., 2015[Niepötter, B., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1485-1497.]), which can be alleviated by applying a resolution-dependent scaling. Accordingly, we used refined scaling factors for all our data sets with the proposed method and corrected the intensity using the following formula, which improved the achieved model significantly:

[I_{\rm corr} = {{I_{\rm meas}} \over {1 + a \,[\sin(\theta)/\lambda]^2 + b \,[\sin(\theta)/\lambda]^3}} . \eqno(1)]

Determined values for a and b were 0.13/0.76 for the indium/Photon III, −0.08/1.74 for the indium/Eiger2 CdTe and 0.15/1.07 for the silver/Photon III data sets, respectively.

Structures were refined against a pre-solved model using SHELXL via the ShelXle graphical user interface (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). Multipolar refinement was done using the XD2016 package (Volkov et al., 2016[Volkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. (2016). XD2016. University of Glasgow, UK. https://www.chem.gla.ac.uk/~louis/xd-home/.]). Hydrogen atoms bound to carbon atoms in the phenyl ring were placed at a distance of 1.077 Å and the isotropic atomic displacement parameter was set to 1.2 times the Uequiv value of the bound carbon atom, while the hydrogen atoms in the methyl groups were set at a distance of 1.083 Å and displacement parameters were set to 1.5 times the Uequiv of the carbon atom. Hirshfeld atom refinement (HAR) was performed using structure factors from periodic projector augmented wave (PAW) density functional theory (DFT) calculations. They employ the SCAN functional (Sun et al., 2015[Sun, J., Ruzsinszky, A. & Perdew, J. P. (2015). Phys. Rev. Lett. 115, 036402. ]) in GPAW (Mortensen et al., 2005[Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. (2005). Phys. Rev. B, 71, 035109. ]; Enkovaara et al., 2010[Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H. A., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010). J. Phys. Condens. Matter, 22, 253202. ]) with grid spacings of 0.16/0.08/0.04 Å (wavefunction/density/fast Fourier transform). At that point the XHARPy package (Ruth et al., 2022[Ruth, P. N., Herbst-Irmer, R. & Stalke, D. (2022). IUCrJ, 9, 286-297.]) was adopted with all hydrogen atoms refined freely with anisotropic displacement parameters.

3. Results

3.1. Efficiency of low-energy filtering approaches

For the discussed combination of Excillum MetalJet D2 source with I3 alloy and the Incoatec Helios optics, we still have a significant amount of gallium radiation in the primary beam. Depending on the detector we need to use different measures to get rid of that radiation (Graw et al., 2023[Graw, N., Ruth, P. N., Ernemann, T., Herbst-Irmer, R. & Stalke, D. (2023). J. Appl. Cryst. 56, 1315-1321.]).

For the Photon III detector we used a sheet of 40 µm of palladium to attenuate unwanted radiation. The theoretical attenuation (Hubbell & Seltzer, 2004[Hubbell, J. H. & Seltzer, S. M. (2004). Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. NIST Standard Reference Database 126. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. NIST, Gaithersburg, Maryland, USA.]) is 99.9% for gallium radiation. The price we pay is an attenuation of 39.4% for indium Kα as well (Hubbell & Seltzer, 2004[Hubbell, J. H. & Seltzer, S. M. (2004). Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. NIST Standard Reference Database 126. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. NIST, Gaithersburg, Maryland, USA.]). Compared with an aluminium attenuator, the palladium provides additional filtering above 24.35 keV.

In contrast, the Eiger2 is able to filter out the gallium radiation using the available energy cut-off. As the energy of gallium Kα (9.2 keV, 1.340 Å) is less than half the energy of indium Kα (24.1 keV, 0.513 Å) (Deslattes & Kessler, 1985[Deslattes, R. D. & Kessler, E. G. Jr (1985). Atomic Inner-Shell Physics, edited by B. Crasemann, pp. 181-235. Boston: Springer US.]) the recommended cut-off of half the indium energy is therefore able to suppress the low-energy contamination.

In order to evaluate to what degree the filtering was actually successful we used two different approaches. Qualitatively, we can evaluate the filtering by examining the strong indium reflection with the Miller index 212 in the data set of 1 and comparing it with its gallium equivalent (Fig. 2[link]). We see that neither of these setups offers complete suppression of the contamination. Both detectors show a maximum at the position only expected for gallium radiation.

[Figure 2]

Figure 2

Reflection profiles for 212 measured for 15 s for 1. The filtering is incomplete for both cases. Note that the height of the Photon III indium reflection (*) is not determined accurately due to overexposure. Height is given in counts.

The second, more quantitative, approach used a pseudo-twin refinement of the two sets of reflections to get an impression of the relative strength of the contamination. Cell parameters and orientation and instrument parameters were determined in a first integration with SAINT. In a second step, the obtained cell was scaled to match the equivalent gallium reflection positions. With fixed orientation and cell parameters, the relative intensities were determined in a second integration using the twin feature of SAINT. After absorption correction and frame-to-frame scaling in TWINABS (Sevvana et al., 2019[Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040-1050.]), the two components were refined as a twin in SHELXL. The determined twin partitions were 0.226 (11)% for the Eiger2 and 0.44 (4)% for the Photon III detector. The relative percentages are more indicative than the absolute ones, as effects such as scattering cross sections and absorption have been neglected but should be the same for both detectors. Therefore, we could show a very small residual contamination with a slight advantage of the Eiger2 detector. A higher thickness of the palladium attenuator would have solved the problem, but would have led to a lower overall indium intensity.

3.2. Precision of the measured data

The precision was evaluated using the redundancy-independent merge Rr.i.m (Weiss, 2001[Weiss, M. S. (2001). J. Appl. Cryst. 34, 130-135.]), the precision-indicating merge Rp.i.m and the average intensity over estimated error I/σ. These were evaluated using both the complete data set and the redundancy-equivalent data sets prepared according to the procedure described in Section 2.3[link]. The results are shown in Table 2[link].

Table 2

Data descriptors for the evaluated IAM data sets

For the individual data sets, the numbers in rows marked `Full' were determined from the overall data, while rows marked `Equal' contain values which were determined from data cut to be multiplicity equivalent. If the determined multiplicity-equivalent values are all equivalent, no sample standard deviation is listed.

      1 2 3 4
      [ScCoC4]n [ScPt9Si3]n [Na2WO4·2H2O]n L-Ala
Multiplicity Full Eiger2 31.22 7.83 15.31 12.56
Photon III 60.78 32.63 24.38 31.83
Equal Both 25.71 7.76 10.68 7.61
 
Rr.i.m (%) Full Eiger2 2.35 6.29 3.76 3.75
Photon III 4.15 9.35 3.97 5.04
Equal Eiger2 2.303 (5) 6.3296 (20) 3.502 (5) 3.323 (8)
Photon III 3.305 (12) 6.98 (2) 4.539 (10) 5.94 (4)
 
Rp.i.m (%) Full Eiger2 0.39 1.82 0.97 0.90
Photon III 0.47 1.35 0.69 0.85
Equal Eiger2 0.42 1.8397 (17) 1.04 1.099 (5)
Photon III 0.598 (4) 2.135 (8) 1.339 (3) 1.963 (14)
 
I/σ Full Eiger2 117.24 20.03 41.00 41.90
Photon III 110.13 28.46 44.37 45.61
Equal Eiger2 108.063 (13) 19.958 (4) 36.529 (7) 37.73
Photon III 80.19 (3) 14.830 (9) 28.899 (8) 20.95 (2)

The data sets were obviously not collected with the same multiplicities. On the one hand, this is due to the larger active area of the Photon III detector. On the other hand, we also included multiple runs with increasing exposure times on the Photon III to make sure all reflections were measured with an exposure time as high as possible, while being limited by the over-exposure limit. The Eiger2 therefore also has a lower number of runs, as the maximum exposure limit is higher for this detector. Obviously, the multiplicity-equivalent data sets have the same multiplicity.

The redundancy-independent merge factor (Rr.i.m) shows the superior performance of the Eiger2 detector for each of the structures studied in this work for both the overall and multiplicity-equivalent data sets.

For the Rp.i.m and I/σ values the Photon III profits from the higher multiplicity. Consequently, three of the four full data sets are superior for the Photon III detector. After making the multiplicity equivalent, the Eiger2 shows superior performance for all data sets.

The relative performance on the precision indicators is basically retained when we compare the performance of the two detectors with indium radiation for the measurement of structure 5 (Table 3[link]). The Eiger2 data set shows essentially identical performance to the silver data set at a higher collected multiplicity. The data collected on the Photon III detector with the indium MetalJet show inferior quality indicators compared with the other two measurements. Finally, the intensity/data ratio of the Eiger/In combination is superior to both comparison data sets.

Table 3

Quality indicators for the measurement of YLID 5 for aspherical refinement

Indicators were evaluated for the full data sets.

Radiation Detector Multiplicity Rr.i.m (%) Rp.i.m (%) I/σ
In Eiger2 CdTe 29.04 2.48 0.37 101.99
Photon III 27.99 3.83 0.59 78.14
 
Ag Photon III 23.33 2.46 0.39 93.91

3.3. Quality indicators of evaluated IAM refinements

As a first possible application we evaluated the performance of the MetalJet using either detector for IAM refinement in SHELXL with different quality indicators. Again, we evaluated the performance both for the entire collected data set for each detector and for the data sets which had been reduced to be multiplicity equivalent. In accordance with common practice a weighting scheme was refined.

The results are listed in Table 4[link]. The crystallographic agreement factor shows a higher agreement for the Eiger2 detector for the evaluated structures derived from the complete reflection sets for 1 and 3, an improved performance for the Photon III for 2, and a very similar performance for 4. The normalized data sets show the superior performance of the Eiger2 for all four structures. The egross value (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]) describes the number of non-assigned electrons in the difference electron density. Here the Photon III detector shows a lower number of undescribed electrons for the complete data set of 2 compared with the Eiger2 detector. For all other data sets, including all the normalized data sets, the Eiger2 shows a lower number of undescribed electrons.

Table 4

Selected quality indicators for the IAM refinement of structures 1 to 4

For the individual data sets, the values in the left-hand columns were evaluated using the complete data and the values on the right were evaluated from the multiplicity-equivalent data, with the given standard deviation stemming from the 100 draws used for the selection. Bond precisions σ(d) were evaluated for the following bond types – 1 Co—C, 2 Pt—Si, 3 W—O and 4 C—C – using our own implemented script.

    1 2 3 4
    [ScCoC4]n [ScPt9Si3]n [Na2WO4·2H2O]n L-Ala
R(F) (all data) (%) Eiger2 0.97 0.930 (5) 3.04 3.029 (3) 1.92 2.079 (6) 3.34 3.221 (2)
Photon III 1.35 1.352 (15) 2.72 3.85 (3) 2.28 2.361 (6) 3.29 4.53 (4)
 
egross Eiger2 9.8 5.70 (8) 424.5 419 (7) 143.7 143.0 (5) 10.3 8.45 (3)
Photon III 10.3 9.52 (8) 395.7 518 (4) 173.2 149.3 (3) 10.8 11.20 (11)
 
σ(d) (mÅ) Eiger2 0.6 0.6 0.9 (3) 0.9 (3) 0.6 0.6 0.7 0.7
Photon III 0.7 0.7 0.81 (16) 1.0 (3) 0.7 0.65 (5) 0.6 0.83 (5)

The uncertainties in the evaluated bonds were basically identical for the two detectors. This indicates that, despite their different performances, the MetalJet source is suitable for measurements with either detector and the choice does not affect the uncertainties in the determined bond lengths, which is usually the aim of the IAM refinement. In all other quality indicators, the Eiger2 shows superior performance to the Photon III, which can be explained by the use of the palladium attenuator for removing the low-energy gallium contamination, as well as the lower photon efficiency of the evaluated Photon III detector compared with the Eiger2 CdTe.

3.4. Comparison of aspherical refinements of the YLID crystal

The electron density around an atom can be mathematically separated into a spherically symmetrical part and the aspherical contributions. The IAM discussed in Section 3.3[link] approximates the atomic electron density with densities calculated for isolated atoms (Doyle & Turner, 1968[Doyle, P. A. & Turner, P. S. (1968). Acta Cryst. A24, 390-397.]; Prince, 2004[Prince, E. (2004). International Tables for Crystallography, Vol. C, 3rd ed. Dordrecht: Kluwer Academic Publishers.]). More sophisticated models can also account for aspherical contributions which are almost exclusively found in the valence density. We measured an YLID crystal to compare the performance of the two detectors on the MetalJet with the performance of an Incoatec IμS 3.0 Ag source for two different approaches to the aspherical description, namely Hirshfeld atom refinement (HAR) (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]; Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]) and multipole refinement (Coppens, 1997[Coppens, P. (1997). X-ray Charge Densities and Chemical Bonding. Oxford: International Union of Crystallography/Oxford University Press.]).

3.4.1. Comparison of quality indicators

The crystallographic quality indicators are very similar for both methods (Figs. 3[link] and 4[link]): The performances of the unweighted crystallographic agreement factor R(F2) and egross follow the I/σ indicator of the data collection. Accordingly, we see the superior performance of the agreement with the data collected by the Eiger2 CdTe on the In MetalJet, separated by a significant margin from the IμS Ag measurement using the Photon III. The In MetalJet measurement on the Photon III shows the highest values and number of undescribed electrons egross for both evaluated methodologies. For the unweighted agreement factor, both Photon III measurements yield the same value for the HAR. However, for the multipole refinement the Photon III In measurement exhibits a higher value than the Photon III measurement using Ag Kα radiation.

[Figure 3]

Figure 3

Quality indicators of the different measurements for the refinement against atomic form factors from Hirshfeld partitioning for the MetalJet–Photon III (blue), MetalJet–Eiger2 (orange) and IμS 3.0 Ag–Photon III (red) setups. At the top are the quality indicators, on the right-hand side is a Henn–Meindl plot (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]) and at the bottom is a plot produced to mimic DRKPlot (Stash, 2007[Stash, A. (2007). DRKplot. Moscow, Russian Federation.]; Zavodnik et al., 1999[Zavodnik, V., Stash, A., Tsirelson, V., de Vries, R. & Feil, D. (1999). Acta Cryst. B55, 45-54. ]; Zhurovet al., 2008[Zhurov, V. V., Zhurova, E. A. & Pinkerton, A. A. (2008). J. Appl. Cryst. 41, 340-349. ]) output, but not using DRKPlot itself.
[Figure 4]

Figure 4

Quality indicators of the different measurements for the refinement against a multipole model for the MetalJet–Photon III (blue), MetalJet–Eiger2 (orange) and IμS 3.0 Ag–Photon III (red) setups. At the top are the quality indicators, on the right-hand side is a Henn–Meindl plot (Meindl & Henn, 2008[Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404-418.]) and at the bottom is a plot produced to mimic DRKPlot output, but not using DRKPlot itself.

The conclusion is less clear on the weighted crystallographic agreement factor wR2 and the goodness of fit (GOF). For the Ag/Photon III and In/Eiger2 data, the performance of these two indicators is basically identical for the HAR, while the multipole refinement shows a slight advantage for the Ag/Photon III. The In/Photon III data show inferior performance for these indicators as well.

The Photon III measurements show a higher value in the negative difference electron density for both minima, and also an overall shift in the Henn–Meindl plots. The IμS Ag data also show a slightly lower maximum in the difference electron density, whereas the In/Photon III data set again exhibits the most pronounced maxima and minima in the difference electron density.

The In/Photon III measurement shows a significant jump in the quotient of the sum of observed to the sum of fitted intensities ([\sum F_{\rm obs}^2/\sum F_{\rm calc}^2]) between the innermost and second inner resolution shells. The effect is less pronounced in the multipole refinement but still visible. The quotient curve of the Eiger2 is smooth for the Hirshfeld refinement. The resulting refinement of the Ag/Photon III measurement shows under-determined intensities for the two innermost shells. We attribute the difference to the larger number of lower exposure time reflections in the Photon III data set, as the higher exposure times are not available due to overexposure. The Eiger2 does not suffer from overexposure to the same degree.

The difference electron densities of the Hirshfeld atom refinement (Fig. 5[link]) and the multipolar model (Fig. S9 in the supporting information) closely follow the Henn–Meindl plots. All refinements show a low level of difference electron density. The indium MetalJet data obtained with the Photon III detector show a noisy overall difference electron density at an isolevel ±0.05 e Å−3, with the highest features being located near the heaviest atom, namely the ylid sulfur. At the same time the IμS 3.0 Ag data with the Photon III show a disposition towards a negative difference electron density, which can be explained by the intensity of the inner data matching less accurately, as observed in the DRKPlot-type plot. In comparison, the difference electron density obtained by the indium MetalJet with the Eiger2 CdTe is much flatter. The visible features at the same low isolevel (±0.05 e Å−3) are limited to the vicinity of the sulfur atom and the oxygen atoms, while also being less strongly expressed at these positions. The resulting difference electron densities of the multipolar refinements are comparable for the three investigations (Fig. S9). In the IμS 3.0 Ag/Photon III data, the increased number of parameters does counteract the overall negative density near the sulfur atom and part, but not all, of the discrepancy is assigned to the density, as investigated in the next section.

[Figure 5]

Figure 5

Difference electron densities at isolevels ±0.05 e Å−3 for the Hirshfeld atom refinements of 5 for data obtained on (left) the indium/Photon III, (centre) the indium/Eiger2 CdTe and (right) the silver/Photon III setups. Atomic displacement parameters are depicted at the 50% probability level.
3.4.2. Comparison of derived QTAIM properties of the multipole refinement

We now want to compare derived properties from the different measurements. Currently, the usual aim for multipole refinements is to derive a density which can be subsequently analysed with QTAIM. Selected examples of derived properties are depicted in Fig. 6[link]; a detailed analysis of molecular structure within the QTAIM framework is provided by Graw et al. (2023[Graw, N., Ruth, P. N., Ernemann, T., Herbst-Irmer, R. & Stalke, D. (2023). J. Appl. Cryst. 56, 1315-1321.]) on the basis of the experimental charge density derived from the Indium/Eiger2 CdTe data.

[Figure 6]

Figure 6

Selected QTAIM properties derived from the multipolar refinement for the MetalJet–Photon III (blue), MetalJet–Eiger2 (orange) and IμS 3.0 Ag–Photon III (red) setups. Depicted are the Laplacians along the bond bath for three different atom pairs (top left, top right, bottom left) with marked atom positions and bond critical point (BCP) position. (Bottom centre) The corresponding labelling of the atoms and (bottom right) the integrated Bader charges for selected atoms.

Laplacians along bond paths are conserved well between the different measurements and the Laplacian values at the BCPs are basically indistinguishable. In contrast, the integrated Bader charges differ for the sulfur atom of the YLID and the connected methyl groups. We attribute this difference again to the Photon III's difficulty in measuring the strongest reflections, which in turn significantly affects the density of the heaviest sulfur atom. The effect on the lighter oxygen atoms and the remaining carbon atoms within the structure is negligible. Again, all three measurements yield similar Bader charges.

4. Conclusions

We have successfully demonstrated the first application of MetalJet In Kα radiation to single-crystal X-ray crystallography and evaluated different detectors, the Photon III and the Eiger2 CdTe, for usage on this machine in investigations involving spherical and aspherical models.

Overall, the Eiger2 CdTe proved to be the solution to the specific MetalJet problem of contamination with gallium Kα radiation. Instead of needing to remove the radiation with an attenuator, which also affects the intensity of the indium radiation used for measurement, the second higher wavelength can be elegantly removed using the available energy cut-off.

Both implementations are suitable for measurements for the purpose of independent-atom model refinement, but the Eiger2 CdTe shows superior performance in quality indicators for the precision of the individual measurements, as well as an improvement in the quality indicators of the crystallographic model. The increase in precision could be demonstrated when the difference in multiplicity was removed.

We also evaluated the performance for a charge-density refinement of the YLID crystal for both detectors, as well as an IμS 3.0 Ag source with a Photon III detector. Again, all three setups provide really good quality models. For this crystal, the In MetalJet with an Eiger2 CdTe detector was able to produce data better described by the evaluated multipole and Hirshfeld atom descriptions. In a direct comparison of the Photon III measurements with the MetalJet and the IμS 3.0 Ag sources, the IμS shows improved performance. Further evaluation in this direction is necessary but was beyond the scope of this publication.

Overall, the MetalJet source used with indium radiation provides an interesting setup, with a potentially higher resolution and fast measurement times for compounds with smaller unit cells. Harder radiation should reduce artefacts resulting from high absorption and extinction. The narrow beam is well suited to small samples of such compounds. The instrument still carries untapped potential in the form of a higher voltage generator. While the current 70 kV high-voltage generator provides a suitable intensity for the investigated measurements, exploration of the current setup with a 160 kV generator still remains to be conducted, with an expected increase in achievable intensity.

5. Related literature

For further literature related to the supporting information, see Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) and Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information



Computing details top

For all structures, data collection: Bruker APEX2 v2012.2; cell refinement: Bruker SAINT V8.40B; data reduction: Bruker SAINT V8.40B; program(s) used to solve structure: SHELXT(Sheldrick,Acta Cryst.(2015)A71,3-8). Program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2019) for ScCoC_eiger, ScCoC_photon, NaWO4_eiger, NaWO4_photon; SHELXL2019/1 (Sheldrick, 2019) for ScPtSi_eiger, ScPtSi_photon, LAla_eiger, LAla_photon; xHARPY 0.2.0 for Ylid_HAR_Ag_Photon, Ylid_HAR_In_Eiger, Ylid_HAR_In_Photon; Volkov et al., (2006) for Ylid_MM_Ag_Photon, Ylid_MM_In_Eiger, Ylid_MM_In_Photon. Molecular graphics: VESTA 3.5.7 for ScCoC_eiger, ScCoC_photon, ScPtSi_eiger, ScPtSi_photon, NaWO4_eiger, NaWO4_photon, LAla_eiger, LAla_photon, Ylid_HAR_Ag_Photon, Ylid_HAR_In_Photon; Volkov et al., (2006) for Ylid_MM_Ag_Photon, Ylid_MM_In_Eiger, Ylid_MM_In_Photon. Software used to prepare material for publication: VESTA 3.5.7 for ScCoC_eiger, ScCoC_photon, ScPtSi_eiger, ScPtSi_photon, NaWO4_eiger, NaWO4_photon, LAla_eiger, LAla_photon; xHARPY 0.2.0 for Ylid_HAR_Ag_Photon, Ylid_HAR_In_Eiger, Ylid_HAR_In_Photon; Volkov et al., (2006) for Ylid_MM_Ag_Photon, Ylid_MM_In_Eiger, Ylid_MM_In_Photon.

(ScCoC_eiger) top
Crystal data top
C4CoSc3 Dx = 4.528 Mg m3
Mr = 241.85 In Kα radiation, λ = 0.5134 Å
Orthorhombic, Immm Cell parameters from 9909 reflections
a = 3.383 (2) Å θ = 2.5–41.2°
b = 4.373 (2) Å µ = 3.89 mm1
c = 11.991 (3) Å T = 100 K
V = 177.39 (14) Å3 Needle, violet
Z = 2 0.59 × 0.06 × 0.03 mm
F(000) = 228
Data collection top
Bruker D8 Venture

diffractometer
916 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.025
φ and ω scans θmax = 41.2°, θmin = 2.5°
Absorption correction: multi-scan

SADABS-2016/2
h = 88
Tmin = 0.728, Tmax = 0.917 k = 1111
29081 measured reflections l = 3030
928 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0104P)2 + 0.0755P]

where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.010 (Δ/σ)max = 0.001
wR(F2) = 0.026 Δρmax = 0.91 e Å3
S = 1.23 Δρmin = 1.18 e Å3
928 reflections Extinction correction: SHELXL-2019/2 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parameters Extinction coefficient: 0.048 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Sc1 0.000000 0.500000 0.500000 0.00312 (2)
Sc2 0.500000 0.500000 0.18806 (2) 0.00250 (2)
Co1 0.500000 1.000000 0.500000 0.00443 (2)
C1 0.500000 0.66637 (8) 0.37509 (3) 0.00389 (3)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Sc1 0.00266 (3) 0.00420 (3) 0.00252 (3) 0.000 0.000 0.000
Sc2 0.00266 (2) 0.00243 (2) 0.00241 (2) 0.000 0.000 0.000
Co1 0.00894 (3) 0.00221 (3) 0.00215 (3) 0.000 0.000 0.000
C1 0.00440 (7) 0.00349 (8) 0.00379 (8) 0.000 0.000 0.00022 (6)
Geometric parameters (Å, º) top
Sc1—C1 2.3736 (8) Sc2—C1xi 2.3586 (9)
Sc1—C1i 2.3736 (8) Sc2—C1xii 2.3586 (9)
Sc1—C1ii 2.3736 (8) Sc2—C1xiii 2.3586 (9)
Sc1—C1iii 2.3736 (8) Sc2—Co1xiv 2.8189 (8)
Sc1—C1iv 2.3736 (8) Sc2—Co1xv 2.8189 (8)
Sc1—C1v 2.3736 (8) Sc2—Sc2xi 3.1383 (9)
Sc1—C1vi 2.3736 (8) Sc2—Sc2xvi 3.1383 (9)
Sc1—C1vii 2.3736 (8) Sc2—Sc2xii 3.1383 (9)
Sc1—Co1 2.7644 (10) Sc2—Sc2xvii 3.1383 (9)
Sc1—Co1viii 2.7644 (10) Co1—C1 2.0910 (6)
Sc1—Co1ix 2.7644 (10) Co1—C1xviii 2.0910 (6)
Sc1—Co1iv 2.7644 (10) Co1—C1i 2.0910 (6)
Sc2—C1vii 2.3577 (6) Co1—C1xix 2.0910 (6)
Sc2—C1 2.3577 (6) C1—C1vii 1.4550 (10)
Sc2—C1x 2.3586 (9)
C1—Sc1—C1i 78.25 (3) Sc2xi—Sc2—Sc2xvi 123.49 (2)
C1—Sc1—C1ii 101.75 (3) C1vii—Sc2—Sc2xii 76.39 (2)
C1i—Sc1—C1ii 180.0 C1—Sc2—Sc2xii 48.299 (11)
C1—Sc1—C1iii 89.10 (4) C1x—Sc2—Sc2xii 101.33 (4)
C1i—Sc1—C1iii 35.70 (2) C1xi—Sc2—Sc2xii 96.17 (4)
C1ii—Sc1—C1iii 144.30 (2) C1xii—Sc2—Sc2xii 48.27 (2)
C1—Sc1—C1iv 90.90 (4) C1xiii—Sc2—Sc2xii 165.805 (8)
C1i—Sc1—C1iv 144.30 (2) Co1xiv—Sc2—Sc2xii 93.17 (2)
C1ii—Sc1—C1iv 35.70 (2) Co1xv—Sc2—Sc2xii 134.595 (17)
C1iii—Sc1—C1iv 180.0 Sc2xi—Sc2—Sc2xii 65.23 (4)
C1—Sc1—C1v 180.0 Sc2xvi—Sc2—Sc2xii 88.33 (3)
C1i—Sc1—C1v 101.75 (3) C1vii—Sc2—Sc2xvii 48.299 (11)
C1ii—Sc1—C1v 78.25 (3) C1—Sc2—Sc2xvii 76.392 (19)
C1iii—Sc1—C1v 90.90 (4) C1x—Sc2—Sc2xvii 96.17 (4)
C1iv—Sc1—C1v 89.10 (4) C1xi—Sc2—Sc2xvii 101.33 (4)
C1—Sc1—C1vi 144.30 (3) C1xii—Sc2—Sc2xvii 165.805 (8)
C1i—Sc1—C1vi 90.90 (4) C1xiii—Sc2—Sc2xvii 48.27 (2)
C1ii—Sc1—C1vi 89.10 (4) Co1xiv—Sc2—Sc2xvii 134.595 (16)
C1iii—Sc1—C1vi 101.75 (3) Co1xv—Sc2—Sc2xvii 93.17 (3)
C1iv—Sc1—C1vi 78.25 (3) Sc2xi—Sc2—Sc2xvii 88.33 (3)
C1v—Sc1—C1vi 35.70 (2) Sc2xvi—Sc2—Sc2xvii 65.23 (4)
C1—Sc1—C1vii 35.70 (2) Sc2xii—Sc2—Sc2xvii 123.49 (2)
C1i—Sc1—C1vii 89.10 (4) C1—Co1—C1xviii 180.000 (18)
C1ii—Sc1—C1vii 90.90 (4) C1—Co1—C1i 91.51 (3)
C1iii—Sc1—C1vii 78.25 (3) C1xviii—Co1—C1i 88.49 (3)
C1iv—Sc1—C1vii 101.75 (3) C1—Co1—C1xix 88.49 (3)
C1v—Sc1—C1vii 144.30 (3) C1xviii—Co1—C1xix 91.51 (3)
C1vi—Sc1—C1vii 180.0 C1i—Co1—C1xix 180.0
C1—Sc1—Co1 47.275 (16) C1—Co1—Sc1 56.504 (19)
C1i—Sc1—Co1 47.276 (16) C1xviii—Co1—Sc1 123.496 (19)
C1ii—Sc1—Co1 132.724 (16) C1i—Co1—Sc1 56.504 (19)
C1iii—Sc1—Co1 78.84 (3) C1xix—Co1—Sc1 123.496 (19)
C1iv—Sc1—Co1 101.16 (3) C1—Co1—Sc1xx 123.496 (19)
C1v—Sc1—Co1 132.724 (16) C1xviii—Co1—Sc1xx 56.504 (19)
C1vi—Sc1—Co1 101.16 (3) C1i—Co1—Sc1xx 123.496 (19)
C1vii—Sc1—Co1 78.84 (3) C1xix—Co1—Sc1xx 56.504 (19)
C1—Sc1—Co1viii 132.725 (16) Sc1—Co1—Sc1xx 180.0
C1i—Sc1—Co1viii 132.724 (16) C1—Co1—Sc1xxi 56.504 (19)
C1ii—Sc1—Co1viii 47.276 (16) C1xviii—Co1—Sc1xxi 123.496 (19)
C1iii—Sc1—Co1viii 101.16 (3) C1i—Co1—Sc1xxi 56.504 (19)
C1iv—Sc1—Co1viii 78.84 (3) C1xix—Co1—Sc1xxi 123.496 (19)
C1v—Sc1—Co1viii 47.276 (16) Sc1—Co1—Sc1xxi 75.45 (4)
C1vi—Sc1—Co1viii 78.84 (3) Sc1xx—Co1—Sc1xxi 104.55 (4)
C1vii—Sc1—Co1viii 101.16 (3) C1—Co1—Sc1xxii 123.496 (19)
Co1—Sc1—Co1viii 180.0 C1xviii—Co1—Sc1xxii 56.504 (19)
C1—Sc1—Co1ix 78.84 (3) C1i—Co1—Sc1xxii 123.496 (19)
C1i—Sc1—Co1ix 78.84 (3) C1xix—Co1—Sc1xxii 56.504 (19)
C1ii—Sc1—Co1ix 101.16 (3) Sc1—Co1—Sc1xxii 104.55 (4)
C1iii—Sc1—Co1ix 47.276 (16) Sc1xx—Co1—Sc1xxii 75.45 (4)
C1iv—Sc1—Co1ix 132.724 (16) Sc1xxi—Co1—Sc1xxii 180.0
C1v—Sc1—Co1ix 101.16 (3) C1—Co1—Sc2xxiii 124.963 (16)
C1vi—Sc1—Co1ix 132.724 (16) C1xviii—Co1—Sc2xxiii 55.037 (16)
C1vii—Sc1—Co1ix 47.276 (16) C1i—Co1—Sc2xxiii 55.037 (17)
Co1—Sc1—Co1ix 104.55 (4) C1xix—Co1—Sc2xxiii 124.963 (17)
Co1viii—Sc1—Co1ix 75.45 (4) Sc1—Co1—Sc2xxiii 111.541 (19)
C1—Sc1—Co1iv 101.16 (3) Sc1xx—Co1—Sc2xxiii 68.459 (18)
C1i—Sc1—Co1iv 101.16 (3) Sc1xxi—Co1—Sc2xxiii 68.459 (18)
C1ii—Sc1—Co1iv 78.84 (3) Sc1xxii—Co1—Sc2xxiii 111.541 (18)
C1iii—Sc1—Co1iv 132.724 (16) C1—Co1—Sc2xii 55.037 (16)
C1iv—Sc1—Co1iv 47.276 (16) C1xviii—Co1—Sc2xii 124.963 (16)
C1v—Sc1—Co1iv 78.84 (3) C1i—Co1—Sc2xii 124.963 (16)
C1vi—Sc1—Co1iv 47.276 (16) C1xix—Co1—Sc2xii 55.037 (17)
C1vii—Sc1—Co1iv 132.724 (16) Sc1—Co1—Sc2xii 68.459 (18)
Co1—Sc1—Co1iv 75.45 (4) Sc1xx—Co1—Sc2xii 111.541 (18)
Co1viii—Sc1—Co1iv 104.55 (4) Sc1xxi—Co1—Sc2xii 111.541 (18)
Co1ix—Sc1—Co1iv 180.0 Sc1xxii—Co1—Sc2xii 68.459 (18)
C1vii—Sc2—C1 35.95 (2) Sc2xxiii—Co1—Sc2xii 180.0
C1vii—Sc2—C1x 96.573 (17) C1—Co1—Sc2xi 55.037 (16)
C1—Sc2—C1x 119.750 (14) C1xviii—Co1—Sc2xi 124.963 (16)
C1vii—Sc2—C1xi 119.750 (14) C1i—Co1—Sc2xi 124.963 (16)
C1—Sc2—C1xi 96.573 (17) C1xix—Co1—Sc2xi 55.037 (16)
C1x—Sc2—C1xi 142.55 (2) Sc1—Co1—Sc2xi 111.541 (18)
C1vii—Sc2—C1xii 119.750 (14) Sc1xx—Co1—Sc2xi 68.459 (18)
C1—Sc2—C1xii 96.573 (17) Sc1xxi—Co1—Sc2xi 68.459 (18)
C1x—Sc2—C1xii 76.42 (4) Sc1xxii—Co1—Sc2xi 111.541 (18)
C1xi—Sc2—C1xii 91.64 (4) Sc2xxiii—Co1—Sc2xi 106.25 (4)
C1vii—Sc2—C1xiii 96.573 (17) Sc2xii—Co1—Sc2xi 73.75 (4)
C1—Sc2—C1xiii 119.750 (14) C1—Co1—Sc2xxiv 124.963 (16)
C1x—Sc2—C1xiii 91.64 (4) C1xviii—Co1—Sc2xxiv 55.037 (16)
C1xi—Sc2—C1xiii 76.42 (4) C1i—Co1—Sc2xxiv 55.037 (16)
C1xii—Sc2—C1xiii 142.55 (2) C1xix—Co1—Sc2xxiv 124.963 (16)
C1vii—Sc2—Co1xiv 139.545 (16) Sc1—Co1—Sc2xxiv 68.459 (18)
C1—Sc2—Co1xiv 139.545 (16) Sc1xx—Co1—Sc2xxiv 111.541 (18)
C1x—Sc2—Co1xiv 46.597 (17) Sc1xxi—Co1—Sc2xxiv 111.541 (18)
C1xi—Sc2—Co1xiv 99.99 (3) Sc1xxii—Co1—Sc2xxiv 68.459 (18)
C1xii—Sc2—Co1xiv 46.597 (17) Sc2xxiii—Co1—Sc2xxiv 73.75 (4)
C1xiii—Sc2—Co1xiv 99.99 (3) Sc2xii—Co1—Sc2xxiv 106.25 (4)
C1vii—Sc2—Co1xv 139.545 (16) Sc2xi—Co1—Sc2xxiv 180.0
C1—Sc2—Co1xv 139.545 (16) C1vii—C1—Co1 134.247 (18)
C1x—Sc2—Co1xv 99.99 (3) C1vii—C1—Sc2 72.027 (12)
C1xi—Sc2—Co1xv 46.597 (17) Co1—C1—Sc2 153.726 (18)
C1xii—Sc2—Co1xv 99.99 (3) C1vii—C1—Sc2xi 128.21 (2)
C1xiii—Sc2—Co1xv 46.597 (17) Co1—C1—Sc2xi 78.37 (2)
Co1xiv—Sc2—Co1xv 73.75 (4) Sc2—C1—Sc2xi 83.427 (16)
C1vii—Sc2—Sc2xi 76.39 (2) C1vii—C1—Sc2xii 128.21 (2)
C1—Sc2—Sc2xi 48.299 (11) Co1—C1—Sc2xii 78.37 (2)
C1x—Sc2—Sc2xi 165.805 (7) Sc2—C1—Sc2xii 83.427 (17)
C1xi—Sc2—Sc2xi 48.27 (2) Sc2xi—C1—Sc2xii 91.64 (4)
C1xii—Sc2—Sc2xi 96.17 (4) C1vii—C1—Sc1xxi 72.152 (13)
C1xiii—Sc2—Sc2xi 101.33 (4) Co1—C1—Sc1xxi 76.22 (2)
Co1xiv—Sc2—Sc2xi 134.595 (16) Sc2—C1—Sc1xxi 120.376 (19)
Co1xv—Sc2—Sc2xi 93.17 (3) Sc2xi—C1—Sc1xxi 83.17 (3)
C1vii—Sc2—Sc2xvi 48.299 (11) Sc2xii—C1—Sc1xxi 154.587 (18)
C1—Sc2—Sc2xvi 76.392 (19) C1vii—C1—Sc1 72.152 (13)
C1x—Sc2—Sc2xvi 48.27 (2) Co1—C1—Sc1 76.22 (2)
C1xi—Sc2—Sc2xvi 165.805 (8) Sc2—C1—Sc1 120.376 (19)
C1xii—Sc2—Sc2xvi 101.33 (4) Sc2xi—C1—Sc1 154.587 (18)
C1xiii—Sc2—Sc2xvi 96.17 (4) Sc2xii—C1—Sc1 83.17 (3)
Co1xiv—Sc2—Sc2xvi 93.17 (3) Sc1xxi—C1—Sc1 90.90 (4)
Co1xv—Sc2—Sc2xvi 134.595 (16)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x1, y, z+1; (vii) x+1, y+1, z; (viii) x1, y1, z; (ix) x, y1, z; (x) x1/2, y1/2, z+1/2; (xi) x+3/2, y+3/2, z+1/2; (xii) x+1/2, y+3/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x1/2, y1/2, z1/2; (xv) x+1/2, y1/2, z1/2; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x+3/2, y+1/2, z+1/2; (xviii) x+1, y+2, z+1; (xix) x+1, y+2, z; (xx) x+1, y+1, z; (xxi) x+1, y, z; (xxii) x, y+1, z; (xxiii) x+1/2, y+1/2, z+1/2; (xxiv) x1/2, y+1/2, z+1/2.
(ScCoC_photon) top
Crystal data top
C4CoSc3 Dx = 4.534 Mg m3
Mr = 241.85 In Kα radiation, λ = 0.5134 Å
Orthorhombic, Immm Cell parameters from 9929 reflections
a = 3.383 (2) Å θ = 2.5–41.1°
b = 4.370 (2) Å µ = 3.90 mm1
c = 11.982 (3) Å T = 100 K
V = 177.14 (14) Å3 Block, violet
Z = 2 0.59 × 0.06 × 0.03 mm
F(000) = 228
Data collection top
Bruker D8 Venture

diffractometer
913 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.043
φ and ω scans θmax = 41.1°, θmin = 2.5°
Absorption correction: multi-scan

SADABS-2016/2
h = 88
Tmin = 0.735, Tmax = 0.917 k = 1111
48194 measured reflections l = 3030
923 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0206P)2 + 0.0882P]

where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013 (Δ/σ)max < 0.001
wR(F2) = 0.037 Δρmax = 2.89 e Å3
S = 1.17 Δρmin = 1.83 e Å3
923 reflections Extinction correction: SHELXL-2019/2 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parameters Extinction coefficient: 0.071 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Sc1 0.000000 0.500000 0.500000 0.00305 (2)
Sc2 0.500000 0.500000 0.18806 (2) 0.00242 (2)
Co1 0.500000 1.000000 0.500000 0.00436 (2)
C1 0.500000 0.66630 (9) 0.37507 (3) 0.00378 (4)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Sc1 0.00256 (4) 0.00412 (4) 0.00249 (4) 0.000 0.000 0.000
Sc2 0.00258 (3) 0.00237 (3) 0.00233 (3) 0.000 0.000 0.000
Co1 0.00886 (4) 0.00214 (3) 0.00207 (3) 0.000 0.000 0.000
C1 0.00427 (9) 0.00343 (9) 0.00364 (9) 0.000 0.000 0.00022 (7)
Geometric parameters (Å, º) top
Sc1—C1 2.3728 (8) Sc2—C1xi 2.3579 (9)
Sc1—C1i 2.3728 (8) Sc2—C1xii 2.3579 (9)
Sc1—C1ii 2.3728 (8) Sc2—C1xiii 2.3579 (9)
Sc1—C1iii 2.3728 (8) Sc2—Co1xiv 2.8175 (8)
Sc1—C1iv 2.3728 (8) Sc2—Co1xv 2.8175 (8)
Sc1—C1v 2.3728 (8) Sc2—Sc2xi 3.1367 (9)
Sc1—C1vi 2.3728 (8) Sc2—Sc2xvi 3.1367 (9)
Sc1—C1vii 2.3728 (8) Sc2—Sc2xii 3.1367 (9)
Sc1—Co1 2.7632 (10) Sc2—Sc2xvii 3.1367 (9)
Sc1—Co1viii 2.7632 (10) Co1—C1 2.0898 (7)
Sc1—Co1ix 2.7632 (10) Co1—C1xviii 2.0898 (7)
Sc1—Co1iv 2.7632 (10) Co1—C1i 2.0898 (7)
Sc2—C1vii 2.3557 (7) Co1—C1xix 2.0898 (7)
Sc2—C1 2.3557 (7) C1—C1vii 1.4534 (10)
Sc2—C1x 2.3579 (9)
C1—Sc1—C1i 78.23 (4) Sc2xi—Sc2—Sc2xvi 123.51 (2)
C1—Sc1—C1ii 101.77 (4) C1vii—Sc2—Sc2xii 76.39 (2)
C1i—Sc1—C1ii 180.0 C1—Sc2—Sc2xii 48.314 (12)
C1—Sc1—C1iii 89.06 (4) C1x—Sc2—Sc2xii 101.29 (4)
C1i—Sc1—C1iii 35.67 (3) C1xi—Sc2—Sc2xii 96.19 (4)
C1ii—Sc1—C1iii 144.33 (3) C1xii—Sc2—Sc2xii 48.25 (2)
C1—Sc1—C1iv 90.94 (4) C1xiii—Sc2—Sc2xii 165.805 (8)
C1i—Sc1—C1iv 144.33 (3) Co1xiv—Sc2—Sc2xii 93.14 (2)
C1ii—Sc1—C1iv 35.67 (3) Co1xv—Sc2—Sc2xii 134.605 (17)
C1iii—Sc1—C1iv 180.0 Sc2xi—Sc2—Sc2xii 65.27 (4)
C1—Sc1—C1v 180.000 (18) Sc2xvi—Sc2—Sc2xii 88.31 (3)
C1i—Sc1—C1v 101.77 (3) C1vii—Sc2—Sc2xvii 48.314 (12)
C1ii—Sc1—C1v 78.23 (3) C1—Sc2—Sc2xvii 76.39 (2)
C1iii—Sc1—C1v 90.94 (4) C1x—Sc2—Sc2xvii 96.19 (4)
C1iv—Sc1—C1v 89.06 (4) C1xi—Sc2—Sc2xvii 101.29 (4)
C1—Sc1—C1vi 144.33 (3) C1xii—Sc2—Sc2xvii 165.805 (8)
C1i—Sc1—C1vi 90.94 (4) C1xiii—Sc2—Sc2xvii 48.25 (2)
C1ii—Sc1—C1vi 89.06 (4) Co1xiv—Sc2—Sc2xvii 134.605 (16)
C1iii—Sc1—C1vi 101.77 (3) Co1xv—Sc2—Sc2xvii 93.14 (2)
C1iv—Sc1—C1vi 78.23 (3) Sc2xi—Sc2—Sc2xvii 88.31 (3)
C1v—Sc1—C1vi 35.67 (3) Sc2xvi—Sc2—Sc2xvii 65.27 (3)
C1—Sc1—C1vii 35.67 (3) Sc2xii—Sc2—Sc2xvii 123.51 (2)
C1i—Sc1—C1vii 89.06 (4) C1—Co1—C1xviii 180.0
C1ii—Sc1—C1vii 90.94 (4) C1—Co1—C1i 91.50 (4)
C1iii—Sc1—C1vii 78.23 (3) C1xviii—Co1—C1i 88.50 (4)
C1iv—Sc1—C1vii 101.77 (3) C1—Co1—C1xix 88.50 (4)
C1v—Sc1—C1vii 144.33 (3) C1xviii—Co1—C1xix 91.50 (4)
C1vi—Sc1—C1vii 180.0 C1i—Co1—C1xix 180.0
C1—Sc1—Co1 47.268 (17) C1—Co1—Sc1 56.51 (2)
C1i—Sc1—Co1 47.268 (17) C1xviii—Co1—Sc1 123.489 (19)
C1ii—Sc1—Co1 132.732 (17) C1i—Co1—Sc1 56.51 (2)
C1iii—Sc1—Co1 78.80 (3) C1xix—Co1—Sc1 123.49 (2)
C1iv—Sc1—Co1 101.20 (3) C1—Co1—Sc1xx 123.49 (2)
C1v—Sc1—Co1 132.732 (17) C1xviii—Co1—Sc1xx 56.51 (2)
C1vi—Sc1—Co1 101.20 (3) C1i—Co1—Sc1xx 123.49 (2)
C1vii—Sc1—Co1 78.80 (3) C1xix—Co1—Sc1xx 56.51 (2)
C1—Sc1—Co1viii 132.732 (17) Sc1—Co1—Sc1xx 180.0
C1i—Sc1—Co1viii 132.732 (17) C1—Co1—Sc1xxi 56.510 (19)
C1ii—Sc1—Co1viii 47.268 (17) C1xviii—Co1—Sc1xxi 123.49 (2)
C1iii—Sc1—Co1viii 101.20 (3) C1i—Co1—Sc1xxi 56.51 (2)
C1iv—Sc1—Co1viii 78.80 (3) C1xix—Co1—Sc1xxi 123.49 (2)
C1v—Sc1—Co1viii 47.268 (17) Sc1—Co1—Sc1xxi 75.49 (4)
C1vi—Sc1—Co1viii 78.80 (3) Sc1xx—Co1—Sc1xxi 104.51 (4)
C1vii—Sc1—Co1viii 101.20 (3) C1—Co1—Sc1xxii 123.490 (19)
Co1—Sc1—Co1viii 180.0 C1xviii—Co1—Sc1xxii 56.51 (2)
C1—Sc1—Co1ix 78.80 (3) C1i—Co1—Sc1xxii 123.49 (2)
C1i—Sc1—Co1ix 78.80 (3) C1xix—Co1—Sc1xxii 56.51 (2)
C1ii—Sc1—Co1ix 101.20 (3) Sc1—Co1—Sc1xxii 104.51 (4)
C1iii—Sc1—Co1ix 47.268 (17) Sc1xx—Co1—Sc1xxii 75.49 (4)
C1iv—Sc1—Co1ix 132.732 (17) Sc1xxi—Co1—Sc1xxii 180.0
C1v—Sc1—Co1ix 101.20 (3) C1—Co1—Sc2xxiii 124.949 (16)
C1vi—Sc1—Co1ix 132.732 (17) C1xviii—Co1—Sc2xxiii 55.051 (17)
C1vii—Sc1—Co1ix 47.268 (17) C1i—Co1—Sc2xxiii 55.051 (17)
Co1—Sc1—Co1ix 104.51 (4) C1xix—Co1—Sc2xxiii 124.949 (17)
Co1viii—Sc1—Co1ix 75.49 (4) Sc1—Co1—Sc2xxiii 111.562 (19)
C1—Sc1—Co1iv 101.20 (3) Sc1xx—Co1—Sc2xxiii 68.438 (19)
C1i—Sc1—Co1iv 101.20 (3) Sc1xxi—Co1—Sc2xxiii 68.438 (18)
C1ii—Sc1—Co1iv 78.80 (3) Sc1xxii—Co1—Sc2xxiii 111.562 (18)
C1iii—Sc1—Co1iv 132.732 (17) C1—Co1—Sc2xii 55.051 (17)
C1iv—Sc1—Co1iv 47.268 (17) C1xviii—Co1—Sc2xii 124.949 (17)
C1v—Sc1—Co1iv 78.80 (3) C1i—Co1—Sc2xii 124.949 (17)
C1vi—Sc1—Co1iv 47.268 (17) C1xix—Co1—Sc2xii 55.051 (17)
C1vii—Sc1—Co1iv 132.732 (17) Sc1—Co1—Sc2xii 68.438 (18)
Co1—Sc1—Co1iv 75.49 (4) Sc1xx—Co1—Sc2xii 111.562 (18)
Co1viii—Sc1—Co1iv 104.51 (4) Sc1xxi—Co1—Sc2xii 111.562 (18)
Co1ix—Sc1—Co1iv 180.0 Sc1xxii—Co1—Sc2xii 68.438 (18)
C1vii—Sc2—C1 35.94 (3) Sc2xxiii—Co1—Sc2xii 180.0
C1vii—Sc2—C1x 96.566 (18) C1—Co1—Sc2xi 55.051 (17)
C1—Sc2—C1x 119.731 (14) C1xviii—Co1—Sc2xi 124.949 (17)
C1vii—Sc2—C1xi 119.731 (14) C1i—Co1—Sc2xi 124.949 (17)
C1—Sc2—C1xi 96.566 (18) C1xix—Co1—Sc2xi 55.051 (17)
C1x—Sc2—C1xi 142.58 (3) Sc1—Co1—Sc2xi 111.562 (18)
C1vii—Sc2—C1xii 119.731 (14) Sc1xx—Co1—Sc2xi 68.438 (18)
C1—Sc2—C1xii 96.566 (18) Sc1xxi—Co1—Sc2xi 68.438 (18)
C1x—Sc2—C1xii 76.41 (4) Sc1xxii—Co1—Sc2xi 111.562 (18)
C1xi—Sc2—C1xii 91.67 (4) Sc2xxiii—Co1—Sc2xi 106.21 (4)
C1vii—Sc2—C1xiii 96.566 (18) Sc2xii—Co1—Sc2xi 73.79 (4)
C1—Sc2—C1xiii 119.731 (14) C1—Co1—Sc2xxiv 124.949 (16)
C1x—Sc2—C1xiii 91.67 (4) C1xviii—Co1—Sc2xxiv 55.051 (16)
C1xi—Sc2—C1xiii 76.41 (4) C1i—Co1—Sc2xxiv 55.051 (17)
C1xii—Sc2—C1xiii 142.58 (2) C1xix—Co1—Sc2xxiv 124.949 (17)
C1vii—Sc2—Co1xiv 139.529 (16) Sc1—Co1—Sc2xxiv 68.438 (18)
C1—Sc2—Co1xiv 139.529 (17) Sc1xx—Co1—Sc2xxiv 111.562 (18)
C1x—Sc2—Co1xiv 46.590 (19) Sc1xxi—Co1—Sc2xxiv 111.562 (18)
C1xi—Sc2—Co1xiv 100.03 (3) Sc1xxii—Co1—Sc2xxiv 68.438 (18)
C1xii—Sc2—Co1xiv 46.590 (18) Sc2xxiii—Co1—Sc2xxiv 73.79 (4)
C1xiii—Sc2—Co1xiv 100.03 (3) Sc2xii—Co1—Sc2xxiv 106.21 (4)
C1vii—Sc2—Co1xv 139.529 (17) Sc2xi—Co1—Sc2xxiv 180.0
C1—Sc2—Co1xv 139.529 (17) C1vii—C1—Co1 134.252 (18)
C1x—Sc2—Co1xv 100.03 (3) C1vii—C1—Sc2 72.031 (13)
C1xi—Sc2—Co1xv 46.590 (18) Co1—C1—Sc2 153.72 (2)
C1xii—Sc2—Co1xv 100.03 (3) C1vii—C1—Sc2xi 128.20 (2)
C1xiii—Sc2—Co1xv 46.590 (18) Co1—C1—Sc2xi 78.36 (2)
Co1xiv—Sc2—Co1xv 73.79 (4) Sc2—C1—Sc2xi 83.434 (18)
C1vii—Sc2—Sc2xi 76.39 (2) C1vii—C1—Sc2xii 128.20 (2)
C1—Sc2—Sc2xi 48.314 (12) Co1—C1—Sc2xii 78.36 (2)
C1x—Sc2—Sc2xi 165.805 (8) Sc2—C1—Sc2xii 83.434 (18)
C1xi—Sc2—Sc2xi 48.25 (2) Sc2xi—C1—Sc2xii 91.67 (4)
C1xii—Sc2—Sc2xi 96.19 (4) C1vii—C1—Sc1xxi 72.166 (14)
C1xiii—Sc2—Sc2xi 101.29 (4) Co1—C1—Sc1xxi 76.22 (2)
Co1xiv—Sc2—Sc2xi 134.605 (16) Sc2—C1—Sc1xxi 120.37 (2)
Co1xv—Sc2—Sc2xi 93.14 (2) Sc2xi—C1—Sc1xxi 83.13 (3)
C1vii—Sc2—Sc2xvi 48.314 (12) Sc2xii—C1—Sc1xxi 154.58 (2)
C1—Sc2—Sc2xvi 76.39 (2) C1vii—C1—Sc1 72.166 (13)
C1x—Sc2—Sc2xvi 48.25 (2) Co1—C1—Sc1 76.22 (2)
C1xi—Sc2—Sc2xvi 165.805 (8) Sc2—C1—Sc1 120.37 (2)
C1xii—Sc2—Sc2xvi 101.29 (4) Sc2xi—C1—Sc1 154.58 (2)
C1xiii—Sc2—Sc2xvi 96.19 (4) Sc2xii—C1—Sc1 83.13 (3)
Co1xiv—Sc2—Sc2xvi 93.14 (3) Sc1xxi—C1—Sc1 90.94 (4)
Co1xv—Sc2—Sc2xvi 134.605 (16)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x1, y, z+1; (vii) x+1, y+1, z; (viii) x1, y1, z; (ix) x, y1, z; (x) x1/2, y1/2, z+1/2; (xi) x+3/2, y+3/2, z+1/2; (xii) x+1/2, y+3/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x1/2, y1/2, z1/2; (xv) x+1/2, y1/2, z1/2; (xvi) x+1/2, y+1/2, z+1/2; (xvii) x+3/2, y+1/2, z+1/2; (xviii) x+1, y+2, z+1; (xix) x+1, y+2, z; (xx) x+1, y+1, z; (xxi) x+1, y, z; (xxii) x, y+1, z; (xxiii) x+1/2, y+1/2, z+1/2; (xxiv) x1/2, y+1/2, z+1/2.
(ScPtSi_eiger) top
Crystal data top
Pt9Sc2Si3 F(000) = 3144
Mr = 1930.00 Dx = 15.115 Mg m3
Monoclinic, C2/c In Kα radiation, λ = 0.5134 Å
a = 12.976 (2) Å Cell parameters from 9931 reflections
b = 7.521 (2) Å θ = 2.3–42.5°
c = 9.702 (3) Å µ = 64.18 mm1
β = 116.40 (2)° T = 100 K
V = 848.1 (4) Å3 Block, violet
Z = 4 0.06 × 0.05 × 0.04 mm
Data collection top
Bruker D8 Venture

diffractometer
7250 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.063
φ and ω scans θmax = 42.5°, θmin = 2.3°
Absorption correction: multi-scan

SADABS-2016/2
h = 2334
Tmin = 0.095, Tmax = 0.215 k = 1919
64923 measured reflections l = 2525
8103 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0142P)2 + 15.7688P]

where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026 (Δ/σ)max = 0.004
wR(F2) = 0.058 Δρmax = 7.76 e Å3
S = 1.09 Δρmin = 5.39 e Å3
8103 reflections Extinction correction: SHELXL-2019/1 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
67 parameters Extinction coefficient: 0.00155 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Pt1 0.61102 (2) 0.80381 (2) 0.74508 (2) 0.00375 (1)
Pt2 0.500000 0.85964 (2) 0.250000 0.00399 (2)
Pt3 0.55900 (2) 0.42149 (2) 0.42544 (2) 0.00344 (1)
Pt4 0.77310 (2) 0.58604 (2) 0.57739 (2) 0.00356 (1)
Pt5 0.88510 (2) 0.58947 (2) 0.92516 (2) 0.00503 (1)
Sc1 0.66803 (4) 0.41458 (7) 0.75114 (6) 0.00452 (6)
Si2 0.58850 (8) 0.73112 (13) 0.49730 (11) 0.00453 (10)
Si1 0.750000 0.750000 1.000000 0.00513 (15)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Pt1 0.00390 (3) 0.00340 (3) 0.00373 (3) 0.00048 (2) 0.00151 (2) 0.00013 (2)
Pt2 0.00333 (3) 0.00420 (4) 0.00409 (4) 0.000 0.00132 (3) 0.000
Pt3 0.00340 (2) 0.00340 (3) 0.00339 (3) 0.00018 (2) 0.00139 (2) 0.00036 (2)
Pt4 0.00328 (2) 0.00328 (3) 0.00363 (3) 0.00001 (2) 0.00108 (2) 0.00023 (2)
Pt5 0.00604 (3) 0.00438 (3) 0.00557 (3) 0.00072 (2) 0.00340 (2) 0.00099 (2)
Sc1 0.00453 (13) 0.00467 (14) 0.00398 (14) 0.00005 (10) 0.00155 (11) 0.00030 (10)
Si2 0.0048 (2) 0.0042 (2) 0.0046 (3) 0.0001 (2) 0.0020 (2) 0.0001 (2)
Si1 0.0045 (3) 0.0048 (4) 0.0051 (4) 0.0000 (3) 0.0012 (3) 0.0005 (3)
Geometric parameters (Å, º) top
Pt1—Si2 2.3534 (12) Pt3—Pt3i 2.7933 (5)
Pt1—Si1 2.3594 (8) Pt3—Pt5x 2.8156 (6)
Pt1—Pt3i 2.6888 (6) Pt3—Sc1ix 2.9170 (7)
Pt1—Pt5ii 2.7240 (6) Pt3—Sc1i 2.9403 (8)
Pt1—Pt4ii 2.7258 (6) Pt3—Pt3vi 3.0492 (11)
Pt1—Pt3iii 2.7275 (5) Pt4—Si2 2.4243 (10)
Pt1—Pt2iv 2.9233 (6) Pt4—Si2vii 2.6074 (10)
Pt1—Pt1v 2.9250 (5) Pt4—Si1x 2.6155 (7)
Pt1—Sc1ii 2.9701 (7) Pt4—Pt4vii 2.8100 (6)
Pt2—Si2 2.3578 (12) Pt4—Pt5ix 2.8186 (5)
Pt2—Si2vi 2.3579 (12) Pt4—Sc1ix 2.8355 (11)
Pt2—Pt4vii 2.6936 (7) Pt4—Sc1ii 2.8856 (8)
Pt2—Pt4viii 2.6936 (7) Pt5—Si1 2.4881 (4)
Pt2—Pt5vii 2.7405 (6) Pt5—Si2xi 2.7629 (10)
Pt2—Pt5viii 2.7405 (6) Pt5—Si2x 2.7781 (12)
Pt2—Sc1i 2.9977 (7) Pt5—Sc1ii 2.8863 (8)
Pt2—Sc1ix 2.9977 (7) Pt5—Pt5xii 2.9934 (6)
Pt3—Si2 2.4121 (12) Sc1—Si2iii 3.1877 (13)
Pt3—Si1x 2.5952 (4) Sc1—Si2 3.2462 (13)
Pt3—Si2i 2.6112 (10)
Si2—Pt1—Si1 136.12 (3) Si2—Pt4—Sc1ii 76.70 (3)
Si2—Pt1—Pt3i 61.96 (3) Si2vii—Pt4—Sc1ii 70.74 (3)
Si1—Pt1—Pt3i 124.923 (17) Si1x—Pt4—Sc1ii 163.761 (12)
Si2—Pt1—Pt5ii 65.87 (3) Pt2vii—Pt4—Sc1ii 64.893 (14)
Si1—Pt1—Pt5ii 124.009 (12) Pt1x—Pt4—Sc1ii 111.85 (3)
Pt3i—Pt1—Pt5ii 110.81 (2) Pt4vii—Pt4—Sc1ii 59.70 (2)
Si2—Pt1—Pt4ii 127.55 (3) Pt5ix—Pt4—Sc1ii 129.578 (14)
Si1—Pt1—Pt4ii 61.407 (17) Sc1ix—Pt4—Sc1ii 121.173 (16)
Pt3i—Pt1—Pt4ii 161.933 (6) Si1—Pt5—Pt1x 139.911 (11)
Pt5ii—Pt1—Pt4ii 67.37 (2) Si1—Pt5—Pt2vii 139.587 (12)
Si2—Pt1—Pt3iii 123.87 (3) Pt1x—Pt5—Pt2vii 64.684 (14)
Si1—Pt1—Pt3iii 60.841 (15) Si1—Pt5—Si2xi 114.00 (2)
Pt3i—Pt1—Pt3iii 68.52 (2) Pt1x—Pt5—Si2xi 105.41 (2)
Pt5ii—Pt1—Pt3iii 162.851 (6) Pt2vii—Pt5—Si2xi 50.73 (2)
Pt4ii—Pt1—Pt3iii 107.62 (2) Si1—Pt5—Si2x 114.19 (2)
Si2—Pt1—Pt2iv 112.31 (3) Pt1x—Pt5—Si2x 50.64 (3)
Si1—Pt1—Pt2iv 106.495 (11) Pt2vii—Pt5—Si2x 105.538 (19)
Pt3i—Pt1—Pt2iv 106.273 (18) Si2xi—Pt5—Si2x 114.60 (2)
Pt5ii—Pt1—Pt2iv 57.932 (16) Si1—Pt5—Pt3ii 58.200 (12)
Pt4ii—Pt1—Pt2iv 56.825 (18) Pt1x—Pt5—Pt3ii 160.332 (7)
Pt3iii—Pt1—Pt2iv 105.254 (16) Pt2vii—Pt5—Pt3ii 96.242 (14)
Si2—Pt1—Pt1v 110.89 (3) Si2xi—Pt5—Pt3ii 55.81 (2)
Si1—Pt1—Pt1v 105.70 (2) Si2x—Pt5—Pt3ii 138.46 (3)
Pt3i—Pt1—Pt1v 57.955 (14) Si1—Pt5—Pt4iii 58.664 (15)
Pt5ii—Pt1—Pt1v 107.687 (12) Pt1x—Pt5—Pt4iii 95.806 (19)
Pt4ii—Pt1—Pt1v 104.714 (14) Pt2vii—Pt5—Pt4iii 160.012 (8)
Pt3iii—Pt1—Pt1v 56.678 (13) Si2xi—Pt5—Pt4iii 138.85 (2)
Pt2iv—Pt1—Pt1v 59.982 (8) Si2x—Pt5—Pt4iii 55.527 (19)
Si2—Pt1—Sc1ii 76.03 (3) Pt3ii—Pt5—Pt4iii 102.732 (17)
Si1—Pt1—Sc1ii 75.61 (2) Si1—Pt5—Sc1ii 75.416 (18)
Pt3i—Pt1—Sc1ii 135.057 (17) Pt1x—Pt5—Sc1ii 111.89 (2)
Pt5ii—Pt1—Sc1ii 60.548 (17) Pt2vii—Pt5—Sc1ii 64.322 (14)
Pt4ii—Pt1—Sc1ii 61.023 (16) Si2xi—Pt5—Sc1ii 71.70 (3)
Pt3iii—Pt1—Sc1ii 132.784 (17) Si2x—Pt5—Sc1ii 161.90 (2)
Pt2iv—Pt1—Sc1ii 103.705 (17) Pt3ii—Pt5—Sc1ii 59.52 (2)
Pt1v—Pt1—Sc1ii 163.549 (12) Pt4iii—Pt5—Sc1ii 131.626 (13)
Si2—Pt2—Si2vi 131.60 (5) Si1—Pt5—Pt5xii 139.088 (15)
Si2—Pt2—Pt4vii 61.73 (3) Pt1x—Pt5—Pt5xii 69.917 (19)
Si2vi—Pt2—Pt4vii 126.73 (3) Pt2vii—Pt5—Pt5xii 70.393 (17)
Si2—Pt2—Pt4viii 126.73 (3) Si2xi—Pt5—Pt5xii 57.55 (3)
Si2vi—Pt2—Pt4viii 61.73 (3) Si2x—Pt5—Pt5xii 57.06 (2)
Pt4vii—Pt2—Pt4viii 162.550 (10) Pt3ii—Pt5—Pt5xii 100.133 (18)
Si2—Pt2—Pt5vii 122.35 (3) Pt4iii—Pt5—Pt5xii 99.771 (16)
Si2vi—Pt2—Pt5vii 65.13 (3) Sc1ii—Pt5—Pt5xii 126.322 (14)
Pt4vii—Pt2—Pt5vii 67.59 (2) Pt4iii—Sc1—Pt4x 58.827 (15)
Pt4viii—Pt2—Pt5vii 109.81 (2) Pt4iii—Sc1—Pt5x 121.99 (2)
Si2—Pt2—Pt5viii 65.13 (3) Pt4x—Sc1—Pt5x 63.16 (3)
Si2vi—Pt2—Pt5viii 122.35 (3) Pt4iii—Sc1—Pt3iii 57.99 (2)
Pt4vii—Pt2—Pt5viii 109.81 (2) Pt4x—Sc1—Pt3iii 95.74 (2)
Pt4viii—Pt2—Pt5viii 67.59 (2) Pt5x—Sc1—Pt3iii 130.69 (2)
Pt5vii—Pt2—Pt5viii 163.942 (9) Pt4iii—Sc1—Pt3i 120.73 (3)
Si2—Pt2—Pt1xiii 110.55 (3) Pt4x—Sc1—Pt3i 129.402 (19)
Si2vi—Pt2—Pt1xiii 111.03 (3) Pt5x—Sc1—Pt3i 95.54 (2)
Pt4vii—Pt2—Pt1xiii 57.889 (7) Pt3iii—Sc1—Pt3i 62.74 (2)
Pt4viii—Pt2—Pt1xiii 105.597 (11) Pt4iii—Sc1—Pt1x 90.19 (3)
Pt5vii—Pt2—Pt1xiii 57.385 (7) Pt4x—Sc1—Pt1x 75.289 (17)
Pt5viii—Pt2—Pt1xiii 107.284 (11) Pt5x—Sc1—Pt1x 75.204 (18)
Si2—Pt2—Pt1iv 111.03 (3) Pt3iii—Sc1—Pt1x 145.66 (2)
Si2vi—Pt2—Pt1iv 110.55 (3) Pt3i—Sc1—Pt1x 146.76 (2)
Pt4vii—Pt2—Pt1iv 105.597 (11) Pt4iii—Sc1—Pt2i 89.48 (2)
Pt4viii—Pt2—Pt1iv 57.889 (7) Pt4x—Sc1—Pt2i 54.454 (18)
Pt5vii—Pt2—Pt1iv 107.284 (11) Pt5x—Sc1—Pt2i 55.478 (17)
Pt5viii—Pt2—Pt1iv 57.385 (7) Pt3iii—Sc1—Pt2i 75.727 (19)
Pt1xiii—Pt2—Pt1iv 60.037 (16) Pt3i—Sc1—Pt2i 75.38 (2)
Si2—Pt2—Sc1i 75.29 (3) Pt1x—Sc1—Pt2i 120.24 (2)
Si2vi—Pt2—Sc1i 71.93 (3) Pt4iii—Sc1—Si2iii 47.02 (2)
Pt4vii—Pt2—Sc1i 134.332 (13) Pt4x—Sc1—Si2iii 50.55 (2)
Pt4viii—Pt2—Sc1i 60.653 (16) Pt5x—Sc1—Si2iii 94.65 (3)
Pt5vii—Pt2—Sc1i 133.564 (14) Pt3iii—Sc1—Si2iii 46.28 (2)
Pt5viii—Pt2—Sc1i 60.200 (15) Pt3i—Sc1—Si2iii 90.37 (3)
Pt1xiii—Pt2—Sc1i 163.448 (11) Pt1x—Sc1—Si2iii 121.78 (3)
Pt1iv—Pt2—Sc1i 103.465 (19) Pt2i—Sc1—Si2iii 44.68 (2)
Si2—Pt2—Sc1ix 71.93 (3) Pt4iii—Sc1—Si2 132.92 (3)
Si2vi—Pt2—Sc1ix 75.29 (3) Pt4x—Sc1—Si2 168.17 (3)
Pt4vii—Pt2—Sc1ix 60.653 (16) Pt5x—Sc1—Si2 105.08 (3)
Pt4viii—Pt2—Sc1ix 134.332 (14) Pt3iii—Sc1—Si2 93.29 (3)
Pt5vii—Pt2—Sc1ix 60.200 (15) Pt3i—Sc1—Si2 49.63 (2)
Pt5viii—Pt2—Sc1ix 133.564 (13) Pt1x—Sc1—Si2 101.22 (3)
Pt1xiii—Pt2—Sc1ix 103.465 (19) Pt2i—Sc1—Si2 121.09 (3)
Pt1iv—Pt2—Sc1ix 163.448 (11) Si2iii—Sc1—Si2 136.13 (3)
Sc1i—Pt2—Sc1ix 93.06 (3) Pt1—Si2—Pt2 136.66 (5)
Si2—Pt3—Si1x 112.96 (2) Pt1—Si2—Pt3 116.82 (4)
Si2—Pt3—Si2i 112.57 (3) Pt2—Si2—Pt3 99.13 (4)
Si1x—Pt3—Si2i 115.63 (3) Pt1—Si2—Pt4 96.95 (4)
Si2—Pt3—Pt1i 140.14 (2) Pt2—Si2—Pt4 118.39 (4)
Si1x—Pt3—Pt1i 106.20 (2) Pt3—Si2—Pt4 70.45 (3)
Si2i—Pt3—Pt1i 52.70 (3) Pt1—Si2—Pt4vii 111.92 (4)
Si2—Pt3—Pt1ix 137.09 (2) Pt2—Si2—Pt4vii 65.48 (3)
Si1x—Pt3—Pt1ix 52.553 (18) Pt3—Si2—Pt4vii 117.99 (4)
Si2i—Pt3—Pt1ix 109.46 (3) Pt4—Si2—Pt4vii 67.79 (3)
Pt1i—Pt3—Pt1ix 65.367 (15) Pt1—Si2—Pt3i 65.34 (3)
Si2—Pt3—Pt3i 59.68 (2) Pt2—Si2—Pt3i 112.63 (4)
Si1x—Pt3—Pt3i 137.836 (16) Pt3—Si2—Pt3i 67.43 (3)
Si2i—Pt3—Pt3i 52.88 (3) Pt4—Si2—Pt3i 117.13 (4)
Pt1i—Pt3—Pt3i 95.529 (16) Pt4vii—Si2—Pt3i 174.23 (4)
Pt1ix—Pt3—Pt3i 160.734 (7) Pt1—Si2—Pt5viii 79.40 (3)
Si2—Pt3—Pt5x 137.39 (3) Pt2—Si2—Pt5viii 64.14 (3)
Si1x—Pt3—Pt5x 54.567 (9) Pt3—Si2—Pt5viii 112.79 (4)
Si2i—Pt3—Pt5x 61.07 (2) Pt4—Si2—Pt5viii 175.91 (4)
Pt1i—Pt3—Pt5x 73.20 (2) Pt4vii—Si2—Pt5viii 111.74 (4)
Pt1ix—Pt3—Pt5x 72.47 (2) Pt3i—Si2—Pt5viii 63.12 (2)
Pt3i—Pt3—Pt5x 100.566 (17) Pt1—Si2—Pt5ii 63.49 (2)
Si2—Pt3—Sc1ix 72.78 (3) Pt2—Si2—Pt5ii 79.83 (3)
Si1x—Pt3—Sc1ix 73.884 (18) Pt3—Si2—Pt5ii 178.16 (4)
Si2i—Pt3—Sc1ix 163.45 (2) Pt4—Si2—Pt5ii 111.38 (4)
Pt1i—Pt3—Sc1ix 112.73 (2) Pt4vii—Si2—Pt5ii 63.02 (2)
Pt1ix—Pt3—Sc1ix 64.44 (2) Pt3i—Si2—Pt5ii 111.50 (3)
Pt3i—Pt3—Sc1ix 129.823 (19) Pt5viii—Si2—Pt5ii 65.40 (2)
Pt5x—Pt3—Sc1ix 126.369 (14) Pt1—Si2—Sc1ix 155.59 (4)
Si2—Pt3—Sc1i 75.68 (3) Pt2—Si2—Sc1ix 63.38 (3)
Si1x—Pt3—Sc1i 162.951 (13) Pt3—Si2—Sc1ix 60.94 (2)
Si2i—Pt3—Sc1i 71.29 (3) Pt4—Si2—Sc1ix 58.84 (3)
Pt1i—Pt3—Sc1i 64.55 (2) Pt4vii—Si2—Sc1ix 58.71 (3)
Pt1ix—Pt3—Sc1i 110.88 (2) Pt3i—Si2—Sc1ix 125.93 (4)
Pt3i—Pt3—Sc1i 59.11 (2) Pt5viii—Si2—Sc1ix 124.69 (4)
Pt5x—Pt3—Sc1i 129.335 (13) Pt5ii—Si2—Sc1ix 119.63 (3)
Sc1ix—Pt3—Sc1i 95.94 (2) Pt1—Si2—Sc1 62.76 (3)
Si2—Pt3—Pt3vi 105.01 (2) Pt2—Si2—Sc1 156.83 (4)
Si1x—Pt3—Pt3vi 104.741 (19) Pt3—Si2—Sc1 57.81 (3)
Si2i—Pt3—Pt3vi 104.61 (3) Pt4—Si2—Sc1 59.42 (3)
Pt1i—Pt3—Pt3vi 56.342 (15) Pt4vii—Si2—Sc1 124.87 (4)
Pt1ix—Pt3—Pt3vi 55.140 (15) Pt3i—Si2—Sc1 59.08 (2)
Pt3i—Pt3—Pt3vi 117.353 (19) Pt5viii—Si2—Sc1 119.74 (3)
Pt5x—Pt3—Pt3vi 117.471 (11) Pt5ii—Si2—Sc1 123.14 (4)
Sc1ix—Pt3—Pt3vi 59.00 (2) Sc1ix—Si2—Sc1 102.51 (3)
Sc1i—Pt3—Pt3vi 58.26 (2) Pt1xiv—Si1—Pt1 180.0
Si2—Pt4—Si2vii 112.21 (3) Pt1xiv—Si1—Pt5xiv 94.97 (2)
Si2—Pt4—Si1x 111.85 (3) Pt1—Si1—Pt5xiv 85.03 (2)
Si2vii—Pt4—Si1x 115.79 (2) Pt1xiv—Si1—Pt5 85.03 (2)
Si2—Pt4—Pt2vii 141.45 (3) Pt1—Si1—Pt5 94.97 (2)
Si2vii—Pt4—Pt2vii 52.79 (2) Pt5xiv—Si1—Pt5 180.0
Si1x—Pt4—Pt2vii 106.208 (6) Pt1xiv—Si1—Pt3ii 66.606 (18)
Si2—Pt4—Pt1x 137.89 (2) Pt1—Si1—Pt3ii 113.394 (18)
Si2vii—Pt4—Pt1x 109.37 (2) Pt5xiv—Si1—Pt3ii 112.767 (15)
Si1x—Pt4—Pt1x 52.377 (19) Pt5—Si1—Pt3ii 67.232 (15)
Pt2vii—Pt4—Pt1x 65.286 (16) Pt1xiv—Si1—Pt3iii 113.394 (18)
Si2—Pt4—Pt4vii 59.21 (2) Pt1—Si1—Pt3iii 66.606 (18)
Si2vii—Pt4—Pt4vii 53.01 (2) Pt5xiv—Si1—Pt3iii 67.233 (15)
Si1x—Pt4—Pt4vii 136.445 (18) Pt5—Si1—Pt3iii 112.768 (15)
Pt2vii—Pt4—Pt4vii 96.524 (15) Pt3ii—Si1—Pt3iii 180.0
Pt1x—Pt4—Pt4vii 161.407 (7) Pt1xiv—Si1—Pt4ii 113.784 (4)
Si2—Pt4—Pt5ix 135.16 (3) Pt1—Si1—Pt4ii 66.216 (4)
Si2vii—Pt4—Pt5ix 61.45 (3) Pt5xiv—Si1—Pt4ii 66.994 (12)
Si1x—Pt4—Pt5ix 54.341 (6) Pt5—Si1—Pt4ii 113.006 (12)
Pt2vii—Pt4—Pt5ix 73.806 (17) Pt3ii—Si1—Pt4ii 64.732 (13)
Pt1x—Pt4—Pt5ix 72.444 (19) Pt3iii—Si1—Pt4ii 115.268 (13)
Pt4vii—Pt4—Pt5ix 99.685 (18) Pt1xiv—Si1—Pt4iii 66.216 (5)
Si2—Pt4—Sc1ix 74.15 (3) Pt1—Si1—Pt4iii 113.784 (4)
Si2vii—Pt4—Sc1ix 74.89 (3) Pt5xiv—Si1—Pt4iii 113.006 (12)
Si1x—Pt4—Sc1ix 74.997 (13) Pt5—Si1—Pt4iii 66.994 (12)
Pt2vii—Pt4—Sc1ix 122.99 (2) Pt3ii—Si1—Pt4iii 115.268 (13)
Pt1x—Pt4—Sc1ix 124.087 (18) Pt3iii—Si1—Pt4iii 64.732 (13)
Pt4vii—Pt4—Sc1ix 61.477 (16) Pt4ii—Si1—Pt4iii 180.0
Pt5ix—Pt4—Sc1ix 61.21 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2; (iv) x+1, y+2, z+1; (v) x+1, y, z+3/2; (vi) x+1, y, z+1/2; (vii) x+3/2, y+3/2, z+1; (viii) x1/2, y+3/2, z1/2; (ix) x, y+1, z1/2; (x) x+3/2, y1/2, z+3/2; (xi) x+1/2, y+3/2, z+1/2; (xii) x+2, y+1, z+2; (xiii) x, y+2, z1/2; (xiv) x+3/2, y+3/2, z+2.
(ScPtSi_photon) top
Crystal data top
Pt9Sc2Si3 F(000) = 3144
Mr = 1930.00 Dx = 15.134 Mg m3
Monoclinic, C2/c In Kα radiation, λ = 0.5134 Å
a = 12.958 (3) Å Cell parameters from 9038 reflections
b = 7.520 (2) Å θ = 2.3–41.6°
c = 9.711 (2) Å µ = 64.25 mm1
β = 116.47 (2)° T = 100 K
V = 847.1 (4) Å3 Block, violet
Z = 4 0.06 × 0.05 × 0.04 mm
Data collection top
Bruker D8 Venture

diffractometer
7111 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.098
φ and ω scans θmax = 42.7°, θmin = 2.3°
Absorption correction: multi-scan

SADABS-2016/2
h = 3433
Tmin = 0.088, Tmax = 0.215 k = 1919
272018 measured reflections l = 2525
8133 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0208P)2 + 2.7258P]

where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022 (Δ/σ)max = 0.002
wR(F2) = 0.049 Δρmax = 6.12 e Å3
S = 1.06 Δρmin = 5.27 e Å3
8133 reflections Extinction correction: SHELXL-2019/1 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
67 parameters Extinction coefficient: 0.00238 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Pt1 0.61102 (2) 0.80381 (2) 0.74510 (2) 0.00392 (1)
Pt2 0.500000 0.85968 (2) 0.250000 0.00416 (1)
Pt3 0.55899 (2) 0.42144 (2) 0.42544 (2) 0.00354 (1)
Pt4 0.77312 (2) 0.58601 (2) 0.57737 (2) 0.00365 (1)
Pt5 0.88515 (2) 0.58939 (2) 0.92515 (2) 0.00515 (1)
Sc1 0.66796 (3) 0.41454 (6) 0.75106 (4) 0.00442 (5)
Si2 0.58861 (6) 0.73129 (10) 0.49741 (8) 0.00494 (9)
Si1 0.750000 0.750000 1.000000 0.00515 (12)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Pt1 0.00402 (2) 0.00355 (2) 0.00413 (2) 0.00051 (2) 0.00177 (2) 0.00014 (2)
Pt2 0.00340 (3) 0.00438 (3) 0.00445 (3) 0.000 0.00154 (2) 0.000
Pt3 0.00346 (2) 0.00346 (2) 0.00365 (2) 0.00018 (2) 0.00155 (2) 0.00036 (2)
Pt4 0.00332 (2) 0.00334 (2) 0.00389 (2) 0.00002 (2) 0.00125 (2) 0.00022 (2)
Pt5 0.00613 (2) 0.00452 (2) 0.00580 (2) 0.00073 (2) 0.00354 (2) 0.00095 (2)
Sc1 0.00435 (11) 0.00454 (11) 0.00442 (11) 0.00018 (8) 0.00201 (9) 0.00022 (8)
Si2 0.0052 (2) 0.0044 (2) 0.0057 (2) 0.00017 (17) 0.00281 (18) 0.00010 (17)
Si1 0.0043 (3) 0.0049 (3) 0.0054 (3) 0.0000 (2) 0.0013 (2) 0.0002 (2)
Geometric parameters (Å, º) top
Pt1—Si2 2.3547 (9) Pt3—Pt3i 2.7935 (5)
Pt1—Si1 2.3580 (7) Pt3—Pt5x 2.8156 (6)
Pt1—Pt3i 2.6857 (6) Pt3—Sc1ix 2.9180 (6)
Pt1—Pt5ii 2.7242 (5) Pt3—Sc1i 2.9350 (9)
Pt1—Pt4ii 2.7244 (6) Pt3—Pt3vi 3.0503 (8)
Pt1—Pt3iii 2.7283 (4) Pt4—Si2 2.4203 (9)
Pt1—Pt1iv 2.9209 (7) Pt4—Si2vii 2.6048 (8)
Pt1—Pt2v 2.9217 (6) Pt4—Si1x 2.6150 (7)
Pt1—Sc1ii 2.9668 (8) Pt4—Pt4vii 2.8103 (6)
Pt2—Si2vi 2.3587 (9) Pt4—Pt5ix 2.8187 (5)
Pt2—Si2 2.3588 (9) Pt4—Sc1ix 2.8370 (9)
Pt2—Pt4vii 2.6882 (8) Pt4—Sc1ii 2.8859 (7)
Pt2—Pt4viii 2.6882 (8) Pt5—Si1 2.4877 (4)
Pt2—Pt5viii 2.7406 (5) Pt5—Si2xi 2.7590 (9)
Pt2—Pt5vii 2.7406 (5) Pt5—Si2x 2.7758 (10)
Pt2—Sc1i 2.9949 (7) Pt5—Sc1ii 2.8862 (7)
Pt2—Sc1ix 2.9949 (7) Pt5—Pt5xii 2.9872 (7)
Pt3—Si2 2.4137 (10) Sc1—Si2iii 3.1900 (10)
Pt3—Si1x 2.5913 (6) Sc1—Si2 3.2466 (10)
Pt3—Si2i 2.6107 (8)
Si2—Pt1—Si1 136.16 (2) Si2—Pt4—Sc1ii 76.59 (3)
Si2—Pt1—Pt3i 61.98 (2) Si2vii—Pt4—Sc1ii 70.83 (2)
Si1—Pt1—Pt3i 124.880 (17) Si1x—Pt4—Sc1ii 163.743 (10)
Si2—Pt1—Pt5ii 65.79 (2) Pt2vii—Pt4—Sc1ii 64.884 (13)
Si1—Pt1—Pt5ii 124.081 (10) Pt1x—Pt4—Sc1ii 111.85 (2)
Pt3i—Pt1—Pt5ii 110.781 (19) Pt4vii—Pt4—Sc1ii 59.73 (2)
Si2—Pt1—Pt4ii 127.52 (2) Pt5ix—Pt4—Sc1ii 129.630 (13)
Si1—Pt1—Pt4ii 61.431 (16) Sc1ix—Pt4—Sc1ii 121.187 (12)
Pt3i—Pt1—Pt4ii 161.935 (5) Si1—Pt5—Pt1x 139.968 (10)
Pt5ii—Pt1—Pt4ii 67.418 (18) Si1—Pt5—Pt2vii 139.571 (11)
Si2—Pt1—Pt3iii 123.97 (2) Pt1x—Pt5—Pt2vii 64.639 (11)
Si1—Pt1—Pt3iii 60.741 (14) Si1—Pt5—Si2xi 113.94 (2)
Pt3i—Pt1—Pt3iii 68.580 (18) Pt1x—Pt5—Si2xi 105.42 (2)
Pt5ii—Pt1—Pt3iii 162.861 (5) Pt2vii—Pt5—Si2xi 50.79 (2)
Pt4ii—Pt1—Pt3iii 107.551 (17) Si1—Pt5—Si2x 114.143 (18)
Si2—Pt1—Pt1iv 111.01 (3) Pt1x—Pt5—Si2x 50.69 (2)
Si1—Pt1—Pt1iv 105.56 (2) Pt2vii—Pt5—Si2x 105.598 (15)
Pt3i—Pt1—Pt1iv 58.057 (14) Si2xi—Pt5—Si2x 114.67 (2)
Pt5ii—Pt1—Pt1iv 107.725 (12) Si1—Pt5—Pt3ii 58.106 (12)
Pt4ii—Pt1—Pt1iv 104.617 (14) Pt1x—Pt5—Pt3ii 160.359 (6)
Pt3iii—Pt1—Pt1iv 56.649 (13) Pt2vii—Pt5—Pt3ii 96.308 (10)
Si2—Pt1—Pt2v 112.32 (2) Si2xi—Pt5—Pt3ii 55.839 (18)
Si1—Pt1—Pt2v 106.424 (10) Si2x—Pt5—Pt3ii 138.45 (2)
Pt3i—Pt1—Pt2v 106.37 (2) Si1—Pt5—Pt4iii 58.654 (16)
Pt5ii—Pt1—Pt2v 57.953 (15) Pt1x—Pt5—Pt4iii 95.873 (17)
Pt4ii—Pt1—Pt2v 56.734 (18) Pt2vii—Pt5—Pt4iii 160.038 (7)
Pt3iii—Pt1—Pt2v 105.244 (16) Si2xi—Pt5—Pt4iii 138.80 (2)
Pt1iv—Pt1—Pt2v 60.010 (9) Si2x—Pt5—Pt4iii 55.491 (16)
Si2—Pt1—Sc1ii 75.92 (3) Pt3ii—Pt5—Pt4iii 102.648 (14)
Si1—Pt1—Sc1ii 75.74 (2) Si1—Pt5—Sc1ii 75.467 (16)
Pt3i—Pt1—Sc1ii 134.965 (14) Pt1x—Pt5—Sc1ii 111.84 (2)
Pt5ii—Pt1—Sc1ii 60.510 (16) Pt2vii—Pt5—Sc1ii 64.254 (12)
Pt4ii—Pt1—Sc1ii 61.109 (14) Si2xi—Pt5—Sc1ii 71.64 (3)
Pt3iii—Pt1—Sc1ii 132.809 (15) Si2x—Pt5—Sc1ii 161.903 (17)
Pt1iv—Pt1—Sc1ii 163.537 (10) Pt3ii—Pt5—Sc1ii 59.52 (2)
Pt2v—Pt1—Sc1ii 103.666 (16) Pt4iii—Pt5—Sc1ii 131.675 (13)
Si2vi—Pt2—Si2 131.68 (4) Si1—Pt5—Pt5xii 139.011 (13)
Si2vi—Pt2—Pt4vii 126.72 (2) Pt1x—Pt5—Pt5xii 69.928 (18)
Si2—Pt2—Pt4vii 61.74 (3) Pt2vii—Pt5—Pt5xii 70.488 (17)
Si2vi—Pt2—Pt4viii 61.74 (3) Si2xi—Pt5—Pt5xii 57.61 (2)
Si2—Pt2—Pt4viii 126.72 (2) Si2x—Pt5—Pt5xii 57.067 (17)
Pt4vii—Pt2—Pt4viii 162.522 (9) Pt3ii—Pt5—Pt5xii 100.185 (18)
Si2vi—Pt2—Pt5viii 122.47 (2) Pt4iii—Pt5—Pt5xii 99.702 (18)
Si2—Pt2—Pt5viii 65.01 (2) Sc1ii—Pt5—Pt5xii 126.325 (13)
Pt4vii—Pt2—Pt5viii 109.706 (19) Pt4iii—Sc1—Pt4x 58.813 (12)
Pt4viii—Pt2—Pt5viii 67.688 (19) Pt4iii—Sc1—Pt5x 121.996 (18)
Si2vi—Pt2—Pt5vii 65.01 (2) Pt4x—Sc1—Pt5x 63.18 (2)
Si2—Pt2—Pt5vii 122.47 (2) Pt4iii—Sc1—Pt3iii 57.870 (17)
Pt4vii—Pt2—Pt5vii 67.688 (19) Pt4x—Sc1—Pt3iii 95.665 (18)
Pt4viii—Pt2—Pt5vii 109.706 (18) Pt5x—Sc1—Pt3iii 130.766 (17)
Pt5viii—Pt2—Pt5vii 163.935 (8) Pt4iii—Sc1—Pt3i 120.68 (2)
Si2vi—Pt2—Pt1xiii 110.95 (2) Pt4x—Sc1—Pt3i 129.440 (17)
Si2—Pt2—Pt1xiii 110.57 (2) Pt5x—Sc1—Pt3i 95.61 (2)
Pt4vii—Pt2—Pt1xiii 57.928 (7) Pt3iii—Sc1—Pt3i 62.818 (19)
Pt4viii—Pt2—Pt1xiii 105.534 (12) Pt4iii—Sc1—Pt1x 90.30 (2)
Pt5viii—Pt2—Pt1xiii 107.254 (12) Pt4x—Sc1—Pt1x 75.346 (15)
Pt5vii—Pt2—Pt1xiii 57.408 (7) Pt5x—Sc1—Pt1x 75.133 (17)
Si2vi—Pt2—Pt1v 110.57 (2) Pt3iii—Sc1—Pt1x 145.638 (19)
Si2—Pt2—Pt1v 110.95 (2) Pt3i—Sc1—Pt1x 146.684 (18)
Pt4vii—Pt2—Pt1v 105.534 (13) Pt4iii—Sc1—Pt2i 89.391 (19)
Pt4viii—Pt2—Pt1v 57.928 (7) Pt4x—Sc1—Pt2i 54.363 (18)
Pt5viii—Pt2—Pt1v 57.408 (7) Pt5x—Sc1—Pt2i 55.513 (15)
Pt5vii—Pt2—Pt1v 107.254 (12) Pt3iii—Sc1—Pt2i 75.766 (19)
Pt1xiii—Pt2—Pt1v 59.981 (17) Pt3i—Sc1—Pt2i 75.52 (2)
Si2vi—Pt2—Sc1i 72.04 (2) Pt1x—Sc1—Pt2i 120.18 (2)
Si2—Pt2—Sc1i 75.21 (3) Pt4iii—Sc1—Si2iii 46.904 (19)
Pt4vii—Pt2—Sc1i 134.253 (12) Pt4x—Sc1—Si2iii 50.467 (16)
Pt4viii—Pt2—Sc1i 60.751 (16) Pt5x—Sc1—Si2iii 94.70 (2)
Pt5viii—Pt2—Sc1i 60.232 (15) Pt3iii—Sc1—Si2iii 46.29 (2)
Pt5vii—Pt2—Sc1i 133.544 (12) Pt3i—Sc1—Si2iii 90.48 (2)
Pt1xiii—Pt2—Sc1i 163.465 (9) Pt1x—Sc1—Si2iii 121.74 (2)
Pt1v—Pt2—Sc1i 103.54 (2) Pt2i—Sc1—Si2iii 44.699 (18)
Si2vi—Pt2—Sc1ix 75.21 (3) Pt4iii—Sc1—Si2 132.88 (2)
Si2—Pt2—Sc1ix 72.04 (2) Pt4x—Sc1—Si2 168.21 (2)
Pt4vii—Pt2—Sc1ix 60.751 (16) Pt5x—Sc1—Si2 105.10 (3)
Pt4viii—Pt2—Sc1ix 134.253 (13) Pt3iii—Sc1—Si2 93.36 (2)
Pt5viii—Pt2—Sc1ix 133.544 (12) Pt3i—Sc1—Si2 49.649 (18)
Pt5vii—Pt2—Sc1ix 60.232 (15) Pt1x—Sc1—Si2 101.13 (2)
Pt1xiii—Pt2—Sc1ix 103.54 (2) Pt2i—Sc1—Si2 121.24 (3)
Pt1v—Pt2—Sc1ix 163.465 (9) Si2iii—Sc1—Si2 136.24 (3)
Sc1i—Pt2—Sc1ix 92.97 (3) Pt1—Si2—Pt2 136.73 (4)
Si2—Pt3—Si1x 112.99 (2) Pt1—Si2—Pt3 116.78 (3)
Si2—Pt3—Si2i 112.58 (2) Pt2—Si2—Pt3 99.08 (3)
Si1x—Pt3—Si2i 115.57 (2) Pt1—Si2—Pt4 97.03 (3)
Si2—Pt3—Pt1i 140.200 (19) Pt2—Si2—Pt4 118.31 (3)
Si1x—Pt3—Pt1i 106.10 (2) Pt3—Si2—Pt4 70.37 (2)
Si2i—Pt3—Pt1i 52.77 (2) Pt1—Si2—Pt4vii 112.06 (3)
Si2—Pt3—Pt1ix 137.080 (18) Pt2—Si2—Pt4vii 65.36 (3)
Si1x—Pt3—Pt1ix 52.548 (16) Pt3—Si2—Pt4vii 117.96 (3)
Si2i—Pt3—Pt1ix 109.47 (2) Pt4—Si2—Pt4vii 67.89 (2)
Pt1i—Pt3—Pt1ix 65.296 (16) Pt1—Si2—Pt3i 65.25 (2)
Si2—Pt3—Pt3i 59.651 (18) Pt2—Si2—Pt3i 112.71 (3)
Si1x—Pt3—Pt3i 137.805 (13) Pt3—Si2—Pt3i 67.42 (2)
Si2i—Pt3—Pt3i 52.92 (2) Pt4—Si2—Pt3i 117.04 (3)
Pt1i—Pt3—Pt3i 95.648 (17) Pt4vii—Si2—Pt3i 174.25 (3)
Pt1ix—Pt3—Pt3i 160.783 (6) Pt1—Si2—Pt5viii 79.36 (3)
Si2—Pt3—Pt5x 137.37 (2) Pt2—Si2—Pt5viii 64.20 (2)
Si1x—Pt3—Pt5x 54.595 (10) Pt3—Si2—Pt5viii 112.80 (3)
Si2i—Pt3—Pt5x 60.98 (2) Pt4—Si2—Pt5viii 175.97 (3)
Pt1i—Pt3—Pt5x 73.16 (2) Pt4vii—Si2—Pt5viii 111.68 (3)
Pt1ix—Pt3—Pt5x 72.533 (16) Pt3i—Si2—Pt5viii 63.18 (2)
Pt3i—Pt3—Pt5x 100.509 (13) Pt1—Si2—Pt5ii 63.521 (18)
Si2—Pt3—Sc1ix 72.80 (2) Pt2—Si2—Pt5ii 79.87 (3)
Si1x—Pt3—Sc1ix 73.944 (18) Pt3—Si2—Pt5ii 178.10 (3)
Si2i—Pt3—Sc1ix 163.420 (19) Pt4—Si2—Pt5ii 111.52 (3)
Pt1i—Pt3—Sc1ix 112.635 (18) Pt4vii—Si2—Pt5ii 63.09 (2)
Pt1ix—Pt3—Sc1ix 64.402 (18) Pt3i—Si2—Pt5ii 111.47 (3)
Pt3i—Pt3—Sc1ix 129.809 (17) Pt5viii—Si2—Pt5ii 65.33 (2)
Pt5x—Pt3—Sc1ix 126.452 (12) Pt1—Si2—Sc1ix 155.71 (3)
Si2—Pt3—Sc1i 75.64 (2) Pt2—Si2—Sc1ix 63.26 (2)
Si1x—Pt3—Sc1i 162.919 (10) Pt3—Si2—Sc1ix 60.910 (19)
Si2i—Pt3—Sc1i 71.40 (2) Pt4—Si2—Sc1ix 58.86 (2)
Pt1i—Pt3—Sc1i 64.66 (2) Pt4vii—Si2—Sc1ix 58.71 (2)
Pt1ix—Pt3—Sc1i 110.857 (19) Pt3i—Si2—Sc1ix 125.89 (3)
Pt3i—Pt3—Sc1i 59.173 (18) Pt5viii—Si2—Sc1ix 124.62 (3)
Pt5x—Pt3—Sc1i 129.359 (12) Pt5ii—Si2—Sc1ix 119.68 (3)
Sc1ix—Pt3—Sc1i 95.83 (2) Pt1—Si2—Sc1 62.73 (2)
Si2—Pt3—Pt3vi 105.027 (18) Pt2—Si2—Sc1 156.76 (3)
Si1x—Pt3—Pt3vi 104.645 (18) Pt3—Si2—Sc1 57.80 (2)
Si2i—Pt3—Pt3vi 104.72 (2) Pt4—Si2—Sc1 59.46 (2)
Pt1i—Pt3—Pt3vi 56.372 (15) Pt4vii—Si2—Sc1 125.02 (3)
Pt1ix—Pt3—Pt3vi 55.050 (11) Pt3i—Si2—Sc1 58.96 (2)
Pt3i—Pt3—Pt3vi 117.483 (17) Pt5viii—Si2—Sc1 119.68 (3)
Pt5x—Pt3—Pt3vi 117.476 (10) Pt5ii—Si2—Sc1 123.17 (3)
Sc1ix—Pt3—Pt3vi 58.864 (17) Sc1ix—Si2—Sc1 102.58 (3)
Sc1i—Pt3—Pt3vi 58.319 (18) Pt1xiv—Si1—Pt1 180.0
Si2—Pt4—Si2vii 112.11 (2) Pt1xiv—Si1—Pt5xiv 94.835 (17)
Si2—Pt4—Si1x 111.94 (2) Pt1—Si1—Pt5xiv 85.164 (17)
Si2vii—Pt4—Si1x 115.75 (2) Pt1xiv—Si1—Pt5 85.164 (17)
Si2—Pt4—Pt2vii 141.34 (2) Pt1—Si1—Pt5 94.836 (17)
Si2vii—Pt4—Pt2vii 52.90 (2) Pt5xiv—Si1—Pt5 180.0
Si1x—Pt4—Pt2vii 106.223 (6) Pt1xiv—Si1—Pt3ii 66.712 (18)
Si2—Pt4—Pt1x 137.864 (19) Pt1—Si1—Pt3ii 113.289 (18)
Si2vii—Pt4—Pt1x 109.50 (2) Pt5xiv—Si1—Pt3ii 112.702 (17)
Si1x—Pt4—Pt1x 52.367 (17) Pt5—Si1—Pt3ii 67.298 (17)
Pt2vii—Pt4—Pt1x 65.337 (16) Pt1xiv—Si1—Pt3iii 113.288 (19)
Si2—Pt4—Pt4vii 59.17 (2) Pt1—Si1—Pt3iii 66.711 (18)
Si2vii—Pt4—Pt4vii 52.93 (2) Pt5xiv—Si1—Pt3iii 67.298 (17)
Si1x—Pt4—Pt4vii 136.435 (15) Pt5—Si1—Pt3iii 112.702 (17)
Pt2vii—Pt4—Pt4vii 96.511 (14) Pt3ii—Si1—Pt3iii 180.0
Pt1x—Pt4—Pt4vii 161.447 (8) Pt1xiv—Si1—Pt4ii 113.799 (3)
Si2—Pt4—Pt5ix 135.15 (2) Pt1—Si1—Pt4ii 66.202 (3)
Si2vii—Pt4—Pt5ix 61.42 (2) Pt5xiv—Si1—Pt4ii 67.008 (11)
Si1x—Pt4—Pt5ix 54.337 (7) Pt5—Si1—Pt4ii 112.992 (11)
Pt2vii—Pt4—Pt5ix 73.886 (17) Pt3ii—Si1—Pt4ii 64.685 (13)
Pt1x—Pt4—Pt5ix 72.543 (15) Pt3iii—Si1—Pt4ii 115.315 (13)
Pt4vii—Pt4—Pt5ix 99.626 (15) Pt1xiv—Si1—Pt4iii 66.201 (3)
Si2—Pt4—Sc1ix 74.24 (3) Pt1—Si1—Pt4iii 113.798 (4)
Si2vii—Pt4—Sc1ix 74.75 (2) Pt5xiv—Si1—Pt4iii 112.992 (11)
Si1x—Pt4—Sc1ix 75.002 (11) Pt5—Si1—Pt4iii 67.008 (11)
Pt2vii—Pt4—Sc1ix 122.96 (2) Pt3ii—Si1—Pt4iii 115.315 (13)
Pt1x—Pt4—Sc1ix 124.093 (16) Pt3iii—Si1—Pt4iii 64.685 (13)
Pt4vii—Pt4—Sc1ix 61.461 (13) Pt4ii—Si1—Pt4iii 180.0
Pt5ix—Pt4—Sc1ix 61.106 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+1/2; (iv) x+1, y, z+3/2; (v) x+1, y+2, z+1; (vi) x+1, y, z+1/2; (vii) x+3/2, y+3/2, z+1; (viii) x1/2, y+3/2, z1/2; (ix) x, y+1, z1/2; (x) x+3/2, y1/2, z+3/2; (xi) x+1/2, y+3/2, z+1/2; (xii) x+2, y+1, z+2; (xiii) x, y+2, z1/2; (xiv) x+3/2, y+3/2, z+2.
(NaWO4_eiger) top
Crystal data top
O4W·2(H2O)·2(Na) Dx = 3.560 Mg m3
Mr = 329.86 In Kα radiation, λ = 0.5134 Å
Orthorhombic, Pbca Cell parameters from 9793 reflections
a = 8.441 (2) Å θ = 2.5–45.5°
b = 10.569 (2) Å µ = 8.03 mm1
c = 13.799 (3) Å T = 100 K
V = 1231.0 (5) Å3 Block, colourless
Z = 8 0.21 × 0.16 × 0.09 mm
F(000) = 1184
Data collection top
Bruker D8 Venture

diffractometer
12493 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.036
φ and ω scans θmax = 45.6°, θmin = 2.1°
Absorption correction: multi-scan

SADABS-2016/2
h = 2323
Tmin = 0.372, Tmax = 0.614 k = 2928
220831 measured reflections l = 3838
13854 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + 1.1644P]

where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.034 (Δ/σ)max = 0.012
S = 1.26 Δρmax = 3.10 e Å3
13854 reflections Δρmin = 2.92 e Å3
99 parameters Extinction correction: SHELXL-2019/2 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraints Extinction coefficient: 0.00253 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
O1 0.55248 (7) 0.67712 (5) 0.40073 (4) 0.00752 (5)
O2 0.63147 (7) 0.64890 (5) 0.60980 (4) 0.00788 (6)
O3 0.31244 (7) 0.60731 (5) 0.53754 (4) 0.00844 (6)
O4 0.44302 (6) 0.86145 (5) 0.54168 (4) 0.00697 (5)
O5 0.77225 (7) 0.64048 (6) 0.20095 (4) 0.00936 (6)
H5A 0.863 (2) 0.645 (2) 0.1787 (18) 0.024 (6)*
H5B 0.732 (3) 0.708 (2) 0.181 (2) 0.031 (7)*
O6 0.96253 (8) 0.40787 (6) 0.30019 (4) 0.01004 (7)
H6A 0.934 (3) 0.398 (3) 0.2437 (13) 0.032 (7)*
H6B 0.939 (3) 0.3420 (19) 0.3290 (18) 0.027 (6)*
Na1 0.75927 (4) 0.54890 (4) 0.35231 (3) 0.00761 (4)
Na2 0.65562 (4) 0.49554 (3) 0.08566 (3) 0.00759 (4)
W1 0.48650 (2) 0.69837 (2) 0.52276 (2) 0.00406 (1)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
O1 0.00801 (15) 0.00871 (13) 0.00583 (12) 0.00061 (11) 0.00109 (10) 0.00063 (10)
O2 0.00832 (14) 0.00869 (13) 0.00664 (13) 0.00185 (11) 0.00182 (11) 0.00018 (11)
O3 0.00829 (15) 0.00835 (14) 0.00868 (14) 0.00289 (11) 0.00051 (11) 0.00056 (11)
O4 0.00781 (14) 0.00531 (11) 0.00778 (13) 0.00092 (9) 0.00002 (11) 0.00042 (10)
O5 0.00973 (16) 0.01029 (15) 0.00806 (15) 0.00084 (12) 0.00116 (12) 0.00166 (12)
O6 0.01283 (18) 0.00905 (14) 0.00825 (15) 0.00029 (13) 0.00117 (13) 0.00039 (12)
Na1 0.00769 (10) 0.00844 (10) 0.00669 (9) 0.00047 (8) 0.00052 (8) 0.00056 (8)
Na2 0.00785 (10) 0.00739 (9) 0.00754 (10) 0.00066 (8) 0.00025 (8) 0.00027 (8)
W1 0.00440 (1) 0.00386 (1) 0.00392 (1) 0.00001 (1) 0.00014 (1) 0.00009 (1)
Geometric parameters (Å, º) top
O1—W1 1.7877 (6) O5—Na1 2.3046 (8)
O1—Na1 2.3087 (7) O5—Na2 2.4180 (8)
O2—W1 1.7926 (6) O6—Na1 2.3838 (8)
O2—Na2i 2.3815 (7) O6—Na2vii 2.4488 (8)
O3—W1 1.7682 (6) Na1—Na2i 3.3324 (9)
O3—Na1ii 2.3243 (7) Na1—Na2vii 3.4991 (9)
O3—Na2iii 2.4571 (8) Na1—W1 3.6508 (6)
O4—W1 1.7815 (6) Na1—W1viii 3.7128 (6)
O4—Na1iv 2.3331 (7) Na2—Na2ix 3.5354 (9)
O4—Na2v 2.4060 (7) Na2—W1x 3.6409 (7)
O4—Na2vi 2.4234 (7) Na2—W1xi 3.6799 (6)
W1—O1—Na1 125.58 (3) O5—Na2—Na1xii 129.59 (2)
W1—O2—Na2i 127.47 (3) O4x—Na2—Na1xii 90.32 (2)
W1—O3—Na1ii 132.73 (3) O6iii—Na2—Na1xii 135.38 (2)
W1—O3—Na2iii 129.01 (3) O3vii—Na2—Na1xii 44.202 (17)
Na1ii—O3—Na2iii 88.32 (3) O2xii—Na2—Na1iii 142.25 (2)
W1—O4—Na1iv 128.44 (3) O4xi—Na2—Na1iii 86.72 (2)
W1—O4—Na2v 122.29 (3) O5—Na2—Na1iii 97.25 (2)
Na1iv—O4—Na2v 89.35 (3) O4x—Na2—Na1iii 41.646 (17)
W1—O4—Na2vi 119.18 (3) O6iii—Na2—Na1iii 42.881 (19)
Na1iv—O4—Na2vi 94.70 (3) O3vii—Na2—Na1iii 127.36 (2)
Na2v—O4—Na2vi 94.12 (2) Na1xii—Na2—Na1iii 117.725 (12)
Na1—O5—Na2 108.11 (3) O2xii—Na2—Na2ix 132.18 (2)
Na1—O6—Na2vii 92.77 (3) O4xi—Na2—Na2ix 43.134 (16)
O5—Na1—O1 92.97 (3) O5—Na2—Na2ix 136.52 (2)
O5—Na1—O3ii 154.60 (3) O4x—Na2—Na2ix 42.752 (16)
O1—Na1—O3ii 91.76 (3) O6iii—Na2—Na2ix 86.88 (3)
O5—Na1—O4viii 111.48 (3) O3vii—Na2—Na2ix 85.69 (3)
O1—Na1—O4viii 94.75 (3) Na1xii—Na2—Na2ix 61.174 (18)
O3ii—Na1—O4viii 92.96 (3) Na1iii—Na2—Na2ix 56.550 (18)
O5—Na1—O6 87.42 (3) O2xii—Na2—W1x 154.00 (2)
O1—Na1—O6 176.89 (3) O4xi—Na2—W1x 102.33 (2)
O3ii—Na1—O6 86.59 (3) O5—Na2—W1x 75.74 (2)
O4viii—Na1—O6 87.97 (3) O4x—Na2—W1x 25.289 (13)
O5—Na1—Na2i 157.62 (2) O6iii—Na2—W1x 103.21 (2)
O1—Na1—Na2i 88.06 (2) O3vii—Na2—W1x 67.61 (2)
O3ii—Na1—Na2i 47.480 (18) Na1xii—Na2—W1x 88.822 (13)
O4viii—Na1—Na2i 46.219 (17) Na1iii—Na2—W1x 62.628 (10)
O6—Na1—Na2i 92.76 (2) Na2ix—Na2—W1x 61.678 (12)
O5—Na1—Na2vii 104.12 (2) O2xii—Na2—W1xi 75.86 (2)
O1—Na1—Na2vii 138.31 (2) O4xi—Na2—W1xi 24.158 (13)
O3ii—Na1—Na2vii 88.54 (2) O5—Na2—W1xi 160.20 (2)
O4viii—Na1—Na2vii 43.650 (17) O4x—Na2—W1xi 100.90 (2)
O6—Na1—Na2vii 44.348 (19) O6iii—Na2—W1xi 73.84 (2)
Na2i—Na1—Na2vii 62.275 (12) O3vii—Na2—W1xi 107.74 (2)
O5—Na1—W1 115.60 (2) Na1xii—Na2—W1xi 63.713 (11)
O1—Na1—W1 23.467 (14) Na1iii—Na2—W1xi 85.719 (13)
O3ii—Na1—W1 73.85 (2) Na2ix—Na2—W1xi 60.572 (12)
O4viii—Na1—W1 80.77 (2) W1x—Na2—W1xi 122.250 (15)
O6—Na1—W1 156.76 (2) O3—W1—O4 109.79 (3)
Na2i—Na1—W1 64.816 (15) O3—W1—O1 107.41 (3)
Na2vii—Na1—W1 121.007 (17) O4—W1—O1 108.89 (3)
O5—Na1—W1viii 95.40 (2) O3—W1—O2 109.34 (3)
O1—Na1—W1viii 80.44 (2) O4—W1—O2 108.94 (3)
O3ii—Na1—W1viii 109.99 (2) O1—W1—O2 112.45 (3)
O4viii—Na1—W1viii 22.073 (13) O3—W1—Na2vi 141.43 (2)
O6—Na1—W1viii 102.60 (2) O4—W1—Na2vi 35.53 (2)
Na2i—Na1—W1viii 62.703 (12) O1—W1—Na2vi 102.36 (2)
Na2vii—Na1—W1viii 60.557 (12) O2—W1—Na2vi 80.32 (2)
W1—Na1—W1viii 73.464 (16) O3—W1—Na1 111.28 (2)
O2xii—Na2—O4xi 89.18 (2) O4—W1—Na1 130.014 (19)
O2xii—Na2—O5 90.39 (3) O1—W1—Na1 30.949 (19)
O4xi—Na2—O5 174.00 (3) O2—W1—Na1 82.82 (2)
O2xii—Na2—O4x 173.54 (3) Na2vi—W1—Na1 106.903 (14)
O4xi—Na2—O4x 85.89 (2) O3—W1—Na2v 103.92 (2)
O5—Na2—O4x 94.08 (3) O4—W1—Na2v 33.56 (2)
O2xii—Na2—O6iii 99.77 (3) O1—W1—Na2v 79.97 (2)
O4xi—Na2—O6iii 90.95 (3) O2—W1—Na2v 138.061 (19)
O5—Na2—O6iii 95.02 (3) Na2vi—W1—Na2v 57.749 (16)
O4x—Na2—O6iii 84.50 (3) Na1—W1—Na2v 108.241 (14)
O2xii—Na2—O3vii 89.91 (3) O3—W1—Na1iv 84.77 (3)
O4xi—Na2—O3vii 87.96 (3) O4—W1—Na1iv 29.483 (19)
O5—Na2—O3vii 86.06 (3) O1—W1—Na1iv 133.523 (19)
O4x—Na2—O3vii 85.75 (3) O2—W1—Na1iv 104.56 (2)
O6iii—Na2—O3vii 170.24 (3) Na2vi—W1—Na1iv 56.815 (15)
O2xii—Na2—Na1xii 83.231 (19) Na1—W1—Na1iv 159.424 (4)
O4xi—Na2—Na1xii 44.433 (18) Na2v—W1—Na1iv 53.583 (14)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x+1, y+1/2, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x+1, y+1, z; (x) x, y+3/2, z1/2; (xi) x+1, y1/2, z+1/2; (xii) x+3/2, y+1, z1/2.
(NaWO4_photon) top
Crystal data top
O4W·2(H2O)·2(Na) Dx = 3.570 Mg m3
Mr = 329.86 In Kα radiation, λ = 0.5134 Å
Orthorhombic, Pbca Cell parameters from 9893 reflections
a = 8.434 (2) Å θ = 2.5–45.3°
b = 10.553 (2) Å µ = 8.05 mm1
c = 13.792 (3) Å T = 100 K
V = 1227.5 (5) Å3 Block, colourless
Z = 8 0.21 × 0.16 × 0.09 mm
F(000) = 1184
Data collection top
Bruker D8 Venture

diffractometer
12323 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.039
φ and ω scans θmax = 45.3°, θmin = 2.5°
Absorption correction: multi-scan

SADABS-2016/2
h = 2323
Tmin = 0.337, Tmax = 0.614 k = 2929
341446 measured reflections l = 3838
13654 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0133P)2 + 1.2796P]

where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046 (Δ/σ)max = 0.005
S = 1.27 Δρmax = 4.23 e Å3
13654 reflections Δρmin = 4.37 e Å3
99 parameters Extinction correction: SHELXL-2019/2 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraints Extinction coefficient: 0.00849 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
O1 0.55238 (8) 0.67723 (6) 0.40076 (4) 0.00796 (7)
O2 0.63144 (8) 0.64889 (6) 0.60971 (5) 0.00839 (7)
O3 0.31256 (8) 0.60730 (6) 0.53761 (5) 0.00886 (7)
O4 0.44297 (8) 0.86159 (5) 0.54162 (5) 0.00746 (6)
O5 0.77222 (9) 0.64038 (7) 0.20093 (5) 0.00976 (8)
H5A 0.863 (2) 0.645 (3) 0.175 (2) 0.031 (7)*
H5B 0.731 (4) 0.709 (2) 0.181 (2) 0.038 (9)*
O6 0.96254 (10) 0.40791 (7) 0.30024 (5) 0.01046 (8)
H6A 0.936 (3) 0.399 (2) 0.2423 (14) 0.024 (6)*
H6B 0.939 (4) 0.339 (2) 0.327 (2) 0.027 (7)*
Na1 0.75924 (5) 0.54888 (4) 0.35232 (3) 0.00809 (5)
Na2 0.65560 (5) 0.49556 (4) 0.08568 (3) 0.00810 (5)
W1 0.48650 (2) 0.69837 (2) 0.52275 (2) 0.00451 (1)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
O1 0.00874 (18) 0.00928 (16) 0.00585 (14) 0.00069 (14) 0.00106 (12) 0.00047 (12)
O2 0.00870 (17) 0.00918 (17) 0.00728 (15) 0.00187 (14) 0.00191 (13) 0.00026 (13)
O3 0.00891 (18) 0.00831 (17) 0.00937 (17) 0.00291 (14) 0.00045 (14) 0.00056 (14)
O4 0.00856 (17) 0.00547 (13) 0.00835 (16) 0.00084 (12) 0.00003 (13) 0.00054 (12)
O5 0.0101 (2) 0.01049 (19) 0.00868 (17) 0.00074 (15) 0.00122 (14) 0.00170 (15)
O6 0.0135 (2) 0.00931 (18) 0.00862 (17) 0.00028 (17) 0.00117 (16) 0.00055 (15)
Na1 0.00811 (12) 0.00871 (12) 0.00746 (11) 0.00049 (10) 0.00054 (9) 0.00054 (9)
Na2 0.00851 (12) 0.00777 (11) 0.00801 (11) 0.00076 (9) 0.00031 (9) 0.00030 (9)
W1 0.00503 (1) 0.00412 (1) 0.00439 (1) 0.00001 (1) 0.00013 (1) 0.00009 (1)
Geometric parameters (Å, º) top
O1—W1 1.7859 (7) O5—Na2 2.4144 (9)
O1—Na1 2.3075 (8) O6—Na1 2.3810 (9)
O2—W1 1.7903 (7) O6—Na2vii 2.4458 (9)
O2—Na2i 2.3790 (8) Na1—Na2i 3.3310 (9)
O3—W1 1.7657 (7) Na1—Na2vii 3.4961 (10)
O3—Na1ii 2.3212 (8) Na1—W1 3.6477 (7)
O3—Na2iii 2.4566 (9) Na1—W1viii 3.7091 (6)
O4—W1 1.7803 (7) Na1—Na2 3.8215 (10)
O4—Na1iv 2.3311 (8) Na2—Na2ix 3.5333 (10)
O4—Na2v 2.4026 (8) Na2—W1x 3.6359 (7)
O4—Na2vi 2.4203 (8) Na2—W1xi 3.6755 (7)
O5—Na1 2.3030 (9)
W1—O1—Na1 125.54 (3) O4x—Na2—Na1xii 90.28 (2)
W1—O2—Na2i 127.52 (4) O6iii—Na2—Na1xii 135.39 (3)
W1—O3—Na1ii 132.78 (4) O3vii—Na2—Na1xii 44.152 (19)
W1—O3—Na2iii 128.95 (4) O2xii—Na2—Na1iii 142.27 (2)
Na1ii—O3—Na2iii 88.35 (3) O4xi—Na2—Na1iii 86.71 (2)
W1—O4—Na1iv 128.39 (3) O5—Na2—Na1iii 97.28 (2)
W1—O4—Na2v 122.27 (3) O4x—Na2—Na1iii 41.644 (19)
Na1iv—O4—Na2v 89.43 (3) O6iii—Na2—Na1iii 42.86 (2)
W1—O4—Na2vi 119.11 (3) O3vii—Na2—Na1iii 127.40 (2)
Na1iv—O4—Na2vi 94.73 (3) Na1xii—Na2—Na1iii 117.722 (14)
Na2v—O4—Na2vi 94.21 (3) O2xii—Na2—Na2ix 132.15 (3)
Na1—O5—Na2 108.18 (3) O4xi—Na2—Na2ix 43.092 (19)
Na1—O6—Na2vii 92.82 (3) O5—Na2—Na2ix 136.57 (3)
O5—Na1—O1 93.00 (3) O4x—Na2—Na2ix 42.702 (19)
O5—Na1—O3ii 154.57 (3) O6iii—Na2—Na2ix 86.89 (3)
O1—Na1—O3ii 91.73 (3) O3vii—Na2—Na2ix 85.67 (3)
O5—Na1—O4viii 111.55 (3) Na1xii—Na2—Na2ix 61.154 (19)
O1—Na1—O4viii 94.76 (3) Na1iii—Na2—Na2ix 56.568 (19)
O3ii—Na1—O4viii 92.91 (3) O2xii—Na2—W1x 153.98 (2)
O5—Na1—O6 87.38 (3) O4xi—Na2—W1x 102.27 (2)
O1—Na1—O6 176.93 (3) O5—Na2—W1x 75.80 (2)
O3ii—Na1—O6 86.65 (3) O4x—Na2—W1x 25.326 (15)
O4viii—Na1—O6 87.93 (3) O6iii—Na2—W1x 103.20 (2)
O5—Na1—Na2i 157.64 (3) O3vii—Na2—W1x 67.65 (2)
O1—Na1—Na2i 88.05 (2) Na1xii—Na2—W1x 88.796 (14)
O3ii—Na1—Na2i 47.49 (2) Na1iii—Na2—W1x 62.636 (11)
O4viii—Na1—Na2i 46.16 (2) Na2ix—Na2—W1x 61.665 (13)
O6—Na1—Na2i 92.76 (2) O2xii—Na2—W1xi 75.88 (2)
O5—Na1—Na2vii 104.11 (2) O4xi—Na2—W1xi 24.177 (15)
O1—Na1—Na2vii 138.29 (3) O5—Na2—W1xi 160.19 (2)
O3ii—Na1—Na2vii 88.58 (2) O4x—Na2—W1xi 100.82 (2)
O4viii—Na1—Na2vii 43.62 (2) O6iii—Na2—W1xi 73.86 (2)
O6—Na1—Na2vii 44.33 (2) O3vii—Na2—W1xi 107.68 (2)
Na2i—Na1—Na2vii 62.279 (14) Na1xii—Na2—W1xi 63.705 (12)
O5—Na1—W1 115.65 (3) Na1iii—Na2—W1xi 85.702 (14)
O1—Na1—W1 23.476 (16) Na2ix—Na2—W1xi 60.543 (13)
O3ii—Na1—W1 73.81 (2) W1x—Na2—W1xi 122.207 (17)
O4viii—Na1—W1 80.76 (3) O2xii—Na2—Na1 77.74 (2)
O6—Na1—W1 156.74 (2) O4xi—Na2—Na1 150.34 (2)
Na2i—Na1—W1 64.797 (16) O5—Na2—Na1 34.928 (19)
Na2vii—Na1—W1 120.995 (18) O4x—Na2—Na1 108.63 (2)
O5—Na1—W1viii 95.46 (3) O6iii—Na2—Na1 65.73 (2)
O1—Na1—W1viii 80.45 (2) O3vii—Na2—Na1 118.18 (2)
O3ii—Na1—W1viii 109.97 (3) Na1xii—Na2—Na1 154.322 (16)
O4viii—Na1—W1viii 22.099 (16) Na1iii—Na2—Na1 87.688 (14)
O6—Na1—W1viii 102.55 (3) Na2ix—Na2—Na1 144.07 (2)
Na2i—Na1—W1viii 62.672 (13) W1x—Na2—Na1 100.874 (13)
Na2vii—Na1—W1viii 60.527 (13) W1xi—Na2—Na1 126.282 (14)
W1—Na1—W1viii 73.470 (16) O3—W1—O4 109.77 (3)
O5—Na1—Na2 36.89 (2) O3—W1—O1 107.45 (3)
O1—Na1—Na2 101.08 (2) O4—W1—O1 108.83 (3)
O3ii—Na1—Na2 117.72 (3) O3—W1—O2 109.32 (3)
O4viii—Na1—Na2 144.65 (2) O4—W1—O2 108.97 (3)
O6—Na1—Na2 77.44 (2) O1—W1—O2 112.47 (3)
Na2i—Na1—Na2 163.422 (14) O3—W1—Na2vi 141.42 (2)
Na2vii—Na1—Na2 115.491 (15) O4—W1—Na2vi 35.56 (2)
W1—Na1—Na2 122.654 (17) O1—W1—Na2vi 102.35 (2)
W1viii—Na1—Na2 132.153 (14) O2—W1—Na2vi 80.29 (2)
O2xii—Na2—O4xi 89.20 (3) O3—W1—Na1 111.30 (3)
O2xii—Na2—O5 90.36 (3) O4—W1—Na1 129.99 (2)
O4xi—Na2—O5 173.99 (3) O1—W1—Na1 30.98 (2)
O2xii—Na2—O4x 173.46 (3) O2—W1—Na1 82.82 (3)
O4xi—Na2—O4x 85.79 (3) Na2vi—W1—Na1 106.899 (14)
O5—Na2—O4x 94.18 (3) O3—W1—Na2v 103.93 (3)
O2xii—Na2—O6iii 99.83 (3) O4—W1—Na2v 33.55 (2)
O4xi—Na2—O6iii 90.99 (3) O1—W1—Na2v 79.90 (2)
O5—Na2—O6iii 95.00 (3) O2—W1—Na2v 138.08 (2)
O4x—Na2—O6iii 84.48 (3) Na2vi—W1—Na2v 57.794 (17)
O2xii—Na2—O3vii 89.84 (3) Na1—W1—Na2v 108.207 (15)
O4xi—Na2—O3vii 87.88 (3) O3—W1—Na1iv 84.73 (3)
O5—Na2—O3vii 86.12 (3) O4—W1—Na1iv 29.51 (2)
O4x—Na2—O3vii 85.78 (3) O1—W1—Na1iv 133.49 (2)
O6iii—Na2—O3vii 170.26 (3) O2—W1—Na1iv 104.56 (3)
O2xii—Na2—Na1xii 83.20 (2) Na2vi—W1—Na1iv 56.836 (16)
O4xi—Na2—Na1xii 44.41 (2) Na1—W1—Na1iv 159.433 (5)
O5—Na2—Na1xii 129.60 (3) Na2v—W1—Na1iv 53.622 (15)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x+1, y+1/2, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x+1, y+1, z; (x) x, y+3/2, z1/2; (xi) x+1, y1/2, z+1/2; (xii) x+3/2, y+1, z1/2.
(LAla_eiger) top
Crystal data top
C3H7NO2 Dx = 1.397 Mg m3
Mr = 89.10 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9614 reflections
a = 5.789 (2) Å θ = 2.4–33.5°
b = 5.958 (2) Å µ = 0.06 mm1
c = 12.286 (3) Å T = 100 K
V = 423.8 (2) Å3 Block, colourless
Z = 4 0.21 × 0.16 × 0.13 mm
F(000) = 192
Data collection top
Bruker D8 Venture

diffractometer
4437 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.037
φ and ω scans θmax = 34.8°, θmin = 2.4°
Absorption correction: multi-scan

SADABS-2016/2
h = 1212
Tmin = 0.940, Tmax = 0.994 k = 1313
35004 measured reflections l = 2725
4857 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full Only H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0447P)2]

where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.56 e Å3
4857 reflections Δρmin = 0.15 e Å3
64 parameters Absolute structure: Flack x determined using 1817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints Absolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
C1 0.69674 (8) 0.26469 (8) 0.40906 (4) 0.01683 (7)
H1A 0.580859 0.148300 0.395078 0.023 (2)*
H1B 0.691909 0.307365 0.486065 0.027 (3)*
H1C 0.850563 0.206708 0.391219 0.026 (2)*
C2 0.64520 (6) 0.46959 (6) 0.33879 (3) 0.01110 (5)
H2 0.659461 0.425843 0.260495 0.022 (2)*
C3 0.39951 (6) 0.55621 (6) 0.35897 (3) 0.01090 (5)
N1 0.81603 (6) 0.64965 (6) 0.36229 (3) 0.01242 (5)
H1D 0.961406 0.596119 0.351323 0.032 (3)*
H1E 0.800879 0.694740 0.432693 0.028 (3)*
H1F 0.790333 0.768268 0.317223 0.020 (2)*
O1 0.23869 (5) 0.44398 (6) 0.31556 (3) 0.01605 (5)
O2 0.37448 (6) 0.72777 (6) 0.41611 (3) 0.01625 (6)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
C1 0.01296 (13) 0.01584 (14) 0.02170 (16) 0.00139 (11) 0.00057 (11) 0.00343 (12)
C2 0.00797 (10) 0.01378 (11) 0.01154 (10) 0.00058 (9) 0.00003 (7) 0.00141 (8)
C3 0.00801 (9) 0.01426 (11) 0.01044 (9) 0.00092 (9) 0.00008 (8) 0.00020 (9)
N1 0.00850 (9) 0.01484 (11) 0.01391 (10) 0.00059 (8) 0.00000 (8) 0.00071 (9)
O1 0.00842 (9) 0.02080 (13) 0.01893 (11) 0.00103 (9) 0.00120 (8) 0.00442 (10)
O2 0.01338 (11) 0.01844 (12) 0.01694 (11) 0.00226 (10) 0.00131 (9) 0.00566 (9)
Geometric parameters (Å, º) top
C1—C2 1.5248 (7) C3—O2 1.2485 (6)
C2—N1 1.4874 (6) C3—O1 1.2642 (5)
C2—C3 1.5332 (7)
N1—C2—C1 109.72 (4) O2—C3—O1 125.79 (4)
N1—C2—C3 110.04 (4) O2—C3—C2 118.30 (3)
C1—C2—C3 111.06 (3) O1—C3—C2 115.91 (4)
(LAla_photon) top
Crystal data top
C3H7NO2 Dx = 1.401 Mg m3
Mr = 89.10 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9772 reflections
a = 5.784 (2) Å θ = 2.8–34.0°
b = 5.953 (2) Å µ = 0.06 mm1
c = 12.272 (3) Å T = 100 K
V = 422.6 (2) Å3 Block, colourless
Z = 4 0.21 × 0.16 × 0.13 mm
F(000) = 192
Data collection top
Bruker D8 Venture

diffractometer
4569 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.055
φ and ω scans θmax = 34.8°, θmin = 2.4°
Absorption correction: multi-scan

SADABS-2016/2
h = 1212
Tmin = 0.897, Tmax = 0.994 k = 1313
89949 measured reflections l = 2427
4857 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full Only H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0529P)2]

where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.52 e Å3
4857 reflections Δρmin = 0.20 e Å3
64 parameters Absolute structure: Flack x determined using 1894 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints Absolute structure parameter: 0.3 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
C1 0.69677 (7) 0.26466 (7) 0.40908 (4) 0.01645 (6)
H1A 0.579897 0.148750 0.395604 0.023 (2)*
H1B 0.693471 0.307648 0.486152 0.025 (2)*
H1C 0.850090 0.205742 0.390691 0.025 (2)*
C2 0.64523 (5) 0.46959 (6) 0.33882 (3) 0.01079 (5)
H2 0.659471 0.425823 0.260434 0.020 (2)*
C3 0.39954 (5) 0.55629 (6) 0.35900 (3) 0.01061 (5)
N1 0.81607 (5) 0.64975 (5) 0.36230 (3) 0.01214 (5)
H1D 0.961578 0.596198 0.351308 0.030 (3)*
H1E 0.800935 0.694882 0.432787 0.025 (2)*
H1F 0.790295 0.768444 0.317182 0.019 (2)*
O1 0.23863 (5) 0.44396 (6) 0.31556 (3) 0.01580 (5)
O2 0.37445 (6) 0.72779 (5) 0.41611 (3) 0.01590 (5)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
C1 0.01282 (12) 0.01541 (13) 0.02113 (15) 0.00153 (10) 0.00065 (11) 0.00349 (11)
C2 0.00792 (9) 0.01349 (10) 0.01098 (9) 0.00059 (8) 0.00005 (7) 0.00125 (8)
C3 0.00785 (8) 0.01397 (10) 0.01002 (9) 0.00090 (8) 0.00008 (7) 0.00032 (8)
N1 0.00843 (8) 0.01465 (10) 0.01333 (9) 0.00056 (7) 0.00002 (8) 0.00074 (8)
O1 0.00843 (8) 0.02032 (12) 0.01863 (11) 0.00100 (8) 0.00138 (8) 0.00454 (10)
O2 0.01313 (10) 0.01827 (11) 0.01631 (10) 0.00227 (8) 0.00137 (8) 0.00580 (9)
Geometric parameters (Å, º) top
C1—C2 1.5234 (6) C3—O2 1.2468 (5)
C2—N1 1.4865 (6) C3—O1 1.2639 (5)
C2—C3 1.5320 (6)
N1—C2—C1 109.75 (4) O2—C3—O1 125.77 (4)
N1—C2—C3 110.01 (4) O2—C3—C2 118.34 (3)
C1—C2—C3 111.09 (3) O1—C3—C2 115.89 (4)
(Ylid_HAR_Ag_Photon) top
Crystal data top
C11H10O2S Dx = 1.43 Mg m3
Mr = 206.25 Ag Kα radiation, λ = 0.56086 Å
Orthorhombic, P212121 Cell parameters from 9990 reflections
a = 5.854 (2) Å θ = 2.5–38.5°
b = 8.929 (2) Å µ = 0.16 mm1
c = 18.328 (3) Å T = 110 K
V = 958.0 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker Smart APEX II Quazar

diffractometer
9920 reflections with I > 2σ(I)
Radiation source: Incoatec Microsource Rint = 0.024
φ and ω scans θmax = 38.6°, θmin = 2.0°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.918, Tmax = 0.965 k = 1918
142991 measured reflections l = 4040
10713 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.010 Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2)]
wR(F2) = 0.013 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.08 e Å3
10713 reflections Δρmin = 0.19 e Å3
217 parameters Absolute structure: Flack x determined using 4148 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints Absolute structure parameter: 0.020 (7)
Special details top

Geometry. All esds are estimated using the full variance-covariance matrix. Correlations between cell parameters are taken into account in the calculation of derivatives used for the error propagation to the esds of U(iso), distances and angles. Otherwise, the esds of the cell parameters are assumed to be independent.

Refinement. - Structure optimisation was done using derivatives calculated with the python package JAX and BFGS minimisation in scipy.optimize.minimize - Frozen core density was integrated separately on a spherical grid and added to the partitioned valence density - Core density was always fully assigned to the respective atom - Refinement was done using structure factors derived from theoretically calculated densities - Density calculation was done with ASE/GPAW using the following settings xc: SCAN txt: xharpy_output/gpaw.txt mode: fd h: 0.16 gridinterpolation: 4 symm_equiv: once convergence: density: 1e-07 kpts: size: (1, 1, 1) gamma: True symmetry: symmorphic: False nbands: -2 save_file: xharpy_output/gpaw_result.gpw - Afterwards density was interpolated on a rectangular grid and partitioned according to the Hirshfeld scheme, using GPAWs build-in routines. - Atomic form factors were calculated using FFT from the numpy package

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.188599 (5) 0.686693 (3) 0.259482 (1) 0.016159 (5)
O1 0.154535 (15) 0.410652 (9) 0.370459 (5) 0.021986 (16)
O2 0.675148 (14) 0.804714 (9) 0.321955 (4) 0.021080 (15)
C1 0.34837 (3) 0.678344 (16) 0.175956 (7) 0.02475 (2)
H1A 0.3637 (4) 0.56041 (19) 0.16188 (10) 0.0472 (6)
H1B 0.5144 (3) 0.7308 (2) 0.18476 (11) 0.0441 (6)
H1C 0.2480 (4) 0.7373 (2) 0.13528 (10) 0.0515 (6)
C2 0.17271 (2) 0.885185 (12) 0.270975 (7) 0.020434 (19)
H2A 0.0791 (4) 0.9044 (2) 0.32134 (11) 0.0456 (5)
H2B 0.0727 (3) 0.9257 (2) 0.22441 (11) 0.0417 (6)
H2C 0.3446 (4) 0.9302 (2) 0.27218 (11) 0.0466 (5)
C3 0.366551 (18) 0.626005 (12) 0.327255 (6) 0.016372 (17)
C4 0.311275 (19) 0.501944 (11) 0.374370 (5) 0.016528 (16)
C5 0.493568 (19) 0.502193 (12) 0.432246 (6) 0.017152 (18)
C6 0.51722 (2) 0.411943 (13) 0.493102 (6) 0.02144 (2)
H6 0.3947 (3) 0.32354 (18) 0.50502 (10) 0.0419 (5)
C7 0.70475 (2) 0.438071 (14) 0.539017 (6) 0.02392 (2)
H7 0.7275 (3) 0.3675 (2) 0.58727 (9) 0.0449 (5)
C8 0.86193 (2) 0.551048 (14) 0.523454 (7) 0.02347 (2)
H8 1.0073 (3) 0.56718 (19) 0.55968 (10) 0.0451 (6)
C9 0.83569 (2) 0.642634 (13) 0.461896 (6) 0.02045 (2)
H9 0.9568 (3) 0.7317 (2) 0.44991 (10) 0.0383 (5)
C10 0.650059 (18) 0.616113 (12) 0.417180 (6) 0.016789 (17)
C11 0.574503 (17) 0.697481 (12) 0.349700 (6) 0.016144 (16)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.016879 (9) 0.014625 (10) 0.016971 (10) 0.001413 (9) 0.002623 (9) 0.001064 (8)
O1 0.02439 (4) 0.01904 (4) 0.02252 (4) 0.00569 (3) 0.00333 (3) 0.00300 (3)
O2 0.01840 (3) 0.02134 (4) 0.02351 (4) 0.00348 (3) 0.00064 (3) 0.00442 (3)
C1 0.03468 (6) 0.02234 (5) 0.01722 (4) 0.00198 (5) 0.00177 (4) 0.00077 (4)
H1A 0.0733 (17) 0.0290 (10) 0.0393 (12) 0.0078 (11) 0.0035 (12) 0.0107 (9)
H1B 0.0353 (14) 0.0529 (14) 0.0441 (13) 0.0051 (11) 0.0046 (11) 0.0003 (11)
H1C 0.0775 (18) 0.0523 (13) 0.0247 (11) 0.0089 (12) 0.0089 (12) 0.0134 (10)
C2 0.02034 (5) 0.01620 (4) 0.02477 (5) 0.00195 (4) 0.00301 (4) 0.00012 (4)
H2A 0.0502 (14) 0.0421 (13) 0.0446 (13) 0.0099 (11) 0.0093 (12) 0.0028 (11)
H2B 0.0483 (14) 0.0330 (11) 0.0438 (13) 0.0093 (11) 0.0196 (11) 0.0021 (10)
H2C 0.0321 (12) 0.0378 (12) 0.0699 (15) 0.0080 (11) 0.0089 (11) 0.0038 (11)
C3 0.01684 (4) 0.01593 (4) 0.01635 (4) 0.00101 (3) 0.00176 (3) 0.00180 (3)
C4 0.01886 (4) 0.01471 (4) 0.01601 (4) 0.00090 (4) 0.00109 (4) 0.00067 (3)
C5 0.02082 (5) 0.01521 (4) 0.01542 (4) 0.00039 (4) 0.00186 (4) 0.00057 (3)
C6 0.02954 (6) 0.01770 (5) 0.01706 (4) 0.00051 (4) 0.00371 (4) 0.00210 (4)
H6 0.0539 (14) 0.0347 (10) 0.0371 (11) 0.0123 (11) 0.0047 (11) 0.0116 (10)
C7 0.03315 (6) 0.02047 (5) 0.01815 (5) 0.00258 (5) 0.00688 (5) 0.00102 (4)
H7 0.0629 (14) 0.0377 (11) 0.0342 (10) 0.0044 (11) 0.0201 (11) 0.0156 (9)
C8 0.02684 (6) 0.02294 (5) 0.02062 (5) 0.00296 (4) 0.00804 (4) 0.00097 (4)
H8 0.0429 (15) 0.0502 (13) 0.0422 (12) 0.0018 (12) 0.0222 (11) 0.0018 (10)
C9 0.01961 (5) 0.02132 (5) 0.02043 (5) 0.00088 (4) 0.00460 (4) 0.00065 (4)
H9 0.0342 (11) 0.0428 (12) 0.0379 (12) 0.0114 (10) 0.0027 (10) 0.0021 (10)
C10 0.01711 (4) 0.01682 (4) 0.01644 (4) 0.00096 (3) 0.00195 (3) 0.00014 (3)
C11 0.01533 (4) 0.01630 (4) 0.01680 (4) 0.00012 (3) 0.00044 (3) 0.00090 (4)
Geometric parameters (Å, º) top
S1—C3 1.7093 (3) C4—C5 1.5047 (3)
S1—C2 1.7872 (4) C5—C6 1.3830 (2)
S1—C1 1.7955 (3) C5—C10 1.3965 (3)
O1—C4 1.2294 (3) C6—C7 1.4028 (4)
O2—C11 1.2339 (2) C6—H6 1.0889 (18)
C1—H1A 1.0879 (17) C7—C8 1.3948 (3)
C1—H1B 1.091 (2) C7—H7 1.0941 (16)
C1—H1C 1.0856 (19) C8—C9 1.4019 (2)
C2—H2A 1.0871 (19) C8—H8 1.0890 (17)
C2—H2B 1.0965 (19) C9—C10 1.3815 (3)
C2—H2C 1.084 (2) C9—H9 1.0876 (17)
C3—C11 1.4347 (4) C10—C11 1.5010 (2)
C3—C4 1.4413 (3)
C3—S1—C2 105.096 (8) C6—C5—C10 121.214 (14)
C3—S1—C1 106.80 (2) C6—C5—C4 129.695 (13)
C2—S1—C1 99.717 (6) C10—C5—C4 109.083 (17)
S1—C1—H1A 106.59 (11) C5—C6—C7 117.727 (14)
S1—C1—H1B 108.67 (11) C5—C6—H6 121.22 (10)
H1A—C1—H1B 112.14 (15) C7—C6—H6 121.06 (10)
S1—C1—H1C 106.46 (12) C8—C7—C6 120.920 (16)
H1A—C1—H1C 110.58 (14) C8—C7—H7 120.11 (10)
H1B—C1—H1C 112.07 (16) C6—C7—H7 118.97 (10)
S1—C2—H2A 106.42 (10) C7—C8—C9 120.943 (15)
S1—C2—H2B 105.28 (9) C7—C8—H8 119.11 (9)
H2A—C2—H2B 109.85 (14) C9—C8—H8 119.95 (9)
S1—C2—H2C 108.79 (10) C10—C9—C8 117.620 (14)
H2A—C2—H2C 113.09 (15) C10—C9—H9 121.22 (10)
H2B—C2—H2C 112.90 (15) C8—C9—H9 121.16 (10)
C11—C3—C4 111.135 (12) C9—C10—C5 121.571 (16)
C11—C3—S1 125.764 (15) C9—C10—C11 129.612 (12)
C4—C3—S1 122.833 (15) C5—C10—C11 108.795 (16)
O1—C4—C3 129.955 (12) O2—C11—C3 129.209 (13)
O1—C4—C5 124.848 (15) O2—C11—C10 125.062 (15)
C3—C4—C5 105.189 (14) C3—C11—C10 105.721 (13)
(Ylid_HAR_In_Eiger) top
Crystal data top
C11H10O2S Dx = 1.427 Mg m3
Mr = 206.25 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9386 reflections
a = 5.860 (2) Å θ = 2.3–34.2°
b = 8.933 (2) Å µ = 0.13 mm1
c = 18.341 (3) Å T = 110 K
V = 960.1 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker D8 Venture

diffractometer
10109 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.024
φ and ω scans θmax = 34.8°, θmin = 1.6°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.932, Tmax = 0.965 k = 1919
178941 measured reflections l = 4040
11000 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.008 Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2)]
wR(F2) = 0.012 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.09 e Å3
11000 reflections Δρmin = 0.12 e Å3
217 parameters Absolute structure: Flack x determined using 4275 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints Absolute structure parameter: 0.016 (8)
Special details top

Geometry. All esds are estimated using the full variance-covariance matrix. Correlations between cell parameters are taken into account in the calculation of derivatives used for the error propagation to the esds of U(iso), distances and angles. Otherwise, the esds of the cell parameters are assumed to be independent.

Refinement. - Structure optimisation was done using derivatives calculated with the python package JAX and BFGS minimisation in scipy.optimize.minimize - Frozen core density was integrated separately on a spherical grid and added to the partitioned valence density - Core density was always fully assigned to the respective atom - Refinement was done using structure factors derived from theoretically calculated densities - Density calculation was done with ASE/GPAW using the following settings xc: SCAN txt: xharpy_output/gpaw.txt mode: fd h: 0.16 gridinterpolation: 4 symm_equiv: once convergence: density: 1e-07 kpts: size: (1, 1, 1) gamma: True symmetry: symmorphic: False nbands: -2 save_file: xharpy_output/gpaw_result.gpw - Afterwards density was interpolated on a rectangular grid and partitioned according to the Hirshfeld scheme, using GPAWs build-in routines. - Atomic form factors were calculated using FFT from the numpy package

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.188582 (4) 0.686756 (3) 0.259482 (1) 0.018952 (5)
O1 0.154550 (14) 0.410643 (8) 0.370430 (4) 0.024833 (15)
O2 0.675197 (13) 0.804744 (8) 0.321936 (4) 0.023896 (14)
C1 0.34835 (2) 0.678365 (14) 0.175936 (6) 0.02759 (2)
H1A 0.3635 (4) 0.56044 (18) 0.16206 (10) 0.0488 (6)
H1B 0.5142 (3) 0.7296 (2) 0.18478 (11) 0.0471 (5)
H1C 0.2477 (4) 0.7374 (2) 0.13520 (9) 0.0539 (6)
C2 0.17278 (2) 0.885247 (11) 0.270985 (6) 0.023240 (18)
H2A 0.0808 (3) 0.9043 (2) 0.32167 (10) 0.0471 (5)
H2B 0.0742 (3) 0.9261 (2) 0.22460 (10) 0.0454 (5)
H2C 0.3443 (3) 0.9302 (2) 0.27230 (11) 0.0468 (5)
C3 0.366561 (17) 0.626058 (11) 0.327240 (5) 0.019231 (16)
C4 0.311237 (18) 0.501962 (10) 0.374347 (5) 0.019346 (15)
C5 0.493598 (18) 0.502202 (11) 0.432233 (5) 0.019976 (17)
C6 0.51726 (2) 0.411937 (12) 0.493094 (6) 0.02429 (2)
H6 0.3953 (3) 0.32278 (19) 0.50472 (10) 0.0440 (5)
C7 0.70465 (2) 0.438054 (12) 0.539027 (6) 0.02669 (2)
H7 0.7280 (3) 0.3682 (2) 0.58711 (9) 0.0487 (5)
C8 0.86200 (2) 0.551082 (13) 0.523436 (6) 0.02625 (2)
H8 1.0086 (3) 0.5675 (2) 0.55937 (10) 0.0465 (5)
C9 0.835799 (19) 0.642663 (12) 0.461898 (6) 0.023281 (18)
H9 0.9571 (3) 0.7323 (2) 0.45007 (10) 0.0403 (5)
C10 0.650157 (17) 0.616117 (11) 0.417185 (5) 0.019616 (16)
C11 0.574558 (17) 0.697539 (11) 0.349698 (5) 0.018989 (15)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.019527 (9) 0.017640 (9) 0.019691 (9) 0.001378 (8) 0.002582 (8) 0.001068 (8)
O1 0.02710 (4) 0.02207 (3) 0.02534 (3) 0.00565 (3) 0.00328 (3) 0.00292 (3)
O2 0.02118 (3) 0.02425 (3) 0.02626 (3) 0.00346 (3) 0.00064 (3) 0.00432 (3)
C1 0.03743 (6) 0.02541 (5) 0.01994 (4) 0.00208 (5) 0.00165 (4) 0.00084 (4)
H1A 0.0771 (16) 0.0286 (10) 0.0408 (11) 0.0082 (11) 0.0045 (11) 0.0100 (9)
H1B 0.0413 (14) 0.0569 (14) 0.0432 (12) 0.0059 (11) 0.0054 (10) 0.0010 (11)
H1C 0.0769 (17) 0.0581 (13) 0.0268 (10) 0.0133 (12) 0.0036 (11) 0.0137 (10)
C2 0.02309 (4) 0.01920 (4) 0.02742 (5) 0.00185 (4) 0.00293 (4) 0.00022 (3)
H2A 0.0542 (13) 0.0439 (12) 0.0432 (12) 0.0085 (11) 0.0104 (11) 0.0039 (10)
H2B 0.0523 (13) 0.0330 (10) 0.0509 (13) 0.0084 (10) 0.0178 (11) 0.0065 (10)
H2C 0.0360 (11) 0.0371 (11) 0.0675 (13) 0.0094 (10) 0.0042 (10) 0.0025 (10)
C3 0.01958 (4) 0.01892 (4) 0.01920 (4) 0.00100 (3) 0.00165 (3) 0.00179 (3)
C4 0.02161 (4) 0.01767 (3) 0.01876 (4) 0.00088 (3) 0.00102 (3) 0.00068 (3)
C5 0.02362 (4) 0.01827 (4) 0.01804 (4) 0.00047 (3) 0.00183 (3) 0.00056 (3)
C6 0.03234 (5) 0.02081 (4) 0.01973 (4) 0.00047 (4) 0.00355 (4) 0.00207 (3)
H6 0.0545 (13) 0.0374 (10) 0.0402 (11) 0.0150 (10) 0.0071 (10) 0.0101 (10)
C7 0.03591 (6) 0.02350 (4) 0.02067 (4) 0.00262 (4) 0.00678 (4) 0.00095 (3)
H7 0.0666 (14) 0.0439 (11) 0.0357 (10) 0.0001 (11) 0.0154 (11) 0.0144 (9)
C8 0.02965 (5) 0.02585 (4) 0.02326 (5) 0.00297 (4) 0.00793 (4) 0.00096 (4)
H8 0.0443 (14) 0.0518 (12) 0.0432 (12) 0.0004 (12) 0.0207 (10) 0.0001 (10)
C9 0.02245 (4) 0.02430 (4) 0.02309 (4) 0.00083 (4) 0.00455 (4) 0.00060 (3)
H9 0.0374 (11) 0.0425 (11) 0.0410 (11) 0.0127 (10) 0.0047 (10) 0.0053 (9)
C10 0.01990 (4) 0.01969 (4) 0.01925 (4) 0.00104 (3) 0.00195 (3) 0.00019 (3)
C11 0.01821 (4) 0.01926 (4) 0.01949 (4) 0.00011 (3) 0.00048 (3) 0.00085 (3)
Geometric parameters (Å, º) top
S1—C3 1.7106 (3) C4—C5 1.5064 (3)
S1—C2 1.7880 (4) C5—C6 1.3840 (2)
S1—C1 1.7973 (3) C5—C10 1.3976 (3)
O1—C4 1.2303 (3) C6—C7 1.4036 (3)
O2—C11 1.2346 (2) C6—H6 1.0910 (18)
C1—H1A 1.0874 (16) C7—C8 1.3969 (3)
C1—H1B 1.0864 (19) C7—H7 1.0890 (16)
C1—H1C 1.0882 (18) C8—C9 1.4024 (2)
C2—H2A 1.0880 (18) C8—H8 1.0924 (17)
C2—H2B 1.0912 (19) C9—C10 1.3828 (3)
C2—H2C 1.0823 (19) C9—H9 1.0926 (17)
C3—C11 1.4363 (4) C10—C11 1.5025 (2)
C3—C4 1.4424 (2)
C3—S1—C2 105.081 (8) C6—C5—C10 121.179 (14)
C3—S1—C1 106.77 (2) C6—C5—C4 129.694 (12)
C2—S1—C1 99.726 (6) C10—C5—C4 109.119 (16)
S1—C1—H1A 106.40 (10) C5—C6—C7 117.752 (13)
S1—C1—H1B 108.74 (11) C5—C6—H6 121.16 (10)
H1A—C1—H1B 111.73 (15) C7—C6—H6 121.09 (10)
S1—C1—H1C 106.44 (11) C8—C7—C6 120.910 (16)
H1A—C1—H1C 110.67 (14) C8—C7—H7 119.80 (10)
H1B—C1—H1C 112.52 (16) C6—C7—H7 119.28 (10)
S1—C2—H2A 106.33 (10) C7—C8—C9 120.937 (15)
S1—C2—H2B 105.50 (10) C7—C8—H8 119.49 (9)
H2A—C2—H2B 110.59 (15) C9—C8—H8 119.57 (9)
S1—C2—H2C 108.80 (10) C10—C9—C8 117.606 (13)
H2A—C2—H2C 112.53 (15) C10—C9—H9 121.32 (10)
H2B—C2—H2C 112.62 (15) C8—C9—H9 121.07 (10)
C11—C3—C4 111.139 (12) C9—C10—C5 121.611 (15)
C11—C3—S1 125.790 (14) C9—C10—C11 129.607 (11)
C4—C3—S1 122.802 (15) C5—C10—C11 108.760 (15)
O1—C4—C3 129.967 (12) O2—C11—C3 129.193 (12)
O1—C4—C5 124.857 (15) O2—C11—C10 125.061 (15)
C3—C4—C5 105.167 (14) C3—C11—C10 105.740 (13)
(Ylid_HAR_In_Photon) top
Crystal data top
C11H10O2S Dx = 1.432 Mg m3
Mr = 206.25 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9406 reflections
a = 5.850 (2) Å θ = 2.3–34.6°
b = 8.924 (2) Å µ = 0.13 mm1
c = 18.321 (3) Å T = 110 K
V = 956.5 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker D8 Venture

diffractometer
10084 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.038
φ and ω scans θmax = 34.8°, θmin = 1.6°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.930, Tmax = 0.965 k = 1919
171281 measured reflections l = 4040
10873 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.012 Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2)]
wR(F2) = 0.017 (Δ/σ)max < 0.001
S = 1.19 Δρmax = 0.11 e Å3
10873 reflections Δρmin = 0.21 e Å3
217 parameters Absolute structure: Flack x determined using 4270 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraints Absolute structure parameter: 0.024 (10)
Special details top

Geometry. All esds are estimated using the full variance-covariance matrix. Correlations between cell parameters are taken into account in the calculation of derivatives used for the error propagation to the esds of U(iso), distances and angles. Otherwise, the esds of the cell parameters are assumed to be independent.

Refinement. - Structure optimisation was done using derivatives calculated with the python package JAX and BFGS minimisation in scipy.optimize.minimize - Frozen core density was integrated separately on a spherical grid and added to the partitioned valence density - Core density was always fully assigned to the respective atom - Refinement was done using structure factors derived from theoretically calculated densities - Density calculation was done with ASE/GPAW using the following settings xc: SCAN txt: xharpy_output/gpaw.txt mode: fd h: 0.16 gridinterpolation: 4 symm_equiv: once convergence: density: 1e-07 kpts: size: (1, 1, 1) gamma: True symmetry: symmorphic: False nbands: -2 save_file: xharpy_output/gpaw_result.gpw - Afterwards density was interpolated on a rectangular grid and partitioned according to the Hirshfeld scheme, using GPAWs build-in routines. - Atomic form factors were calculated using FFT from the numpy package

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.188556 (6) 0.686795 (4) 0.259482 (2) 0.015755 (7)
O1 0.15456 (2) 0.410650 (12) 0.370442 (6) 0.02153 (2)
O2 0.675308 (19) 0.804785 (11) 0.321924 (6) 0.020688 (19)
C1 0.34829 (3) 0.67829 (2) 0.175945 (9) 0.02429 (3)
H1A 0.3626 (5) 0.5598 (3) 0.16257 (14) 0.0457 (8)
H1B 0.5140 (5) 0.7292 (3) 0.18451 (15) 0.0424 (8)
H1C 0.2499 (6) 0.7366 (3) 0.13540 (14) 0.0539 (9)
C2 0.17284 (3) 0.885340 (16) 0.270986 (9) 0.01998 (2)
H2A 0.0805 (5) 0.9043 (3) 0.32157 (15) 0.0426 (7)
H2B 0.0734 (5) 0.9269 (3) 0.22476 (15) 0.0413 (8)
H2C 0.3437 (5) 0.9296 (3) 0.27223 (16) 0.0452 (7)
C3 0.36660 (2) 0.626058 (16) 0.327248 (8) 0.01603 (2)
C4 0.31133 (3) 0.501955 (14) 0.374337 (7) 0.01617 (2)
C5 0.49364 (3) 0.502182 (16) 0.432231 (8) 0.01679 (2)
C6 0.51726 (3) 0.411966 (17) 0.493099 (9) 0.02104 (3)
H6 0.3942 (5) 0.3231 (3) 0.50485 (14) 0.0409 (7)
C7 0.70481 (3) 0.438080 (18) 0.539047 (9) 0.02340 (3)
H7 0.7279 (5) 0.3676 (3) 0.58739 (13) 0.0421 (7)
C8 0.86210 (3) 0.551065 (18) 0.523465 (9) 0.02300 (3)
H8 1.0079 (4) 0.5678 (3) 0.55978 (15) 0.0430 (8)
C9 0.83593 (3) 0.642676 (17) 0.461901 (8) 0.02009 (3)
H9 0.9581 (4) 0.7314 (3) 0.44991 (14) 0.0366 (7)
C10 0.65015 (2) 0.616087 (15) 0.417199 (8) 0.01646 (2)
C11 0.57463 (2) 0.697567 (15) 0.349685 (8) 0.01581 (2)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.016250 (12) 0.014501 (12) 0.016513 (13) 0.001377 (11) 0.002541 (11) 0.001043 (11)
O1 0.02357 (5) 0.01891 (4) 0.02210 (5) 0.00558 (4) 0.00318 (4) 0.00284 (4)
O2 0.01785 (4) 0.02104 (4) 0.02318 (5) 0.00340 (4) 0.00065 (4) 0.00431 (4)
C1 0.03390 (8) 0.02237 (7) 0.01661 (6) 0.00200 (7) 0.00165 (6) 0.00092 (5)
H1A 0.079 (2) 0.0244 (13) 0.0334 (16) 0.0064 (15) 0.0047 (17) 0.0125 (12)
H1B 0.0351 (19) 0.0524 (19) 0.0398 (18) 0.0045 (14) 0.0048 (14) 0.0019 (15)
H1C 0.081 (2) 0.0579 (18) 0.0229 (15) 0.0113 (16) 0.0023 (16) 0.0165 (14)
C2 0.01978 (6) 0.01598 (5) 0.02418 (7) 0.00188 (5) 0.00285 (6) 0.00016 (5)
H2A 0.0494 (18) 0.0397 (16) 0.0387 (17) 0.0096 (14) 0.0100 (16) 0.0016 (15)
H2B 0.0434 (18) 0.0271 (14) 0.0536 (19) 0.0077 (14) 0.0140 (16) 0.0051 (14)
H2C 0.0366 (16) 0.0357 (15) 0.0634 (19) 0.0097 (15) 0.0080 (16) 0.0050 (14)
C3 0.01634 (5) 0.01581 (5) 0.01593 (5) 0.00098 (4) 0.00160 (4) 0.00173 (4)
C4 0.01832 (5) 0.01463 (5) 0.01555 (5) 0.00081 (5) 0.00105 (5) 0.00065 (4)
C5 0.02035 (6) 0.01517 (5) 0.01486 (5) 0.00050 (4) 0.00181 (5) 0.00052 (4)
C6 0.02889 (7) 0.01773 (6) 0.01650 (6) 0.00041 (5) 0.00349 (6) 0.00211 (5)
H6 0.0503 (18) 0.0357 (14) 0.0368 (16) 0.0147 (14) 0.0059 (14) 0.0095 (14)
C7 0.03232 (8) 0.02046 (6) 0.01742 (6) 0.00263 (6) 0.00657 (6) 0.00087 (5)
H7 0.0577 (19) 0.0379 (15) 0.0306 (14) 0.0036 (14) 0.0167 (15) 0.0148 (12)
C8 0.02619 (7) 0.02264 (6) 0.02016 (7) 0.00286 (5) 0.00784 (6) 0.00097 (5)
H8 0.0398 (19) 0.0492 (18) 0.0400 (17) 0.0021 (16) 0.0196 (14) 0.0029 (14)
C9 0.01917 (6) 0.02112 (6) 0.01998 (6) 0.00082 (5) 0.00456 (5) 0.00062 (5)
H9 0.0333 (15) 0.0389 (16) 0.0376 (16) 0.0116 (14) 0.0062 (14) 0.0024 (13)
C10 0.01674 (5) 0.01655 (5) 0.01609 (5) 0.00101 (4) 0.00193 (4) 0.00017 (4)
C11 0.01495 (5) 0.01607 (5) 0.01640 (5) 0.00005 (4) 0.00044 (4) 0.00087 (5)
Geometric parameters (Å, º) top
S1—C3 1.7088 (3) C4—C5 1.5042 (3)
S1—C2 1.7867 (4) C5—C6 1.3823 (3)
S1—C1 1.7948 (3) C5—C10 1.3955 (3)
O1—C4 1.2289 (3) C6—C7 1.4024 (4)
O2—C11 1.2333 (3) C6—H6 1.093 (2)
C1—H1A 1.088 (2) C7—C8 1.3946 (4)
C1—H1B 1.082 (3) C7—H7 1.095 (2)
C1—H1C 1.074 (3) C8—C9 1.4014 (3)
C2—H2A 1.086 (3) C8—H8 1.092 (2)
C2—H2B 1.092 (3) C9—C10 1.3814 (4)
C2—H2C 1.075 (3) C9—H9 1.089 (2)
C3—C11 1.4343 (4) C10—C11 1.5013 (3)
C3—C4 1.4406 (3)
C3—S1—C2 105.082 (9) C6—C5—C10 121.190 (17)
C3—S1—C1 106.79 (2) C6—C5—C4 129.713 (16)
C2—S1—C1 99.748 (8) C10—C5—C4 109.088 (18)
S1—C1—H1A 105.85 (15) C5—C6—C7 117.752 (17)
S1—C1—H1B 108.96 (15) C5—C6—H6 121.07 (13)
H1A—C1—H1B 111.8 (2) C7—C6—H6 121.18 (14)
S1—C1—H1C 106.86 (16) C8—C7—C6 120.896 (19)
H1A—C1—H1C 110.8 (2) C8—C7—H7 119.98 (14)
H1B—C1—H1C 112.2 (2) C6—C7—H7 119.13 (14)
S1—C2—H2A 106.33 (13) C7—C8—C9 120.961 (18)
S1—C2—H2B 105.84 (13) C7—C8—H8 119.30 (13)
H2A—C2—H2B 110.1 (2) C9—C8—H8 119.74 (13)
S1—C2—H2C 108.60 (14) C10—C9—C8 117.575 (16)
H2A—C2—H2C 112.8 (2) C10—C9—H9 121.44 (14)
H2B—C2—H2C 112.7 (2) C8—C9—H9 120.98 (14)
C11—C3—C4 111.152 (14) C9—C10—C5 121.621 (18)
C11—C3—S1 125.751 (16) C9—C10—C11 129.555 (15)
C4—C3—S1 122.829 (16) C5—C10—C11 108.802 (18)
O1—C4—C3 129.976 (15) O2—C11—C3 129.211 (15)
O1—C4—C5 124.821 (17) O2—C11—C10 125.097 (18)
C3—C4—C5 105.195 (16) C3—C11—C10 105.684 (15)
(Ylid_MM_Ag_Photon) top
Crystal data top
C11H10O2S Dx = 1.43 Mg m3
Mr = 206.25 Ag Kα radiation, λ = 0.56086 Å
Orthorhombic, P212121 Cell parameters from 9990 reflections
a = 5.854 (2) Å θ = 2.5–38.5°
b = 8.929 (2) Å µ = 0.16 mm1
c = 18.328 (3) Å T = 110 K
V = 958.0 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker Smart APEX II Quazar

diffractometer
9920 reflections with I > 2σ(I)
Radiation source: Incoatec Microsource Rint = 0.024
φ and ω scans θmax = 38.6°, θmin = 2.0°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.918, Tmax = 0.965 k = 1918
142991 measured reflections l = 4040
10713 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w2 = 1/[s2(Fo2)]
R[F2 > 2σ(F2)] = 0.011 (Δ/σ)max < 0.001
wR(F2) = 0.013 Δρmax = 0.09 e Å3
S = 1.12 Δρmin = 0.18 e Å3
10713 reflections Absolute structure: Flack x determined using 4144 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
250 parameters Absolute structure parameter: 0.019 (7)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S(1) 0.188539 (5) 0.686681 (3) 0.259474 (2) 0.016
O(1) 0.15423 (2) 0.410466 (14) 0.370482 (5) 0.022
O(2) 0.675323 (19) 0.804977 (15) 0.321901 (6) 0.021
C(1) 0.34854 (3) 0.678367 (19) 0.175933 (8) 0.025
C(2) 0.17267 (2) 0.885202 (15) 0.271005 (8) 0.02
C(3) 0.36668 (2) 0.626032 (16) 0.327278 (8) 0.016
C(4) 0.31123 (3) 0.501910 (15) 0.374377 (7) 0.017
C(5) 0.49344 (2) 0.502138 (15) 0.432255 (7) 0.017
C(6) 0.51722 (3) 0.411935 (16) 0.493134 (8) 0.021
C(7) 0.70477 (3) 0.438089 (17) 0.539008 (8) 0.024
C(8) 0.86191 (3) 0.551118 (18) 0.523446 (8) 0.024
C(9) 0.83574 (3) 0.642638 (17) 0.461948 (8) 0.021
C(10) 0.65006 (2) 0.616174 (15) 0.417159 (7) 0.017
C(11) 0.57448 (2) 0.697486 (16) 0.349724 (7) 0.016
H(1A) 0.360148 0.561055 0.162777 0.03709 (4)*
H(1B) 0.512101 0.730322 0.185031 0.03709 (4)*
H(1C) 0.246441 0.736489 0.136086 0.03709 (4)*
H(2A) 0.079513 0.904718 0.320776 0.03062 (3)*
H(2B) 0.072353 0.925778 0.22589 0.03062 (3)*
H(2C) 0.342347 0.93171 0.272522 0.03062 (3)*
H(6) 0.398188 0.323131 0.506337 0.02578 (3)*
H(7) 0.728172 0.368623 0.586867 0.02881 (3)*
H(8) 1.005384 0.563713 0.560239 0.02822 (3)*
H(9) 0.959573 0.730304 0.451799 0.02467 (3)*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S(1) 0.016815 (13) 0.014610 (13) 0.016914 (13) 0.001416 (10) 0.002645 (10) 0.001077 (10)
O(1) 0.02407 (5) 0.01857 (4) 0.02230 (5) 0.00586 (5) 0.00331 (4) 0.00293 (4)
O(2) 0.01811 (4) 0.02075 (5) 0.02331 (4) 0.00356 (4) 0.00044 (4) 0.00446 (4)
C(1) 0.03465 (7) 0.02243 (6) 0.01710 (5) 0.00221 (5) 0.00174 (5) 0.00073 (5)
C(2) 0.02048 (5) 0.01587 (5) 0.02489 (6) 0.00206 (4) 0.00309 (5) 0.00002 (4)
C(3) 0.01693 (5) 0.01611 (5) 0.01632 (5) 0.00086 (4) 0.00188 (4) 0.00194 (5)
C(4) 0.01892 (4) 0.01480 (4) 0.01598 (4) 0.00106 (5) 0.00111 (4) 0.00080 (4)
C(5) 0.02076 (5) 0.01537 (5) 0.01539 (5) 0.00039 (4) 0.00202 (4) 0.00067 (4)
C(6) 0.02943 (6) 0.01780 (5) 0.01722 (5) 0.00079 (5) 0.00378 (5) 0.00228 (5)
C(7) 0.03332 (7) 0.02065 (6) 0.01806 (5) 0.00250 (6) 0.00698 (6) 0.00130 (5)
C(8) 0.02683 (6) 0.02300 (6) 0.02073 (6) 0.00289 (5) 0.00823 (5) 0.00092 (5)
C(9) 0.01970 (5) 0.02154 (5) 0.02044 (5) 0.00064 (5) 0.00468 (5) 0.00055 (5)
C(10) 0.01720 (5) 0.01688 (5) 0.01639 (4) 0.00090 (4) 0.00207 (4) 0.00002 (4)
C(11) 0.01531 (4) 0.01635 (5) 0.01691 (4) 0.00028 (4) 0.00054 (4) 0.00094 (4)
Geometric parameters (Å, º) top
S(1)—C(1) 1.7965 (1) C(4)—C(5) 1.5044 (2)
S(1)—C(2) 1.7875 (1) C(5)—C(6) 1.3831 (2)
S(1)—C(3) 1.7104 (2) C(5)—C(10) 1.3979 (2)
O(1)—C(4) 1.2315 (2) C(6)—C(7) 1.4025 (2)
O(2)—C(11) 1.2368 (2) C(6)—H(6) 1.0830 (2)
C(1)—H(1A) 1.0770 (2) C(7)—C(8) 1.3951 (3)
C(1)—H(1B) 1.0770 (2) C(7)—H(7) 1.0830 (2)
C(1)—H(1C) 1.0770 (1) C(8)—C(9) 1.4006 (2)
C(2)—H(2A) 1.0770 (1) C(8)—H(8) 1.0830 (2)
C(2)—H(2B) 1.0770 (1) C(9)—C(10) 1.3825 (2)
C(2)—H(2C) 1.0770 (1) C(9)—H(9) 1.0830 (2)
C(3)—C(4) 1.4418 (2) C(10)—C(11) 1.5002 (2)
C(3)—C(11) 1.4340 (2)
C(1)—S(1)—C(2) 99.721 (8) C(4)—C(5)—C(6) 129.749 (14)
C(1)—S(1)—C(3) 106.754 (6) C(4)—C(5)—C(10) 109.059 (11)
C(2)—S(1)—C(3) 105.054 (6) C(6)—C(5)—C(10) 121.184 (12)
S(1)—C(1)—H(1A) 105.302 (11) C(5)—C(6)—C(7) 117.740 (16)
S(1)—C(1)—H(1B) 108.290 (10) C(5)—C(6)—H(6) 122.807 (15)
S(1)—C(1)—H(1C) 105.585 (11) C(7)—C(6)—H(6) 119.452 (15)
H(1A)—C(1)—H(1B) 113.420 (14) C(6)—C(7)—C(8) 120.941 (13)
H(1A)—C(1)—H(1C) 110.600 (13) C(6)—C(7)—H(7) 119.289 (17)
H(1B)—C(1)—H(1C) 113.009 (14) C(8)—C(7)—H(7) 119.768 (14)
S(1)—C(2)—H(2A) 106.672 (10) C(7)—C(8)—C(9) 120.961 (13)
S(1)—C(2)—H(2B) 105.732 (10) C(7)—C(8)—H(8) 117.339 (13)
S(1)—C(2)—H(2C) 109.723 (10) C(9)—C(8)—H(8) 121.692 (17)
H(2A)—C(2)—H(2B) 108.644 (12) C(8)—C(9)—C(10) 117.655 (15)
H(2A)—C(2)—H(2C) 112.508 (12) C(8)—C(9)—H(9) 119.122 (15)
H(2B)—C(2)—H(2C) 113.147 (13) C(10)—C(9)—H(9) 123.222 (15)
S(1)—C(3)—C(4) 122.759 (11) C(5)—C(10)—C(9) 121.515 (12)
S(1)—C(3)—C(11) 125.796 (12) C(5)—C(10)—C(11) 108.792 (11)
C(4)—C(3)—C(11) 111.177 (15) C(9)—C(10)—C(11) 129.671 (14)
O(1)—C(4)—C(3) 130.015 (13) O(2)—C(11)—C(3) 129.192 (13)
O(1)—C(4)—C(5) 124.820 (13) O(2)—C(11)—C(10) 125.062 (12)
C(3)—C(4)—C(5) 105.158 (13) C(3)—C(11)—C(10) 105.739 (13)
(Ylid_MM_In_Eiger) top
Crystal data top
C11H10O2S Dx = 1.427 Mg m3
Mr = 206.25 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9386 reflections
a = 5.860 (2) Å θ = 2.3–34.2°
b = 8.933 (2) Å µ = 0.13 mm1
c = 18.341 (3) Å T = 110 K
V = 960.1 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker D8 Venture

diffractometer
10109 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.024
φ and ω scans θmax = 34.8°, θmin = 1.6°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.932, Tmax = 0.965 k = 1919
178941 measured reflections l = 4040
11000 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w2 = 1/[s2(Fo2)]
R[F2 > 2σ(F2)] = 0.01 (Δ/σ)max < 0.001
wR(F2) = 0.014 Δρmax = 0.07 e Å3
S = 1.15 Δρmin = 0.11 e Å3
11000 reflections Absolute structure: Flack x determined using 4274 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
250 parameters Absolute structure parameter: 0.016 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S(1) 0.188514 (5) 0.686744 (3) 0.259477 (2) 0.019
O(1) 0.15420 (2) 0.410447 (14) 0.370449 (5) 0.024
O(2) 0.675419 (19) 0.805000 (16) 0.321878 (6) 0.024
C(1) 0.34854 (3) 0.678404 (18) 0.175907 (7) 0.028
C(2) 0.17274 (2) 0.885289 (15) 0.270999 (7) 0.023
C(3) 0.36670 (2) 0.626037 (15) 0.327291 (8) 0.019
C(4) 0.31120 (3) 0.501939 (15) 0.374372 (7) 0.019
C(5) 0.49349 (2) 0.502170 (15) 0.432251 (7) 0.02
C(6) 0.51730 (3) 0.411906 (16) 0.493120 (8) 0.024
C(7) 0.70472 (3) 0.438059 (16) 0.539036 (8) 0.027
C(8) 0.86202 (3) 0.551102 (17) 0.523439 (8) 0.026
C(9) 0.83585 (3) 0.642659 (16) 0.461956 (8) 0.023
C(10) 0.65017 (2) 0.616181 (14) 0.417169 (7) 0.02
C(11) 0.57457 (2) 0.697540 (16) 0.349722 (7) 0.019
H(1A) 0.359674 0.561062 0.1629 0.04146 (4)*
H(1B) 0.512614 0.72953 0.184858 0.04146 (4)*
H(1C) 0.245549 0.736354 0.136301 0.04146 (4)*
H(2A) 0.08063 0.903675 0.321018 0.03491 (3)*
H(2B) 0.075365 0.925786 0.22527 0.03491 (3)*
H(2C) 0.342172 0.931971 0.271831 0.03491 (3)*
H(6) 0.398785 0.322784 0.506111 0.02920 (3)*
H(7) 0.728543 0.368556 0.586815 0.03215 (3)*
H(8) 1.006506 0.563774 0.559737 0.03157 (3)*
H(9) 0.958433 0.731002 0.451883 0.02804 (3)*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S(1) 0.019546 (14) 0.017680 (13) 0.019699 (13) 0.001388 (10) 0.002587 (10) 0.001067 (10)
O(1) 0.02679 (5) 0.02164 (4) 0.02503 (5) 0.00582 (5) 0.00325 (4) 0.00292 (4)
O(2) 0.02083 (4) 0.02373 (4) 0.02606 (4) 0.00351 (5) 0.00050 (5) 0.00439 (4)
C(1) 0.03759 (7) 0.02559 (6) 0.01974 (5) 0.00231 (5) 0.00183 (5) 0.00080 (5)
C(2) 0.02342 (5) 0.01877 (5) 0.02762 (6) 0.00196 (4) 0.00294 (5) 0.00010 (4)
C(3) 0.01975 (5) 0.01912 (5) 0.01910 (5) 0.00076 (5) 0.00193 (4) 0.00201 (5)
C(4) 0.02172 (5) 0.01776 (4) 0.01883 (5) 0.00113 (5) 0.00111 (4) 0.00084 (4)
C(5) 0.02358 (5) 0.01845 (4) 0.01806 (5) 0.00044 (4) 0.00195 (4) 0.00070 (4)
C(6) 0.03231 (7) 0.02089 (5) 0.01980 (5) 0.00067 (5) 0.00356 (5) 0.00226 (5)
C(7) 0.03594 (7) 0.02368 (5) 0.02075 (5) 0.00246 (6) 0.00695 (6) 0.00108 (5)
C(8) 0.02968 (6) 0.02587 (6) 0.02338 (6) 0.00284 (5) 0.00811 (5) 0.00078 (5)
C(9) 0.02246 (6) 0.02453 (5) 0.02311 (5) 0.00058 (5) 0.00459 (5) 0.00055 (5)
C(10) 0.01999 (5) 0.01980 (5) 0.01925 (5) 0.00094 (4) 0.00211 (4) 0.00002 (4)
C(11) 0.01817 (4) 0.01933 (4) 0.01971 (5) 0.00036 (4) 0.00058 (4) 0.00097 (4)
Geometric parameters (Å, º) top
S(1)—C(1) 1.7984 (1) C(4)—C(5) 1.5060 (2)
S(1)—C(2) 1.7885 (1) C(5)—C(6) 1.3842 (2)
S(1)—C(3) 1.7121 (2) C(5)—C(10) 1.3988 (2)
O(1)—C(4) 1.2327 (2) C(6)—C(7) 1.4036 (2)
O(2)—C(11) 1.2375 (2) C(6)—H(6) 1.083
C(1)—H(1A) 1.077 C(7)—C(8) 1.3969 (3)
C(1)—H(1B) 1.077 C(7)—H(7) 1.083
C(1)—H(1C) 1.077 C(8)—C(9) 1.4014 (2)
C(2)—H(2A) 1.077 C(8)—H(8) 1.083
C(2)—H(2B) 1.077 C(9)—C(10) 1.3837 (2)
C(2)—H(2C) 1.077 C(9)—H(9) 1.083
C(3)—C(4) 1.4423 (2) C(10)—C(11) 1.5016 (2)
C(3)—C(11) 1.4357 (2)
C(1)—S(1)—C(2) 99.714 (8) C(4)—C(5)—C(6) 129.732 (14)
C(1)—S(1)—C(3) 106.740 (6) C(4)—C(5)—C(10) 109.097 (11)
C(2)—S(1)—C(3) 105.057 (6) C(6)—C(5)—C(10) 121.164 (12)
S(1)—C(1)—H(1A) 105.111 (11) C(5)—C(6)—C(7) 117.763 (15)
S(1)—C(1)—H(1B) 108.543 (10) C(5)—C(6)—H(6) 122.755 (15)
S(1)—C(1)—H(1C) 105.232 (11) C(7)—C(6)—H(6) 119.481 (15)
H(1A)—C(1)—H(1B) 113.105 (14) C(6)—C(7)—C(8) 120.919 (13)
H(1A)—C(1)—H(1C) 110.631 (12) C(6)—C(7)—H(7) 119.402 (17)
H(1B)—C(1)—H(1C) 113.532 (14) C(8)—C(7)—H(7) 119.675 (14)
S(1)—C(2)—H(2A) 106.127 (9) C(7)—C(8)—C(9) 120.961 (13)
S(1)—C(2)—H(2B) 105.573 (9) C(7)—C(8)—H(8) 117.747 (13)
S(1)—C(2)—H(2C) 109.755 (10) C(9)—C(8)—H(8) 121.277 (17)
H(2A)—C(2)—H(2B) 110.279 (12) C(8)—C(9)—C(10) 117.643 (15)
H(2A)—C(2)—H(2C) 113.011 (12) C(8)—C(9)—H(9) 119.337 (15)
H(2B)—C(2)—H(2C) 111.679 (12) C(10)—C(9)—H(9) 123.015 (15)
S(1)—C(3)—C(4) 122.742 (11) C(5)—C(10)—C(9) 121.546 (12)
S(1)—C(3)—C(11) 125.783 (12) C(5)—C(10)—C(11) 108.765 (11)
C(4)—C(3)—C(11) 111.205 (15) C(9)—C(10)—C(11) 129.666 (14)
O(1)—C(4)—C(3) 130.011 (13) O(2)—C(11)—C(3) 129.200 (13)
O(1)—C(4)—C(5) 124.850 (12) O(2)—C(11)—C(10) 125.067 (12)
C(3)—C(4)—C(5) 105.130 (13) C(3)—C(11)—C(10) 105.727 (13)
(Ylid_MM_In_Photon) top
Crystal data top
C11H10O2S Dx = 1.432 Mg m3
Mr = 206.25 In Kα radiation, λ = 0.5134 Å
Orthorhombic, P212121 Cell parameters from 9406 reflections
a = 5.850 (2) Å θ = 2.3–34.6°
b = 8.924 (2) Å µ = 0.13 mm1
c = 18.321 (3) Å T = 110 K
V = 956.5 (4) Å3 Spheroid, yellow
Z = 4 0.40 × 0.39 × 0.31 mm
F(000) = 432
Data collection top
Bruker D8 Venture

diffractometer
10084 reflections with I > 2σ(I)
Radiation source: Excillum In Metaljet D2 70 kV Rint = 0.038
φ and ω scans θmax = 34.8°, θmin = 1.6°
Absorption correction: multi-scan

SADABS-2016/2
h = 1313
Tmin = 0.930, Tmax = 0.965 k = 1919
171281 measured reflections l = 4040
10873 independent reflections
Refinement top
Refinement on F2 0 restraints
Least-squares matrix: full w2 = 1/[s2(Fo2)]
R[F2 > 2σ(F2)] = 0.014 (Δ/σ)max = 0.011
wR(F2) = 0.018 Δρmax = 0.11 e Å3
S = 1.29 Δρmin = 0.18 e Å3
10873 reflections Absolute structure: Flack x determined using 4270 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
250 parameters Absolute structure parameter: 0.023 (10)
Special details top

Refinement. Multipole parameters were derived starting from the independent atom model and were introduced in the following order.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S(1) 0.188483 (7) 0.686783 (4) 0.259473 (2) 0.016
O(1) 0.15433 (3) 0.410493 (19) 0.370460 (7) 0.021
O(2) 0.67543 (3) 0.80498 (2) 0.321882 (8) 0.02
C(1) 0.34847 (4) 0.67838 (2) 0.175898 (10) 0.024
C(2) 0.17282 (3) 0.88539 (2) 0.270997 (10) 0.02
C(3) 0.36667 (3) 0.62606 (2) 0.327282 (11) 0.016
C(4) 0.31128 (3) 0.501945 (19) 0.374350 (9) 0.016
C(5) 0.49355 (3) 0.50213 (2) 0.432262 (10) 0.017
C(6) 0.51733 (4) 0.41193 (2) 0.493146 (11) 0.021
C(7) 0.70486 (4) 0.43806 (2) 0.539055 (11) 0.023
C(8) 0.86213 (4) 0.55110 (2) 0.523478 (12) 0.023
C(9) 0.83601 (3) 0.64269 (2) 0.461957 (11) 0.02
C(10) 0.65021 (3) 0.61617 (2) 0.417179 (10) 0.016
C(11) 0.57460 (3) 0.69759 (2) 0.349708 (10) 0.016
H(1A) 0.358772 0.560717 0.163247 0.03643 (5)*
H(1B) 0.513533 0.728933 0.184349 0.03643 (5)*
H(1C) 0.247313 0.736685 0.135824 0.03643 (5)*
H(2A) 0.080564 0.904302 0.321027 0.02993 (4)*
H(2B) 0.073122 0.927255 0.225982 0.02993 (4)*
H(2C) 0.342042 0.932906 0.271788 0.02993 (4)*
H(6) 0.398313 0.322941 0.506233 0.02526 (4)*
H(7) 0.729461 0.368694 0.586918 0.02813 (4)*
H(8) 1.005489 0.563586 0.560381 0.02763 (4)*
H(9) 0.960896 0.729879 0.45193 0.02416 (3)*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S(1) 0.016187 (16) 0.014473 (17) 0.016448 (17) 0.001380 (13) 0.002549 (13) 0.001038 (13)
O(1) 0.02340 (6) 0.01852 (5) 0.02177 (7) 0.00580 (6) 0.00326 (6) 0.00295 (5)
O(2) 0.01746 (5) 0.02057 (6) 0.02294 (6) 0.00350 (6) 0.00063 (6) 0.00441 (6)
C(1) 0.03401 (9) 0.02236 (8) 0.01650 (6) 0.00222 (7) 0.00175 (7) 0.00079 (6)
C(2) 0.02006 (7) 0.01555 (6) 0.02425 (8) 0.00197 (5) 0.00282 (6) 0.00005 (5)
C(3) 0.01641 (6) 0.01599 (6) 0.01587 (6) 0.00080 (6) 0.00183 (6) 0.00197 (6)
C(4) 0.01831 (6) 0.01466 (6) 0.01571 (6) 0.00111 (6) 0.00116 (6) 0.00079 (5)
C(5) 0.02032 (7) 0.01535 (6) 0.01477 (6) 0.00050 (5) 0.00196 (6) 0.00069 (5)
C(6) 0.02887 (9) 0.01776 (7) 0.01653 (7) 0.00061 (6) 0.00351 (7) 0.00233 (6)
C(7) 0.03234 (9) 0.02057 (7) 0.01742 (7) 0.00247 (8) 0.00674 (7) 0.00108 (6)
C(8) 0.02615 (8) 0.02267 (8) 0.02025 (8) 0.00275 (7) 0.00799 (7) 0.00081 (7)
C(9) 0.01915 (7) 0.02129 (7) 0.01997 (7) 0.00059 (6) 0.00463 (6) 0.00055 (6)
C(10) 0.01678 (6) 0.01661 (6) 0.01609 (6) 0.00094 (5) 0.00213 (5) 0.00000 (5)
C(11) 0.01498 (6) 0.01606 (6) 0.01652 (6) 0.00031 (5) 0.00051 (5) 0.00100 (6)
Geometric parameters (Å, º) top
S(1)—C(1) 1.7961 (2) C(4)—C(5) 1.5042 (3)
S(1)—C(2) 1.7873 (2) C(5)—C(6) 1.3826 (3)
S(1)—C(3) 1.7099 (2) C(5)—C(10) 1.3971 (3)
O(1)—C(4) 1.2305 (3) C(6)—C(7) 1.4019 (3)
O(2)—C(11) 1.2354 (3) C(6)—H(6) 1.083
C(1)—H(1A) 1.077 C(7)—C(8) 1.3948 (4)
C(1)—H(1B) 1.077 C(7)—H(7) 1.083
C(1)—H(1C) 1.077 C(8)—C(9) 1.4006 (3)
C(2)—H(2A) 1.077 C(8)—H(8) 1.083
C(2)—H(2B) 1.077 C(9)—C(10) 1.3822 (3)
C(2)—H(2C) 1.077 C(9)—H(9) 1.083
C(3)—C(4) 1.4406 (3) C(10)—C(11) 1.5005 (3)
C(3)—C(11) 1.4338 (3)
C(1)—S(1)—C(2) 99.719 (11) C(4)—C(5)—C(6) 129.773 (19)
C(1)—S(1)—C(3) 106.767 (9) C(4)—C(5)—C(10) 109.042 (15)
C(2)—S(1)—C(3) 105.053 (8) C(6)—C(5)—C(10) 121.176 (17)
S(1)—C(1)—H(1A) 104.674 (15) C(5)—C(6)—C(7) 117.77 (2)
S(1)—C(1)—H(1B) 109.096 (14) C(5)—C(6)—H(6) 122.74 (2)
S(1)—C(1)—H(1C) 105.943 (15) C(7)—C(6)—H(6) 119.49 (2)
H(1A)—C(1)—H(1B) 112.901 (19) C(6)—C(7)—C(8) 120.911 (18)
H(1A)—C(1)—H(1C) 110.797 (17) C(6)—C(7)—H(7) 119.65 (2)
H(1B)—C(1)—H(1C) 112.847 (19) C(8)—C(7)—H(7) 119.435 (19)
S(1)—C(2)—H(2A) 106.355 (13) C(7)—C(8)—C(9) 120.980 (18)
S(1)—C(2)—H(2B) 106.337 (13) C(7)—C(8)—H(8) 117.221 (18)
S(1)—C(2)—H(2C) 110.175 (13) C(9)—C(8)—H(8) 121.79 (2)
H(2A)—C(2)—H(2B) 109.024 (16) C(8)—C(9)—C(10) 117.61 (2)
H(2A)—C(2)—H(2C) 112.798 (16) C(8)—C(9)—H(9) 118.83 (2)
H(2B)—C(2)—H(2C) 111.809 (17) C(10)—C(9)—H(9) 123.56 (2)
S(1)—C(3)—C(4) 122.782 (15) C(5)—C(10)—C(9) 121.543 (17)
S(1)—C(3)—C(11) 125.751 (16) C(5)—C(10)—C(11) 108.803 (15)
C(4)—C(3)—C(11) 111.20 (2) C(9)—C(10)—C(11) 129.632 (19)
O(1)—C(4)—C(3) 130.022 (18) O(2)—C(11)—C(3) 129.210 (18)
O(1)—C(4)—C(5) 124.786 (17) O(2)—C(11)—C(10) 125.087 (16)
C(3)—C(4)—C(5) 105.184 (17) C(3)—C(11)—C(10) 105.696 (17)
 

Acknowledgements

We thank Holger Ott from Bruker, Marcus Müller from Dectris, Julius Hållstedt from Excillum and Jürgen Graf from Incoatec for technical support and helpful discussions. We thank Christopher Golz, IOBC Göttingen, for making the Ag IμS diffractometer available for the experiments. Open access funding enabled and organized by Projekt DEAL.

Funding information

Paul Niklas Ruth and Dietmar Stalke thank the GRK BENCh, which is funded by the Deutsche Forschungsgemeinschaft (award No. 389479699/GRK2455).

References

First citationBragg, W. H. & Bragg, W. L. (1913). Proc. R. Soc. London Ser. A, 88, 428–438.  CrossRef ICSD CAS Google Scholar

First citationBruker (2019). SAINT. Version 8.40B. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar

First citationCoppens, P. (1997). X-ray Charge Densities and Chemical Bonding. Oxford: International Union of Crystallography/Oxford University Press.  Google Scholar

First citationDeslattes, R. D. & Kessler, E. G. Jr (1985). Atomic Inner-Shell Physics, edited by B. Crasemann, pp. 181–235. Boston: Springer US.  Google Scholar

First citationDoyle, P. A. & Turner, P. S. (1968). Acta Cryst. A24, 390–397.  CrossRef IUCr Journals Web of Science Google Scholar

First citationEickerling, G., Hauf, C., Scheidt, E.-W., Reichardt, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Humberto Romero, A., Porcher, F., André, G., Pöttgen, R. & Scherer, W. (2013). Z. Anorg. Allg. Chem. 639, 1985–1995.  Web of Science CrossRef ICSD CAS Google Scholar

First citationEnkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H. A., Kristoffersen, H. H., Kuisma, M., Larsen, A. H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P. G., Ojanen, J., Olsen, T., Petzold, V., Romero, N. A., Stausholm-Møller, J., Strange, M., Tritsaris, G. A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G. K. H., Nieminen, R. M., Nørskov, J. K., Puska, M., Rantala, T. T., Schiøtz, J., Thygesen, K. S. & Jacobsen, K. W. (2010). J. Phys. Condens. Matter, 22, 253202.   Google Scholar

First citationFriedrich, W., Knipping, P. & von Laue, M. (1912). Interferenz-Erscheinungen bei Röntgenstrahlen. München: Verlag der Königlich-Bayerischen Akademie der Wissenschaften.  Google Scholar

First citationGraw, N., Ruth, P. N., Ernemann, T., Herbst-Irmer, R. & Stalke, D. (2023). J. Appl. Cryst. 56, 1315–1321.  CSD CrossRef IUCr Journals Google Scholar

First citationGuzei, I. A., Bikzhanova, G. A., Spencer, L. C., Timofeeva, T. V., Kinnibrugh, T. L. & Campana, C. F. (2008). Cryst. Growth Des. 8, 2411–2418.  Web of Science CSD CrossRef CAS Google Scholar

First citationHe, M., Wong, C. H., Shi, D., Tse, P. L., Scheidt, E.-W., Eickerling, G., Scherer, W., Sheng, P. & Lortz, R. (2015). J. Phys. Condens. Matter, 27, 075702.  Web of Science CrossRef PubMed Google Scholar

First citationHubbell, J. H. & Seltzer, S. M. (2004). Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. NIST Standard Reference Database 126. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. NIST, Gaithersburg, Maryland, USA.  Google Scholar

First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar

First citationJayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationJeitschko, W., Gerss, M. H., Hoffmann, R.-D. & Lee, S. (1989). J. Less-Common Met. 156, 397–412.  CrossRef ICSD CAS Web of Science Google Scholar

First citationKirschbaum, K., Martin, A. & Pinkerton, A. A. (1997). J. Appl. Cryst. 30, 514–516.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015a). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar

First citationKrause, L., Herbst-Irmer, R. & Stalke, D. (2015b). J. Appl. Cryst. 48, 1907–1913.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationKrause, L., Tolborg, K., Grønbech, T. B. E., Sugimoto, K., Iversen, B. B. & Overgaard, J. (2020). J. Appl. Cryst. 53, 635–649.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationLangmann, J., Vöst, M., Schmitz, D., Haas, C., Eickerling, G., Jesche, A., Nicklas, M., Lanza, A., Casati, N., Macchi, P. & Scherer, W. (2021). Phys. Rev. B, 103, 184101.  Web of Science CSD CrossRef Google Scholar

First citationMacchi, P., Bürgi, H.-B., Chimpri, A. S., Hauser, J. & Gál, Z. (2011). J. Appl. Cryst. 44, 763–771.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationMeindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationMeurer, F., von Essen, C., Kühn, C., Puschmann, H. & Bodensteiner, M. (2022). IUCrJ, 9, 349–354.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar

First citationMortensen, J. J., Hansen, L. B. & Jacobsen, K. W. (2005). Phys. Rev. B, 71, 035109.   Google Scholar

First citationNiepötter, B., Herbst-Irmer, R. & Stalke, D. (2015). J. Appl. Cryst. 48, 1485–1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationPrince, E. (2004). International Tables for Crystallography, Vol. C, 3rd ed. Dordrecht: Kluwer Academic Publishers.  Google Scholar

First citationRohrmoser, B., Eickerling, G., Presnitz, M., Scherer, W., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Vogt, C. & Pöttgen, R. (2007). J. Am. Chem. Soc. 129, 9356–9365.  Web of Science CSD CrossRef PubMed CAS Google Scholar

First citationRuth, P. N., Herbst-Irmer, R. & Stalke, D. (2022). IUCrJ, 9, 286–297.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar

First citationSevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. (2019). Acta Cryst. D75, 1040–1050.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar

First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

First citationSheldrick, G. M. (2015c). XPREP. University of Göttingen, Germany.  Google Scholar

First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationStash, A. (2007). DRKplot. Moscow, Russian Federation.  Google Scholar

First citationSun, J., Ruzsinszky, A. & Perdew, J. P. (2015). Phys. Rev. Lett. 115, 036402.   Google Scholar

First citationVolkov, A., Macchi, P., Farrugia, L. J., Gatti, C., Mallinson, P. R., Richter, T. & Koritsanszky, T. (2016). XD2016. University of Glasgow, UK. https://www.chem.gla.ac.uk/~louis/xd-home/Google Scholar

First citationWeiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationZavodnik, V., Stash, A., Tsirelson, V., de Vries, R. & Feil, D. (1999). Acta Cryst. B55, 45–54.   Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationZhang, L., Fehse, C., Eckert, H., Vogt, C., Hoffmann, R.-D. & Pöttgen, R. (2007). Solid State Sci. 9, 699–705.  Web of Science CrossRef CAS Google Scholar

First citationZhurov, V. V., Zhurova, E. A. & Pinkerton, A. A. (2008). J. Appl. Cryst. 41, 340–349.   Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo JOURNAL OF

APPLIED

CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds