organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890

Methyl 3,6-an­hydro-4-azido-5,7-O-(S)-benzyl­­idene-2,4-di­de­oxy-D-talo-heptonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England, bMolecular Nature Ltd, Institute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Dyfed, Wales, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England

*Correspondence e-mail: [email protected]

(Received 19 March 2004; accepted 5 April 2004; online 24 April 2004)

The title compound, C15H17N3O5, was formed by carrying out a Wittig reaction, under basic conditions, on 2-azido-3,5–O-benzyl­idene-2-deoxy-D-lyxose.

Comment

Sugar amino acids (SAA) (Schweizer, 2002[Schweizer, F. (2002). Angew. Chem. Int. Ed. 41, 231-253.]) have been utilized in peptidomimetics (Gruner et al., 2002[Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.]), as carbopeptoid foldamers (Gellman, 1998[Gellman, S. H. (1998). Acc. Chem. Res. 31, 173-180.]) and, to a lesser extent, as molecular scaffolds (Sofia, 1998[Sofia, M. J. (1998). Med. Chem. Res. 8, 362-378.]). Although the generation of well defined libraries from SAA is rare (Chakraborty et al., 2003[Chakraborty, T. K., Jayaprakash, S. & Ghosh, S. (2003). Comb. Chem. High Throughput Screening, 5, 373-387.]; Edwards et al., 2004[Edwards, A. A., Ichihara, O., Murfin, S., Wilkes, R., Watkin, D. J. & Fleet, G. W. J. (2004). J. Combinatorial Chem. 6, 230-238.]), SAA peptidomimetics have been employed as chiral scaffolds in the parallel production of ligands for the melanocortin and somastatin GPCR receptors (Le et al., 2003[Le, G. T., Abbenante, G., Becker, B., Gratwohl, M., Halliday, J., Tometzki, G., Zuegg, J. & Meutermans, W. (2003). Drug Discovery Today, 8, 701-709.]). The recognition of templated SAA in forming different but predictable secondary structure is likely to lead to further exploitation of this structural motif (Smith et al., 2003[Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (1996). Org. Biomol. Chem. 1, 3647-3655.]). A wide range of tetra­hydro­furan (THF) amino acid scaffolds are readily available (Watterson et al., 1996[Watterson, M. P., Edwards, A. A., Leach, J. A., Smith, M. D., Ichihara, O. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5853-5857.]) and a series of γ-THF amino acids have recently been reported (Sanjayan et al., 2003[Sanjayan, G., Stewart, A., Hachisu, S., Gonzalez, R., Watterson, M. P. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5847-5852.]). The title compound, (3[link]), is an example of a γ-THF amino acid with a different structural motif. A novel THF scaffold (3[link]) with an azide directly attached to the THF was prepared in good yield by the three-step one-pot procedure outlined below. Reduction of azido lactone (1[link]) with 1.5 equivalents of diiso­butyl­aluminium hydride, DIBAL-H, provided a lactol that was immediately subjected to Wittig olefination to afford the enoate (2[link]). Upon prolonged stirring, (2[link]) underwent a conjugate addition of the unprotected OH group to the enoate (2[link]) to give the highly functionalized scaffold (3[link]) in good yield; optimization of the conditions for the overall sequence are currently being investigated. Two structural ambiguities arose in the formation of (3[link]): one based on the easy epimerization of azides in azido­lactones (Krulle et al., 1996[Krulle, T. M., Davis, B. G., Ardron, H., Long, D. D., Hindle, N. A., Smith, C., Brown, D., Lane, A. L., Watkin, D. J., Marquess, D. G. & Fleet, G. W. J. (1996). J. Chem. Soc. Chem. Commun. pp. 1271-1272.]) and the other on the new stereogenic centre generated by the intramolecular Michael addition. These uncertainties were firmly resolved by single-crystal X-ray crystallography of the title compound (3[link]).[link]

[Scheme 1]
[Figure 1]

Figure 1

The molecular structure of (3), with 50% probability displacement ellipsoids.

Experimental

The title material was obtained by solvent evaporation (EtOAc–cyclo­hexane), appearing as orange–yellow block-shaped crystals. These were recrystallized from methanol to give colourless plate-like crystals.

Crystal data
  • C15H17N3O5

  • Mr = 319.32

  • Monoclinic, P21

  • a = 8.2135 (3) Å

  • b = 9.2262 (3) Å

  • c = 10.9944 (3) Å

  • β = 108.0414 (15)°

  • V = 792.19 (4) Å3

  • Z = 2

  • Dx = 1.339 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1851 reflections

  • θ = 5–27°

  • μ = 0.10 mm−1

  • T = 293 K

  • Plate, colourless

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.96, Tmax = 0.99

  • 3420 measured reflections

  • 1906 independent reflections

  • 1464 reflections with I > 2.00 σ(I)

  • Rint = 0.011

  • θmax = 27.5°

  • h = −10 → 10

  • k = −11 → 11

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 0.89

  • 1906 reflections

  • 209 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F*) + (0.0434p)2 + 0.113p] where p = 0.333max(Fo2,0) + 0.667Fc2

  • (Δ/σ)max = 0.002

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 4.3 (6) × 102

Table 1

Selected geometric parameters (Å, °)

C1—O9 1.437 (2)
C1—C5 1.517 (3)
C1—C2 1.513 (4)
C2—N21 1.464 (3)
C2—C3 1.537 (3)
C3—C16 1.523 (3)
C3—O4 1.419 (3)
O4—C5 1.444 (3)
C5—C6 1.491 (4)
C6—O7 1.432 (3)
O7—C8 1.408 (3)
C8—C10 1.499 (3)
C8—O9 1.421 (3)
C10—C15 1.368 (4)
C10—C11 1.396 (4)
C11—C12 1.375 (4)
C12—C13 1.361 (6)
C13—C14 1.365 (6)
C14—C15 1.392 (4)
C16—C17 1.502 (4)
C17—O20 1.186 (3)
C17—O18 1.320 (3)
O18—C19 1.453 (3)
N21—N22 1.232 (4)
N22—N23 1.133 (4)
O9—C1—C5 111.79 (19)
O9—C1—C2 105.98 (19)
C5—C1—C2 101.85 (19)
N21—C2—C3 115.4 (2)
N21—C2—C1 116.74 (19)
C3—C2—C1 102.4 (2)
C16—C3—O4 110.4 (2)
C16—C3—C2 112.3 (2)
O4—C3—C2 105.1 (2)
C5—O4—C3 110.88 (18)
C6—C5—O4 110.1 (2)
C6—C5—C1 113.1 (2)
O4—C5—C1 105.3 (2)
O7—C6—C5 112.12 (19)
C8—O7—C6 110.38 (18)
C10—C8—O9 106.41 (17)
C10—C8—O7 109.96 (19)
O9—C8—O7 109.96 (18)
C8—O9—C1 113.72 (16)
C15—C10—C11 119.8 (2)
C15—C10—C8 121.2 (2)
C11—C10—C8 119.0 (2)
C12—C11—C10 119.7 (3)
C13—C12—C11 120.2 (3)
C14—C13—C12 120.7 (3)
C15—C14—C13 120.1 (4)
C10—C15—C14 119.6 (3)
C17—C16—C3 114.7 (2)
O20—C17—O18 123.5 (3)
O20—C17—C16 124.4 (3)
O18—C17—C16 112.1 (2)
C19—O18—C17 116.2 (2)
N22—N21—C2 115.7 (2)
N23—N22—N21 171.7 (3)

H atoms were placed geometrically after each cycle, at a distance of 1.0 Å; Uiso values were set to 1.2 times the Ueq value of the parent atom. The absolute configuration was assumed to be the same as that of the sugar and the Friedel pairs were merged in the final refinement.

Data collection: COLLECT (Nonius, 1997–2001[Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information



Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al. 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al. 2003).

Methyl 3,6-anhydro-4-azido-5,7-O-(S)-benzylidene-2,4-dideoxy-D-talo-heptonate top
Crystal data top
C15H17N3O5 F(000) = 336
Mr = 319.32 Dx = 1.339 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.2135 (3) Å Cell parameters from 1851 reflections
b = 9.2262 (3) Å θ = 5–27°
c = 10.9944 (3) Å µ = 0.10 mm1
β = 108.0414 (15)° T = 293 K
V = 792.19 (4) Å3 Plate, colourless
Z = 2 0.40 × 0.40 × 0.10 mm
Data collection top
Nonius KappaCCD

diffractometer
1464 reflections with I > 2.00u(I)
Graphite monochromator Rint = 0.01
ω scans θmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan

(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 1010
Tmin = 0.96, Tmax = 0.99 k = 1111
3420 measured reflections l = 1414
1906 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(F*) + (0.0434p)2 + 0.113p]

where p = 0.333max(Fo2,0) + 0.667Fc2
wR(F2) = 0.092 (Δ/σ)max = 0.002
S = 0.89 Δρmax = 0.17 e Å3
1906 reflections Δρmin = 0.15 e Å3
209 parameters Extinction correction: Larson 1970 Crystallographic Computing eq 22
1 restraint Extinction coefficient: 430 (60)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
C1 0.6257 (3) 0.3880 (2) 0.6894 (2) 0.0578
C2 0.7296 (3) 0.3406 (3) 0.8225 (2) 0.0602
C3 0.6887 (3) 0.1780 (3) 0.8208 (2) 0.0544
O4 0.5199 (2) 0.1644 (2) 0.73553 (18) 0.0720
C5 0.4647 (3) 0.2976 (3) 0.6661 (3) 0.0652
C6 0.3786 (3) 0.2660 (3) 0.5281 (3) 0.0711
O7 0.4980 (2) 0.22373 (19) 0.46346 (16) 0.0629
C8 0.6232 (3) 0.3318 (3) 0.4764 (2) 0.0539
O9 0.72305 (18) 0.34582 (17) 0.60683 (13) 0.0523
C10 0.7445 (3) 0.2885 (3) 0.4051 (2) 0.0552
C11 0.8300 (3) 0.1560 (3) 0.4336 (3) 0.0705
C12 0.9423 (4) 0.1152 (4) 0.3696 (3) 0.0915
C13 0.9725 (4) 0.2047 (5) 0.2805 (3) 0.0993
C14 0.8901 (5) 0.3346 (5) 0.2521 (3) 0.0952
C15 0.7747 (4) 0.3775 (3) 0.3149 (2) 0.0712
C16 0.6979 (4) 0.1208 (3) 0.9527 (2) 0.0706
C17 0.6358 (4) 0.0321 (3) 0.9541 (2) 0.0622
O18 0.7011 (3) 0.1205 (2) 0.8869 (2) 0.0799
C19 0.6553 (5) 0.2725 (3) 0.8879 (3) 0.0857
O20 0.5424 (4) 0.0707 (3) 1.0110 (3) 0.1000
N21 0.9120 (3) 0.3774 (3) 0.8639 (2) 0.0763
N22 1.0011 (3) 0.3082 (3) 0.8126 (2) 0.0764
N23 1.0993 (3) 0.2529 (4) 0.7754 (3) 0.1079
H11 0.5991 0.4937 0.6762 0.0727*
H21 0.6969 0.3953 0.8900 0.0752*
H31 0.7743 0.1200 0.7934 0.0668*
H51 0.3777 0.3516 0.6951 0.0802*
H61 0.3168 0.3551 0.4860 0.0829*
H62 0.2943 0.1858 0.5210 0.0829*
H81 0.5631 0.4245 0.4424 0.0635*
H111 0.8095 0.0910 0.5004 0.0817*
H121 1.0024 0.0196 0.3886 0.1060*
H131 1.0558 0.1749 0.2353 0.1192*
H141 0.9128 0.3993 0.1860 0.1164*
H151 0.7143 0.4728 0.2942 0.0857*
H161 0.8202 0.1251 1.0083 0.0886*
H162 0.6269 0.1852 0.9892 0.0886*
H191 0.7111 0.3293 0.8344 0.1061*
H192 0.6948 0.3097 0.9778 0.1061*
H193 0.5280 0.2831 0.8524 0.1061*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
C1 0.0694 (14) 0.0348 (11) 0.0799 (14) 0.0026 (11) 0.0387 (12) 0.0072 (11)
C2 0.0787 (16) 0.0408 (12) 0.0713 (13) 0.0136 (12) 0.0380 (12) 0.0090 (11)
C3 0.0600 (13) 0.0399 (11) 0.0697 (13) 0.0068 (11) 0.0294 (11) 0.0063 (10)
O4 0.0648 (10) 0.0493 (9) 0.1030 (13) 0.0126 (9) 0.0276 (9) 0.0109 (10)
C5 0.0563 (13) 0.0499 (13) 0.0971 (17) 0.0039 (11) 0.0349 (13) 0.0052 (13)
C6 0.0451 (12) 0.0570 (15) 0.108 (2) 0.0039 (12) 0.0188 (13) 0.0069 (15)
O7 0.0491 (8) 0.0478 (9) 0.0862 (11) 0.0051 (8) 0.0125 (8) 0.0093 (8)
C8 0.0542 (12) 0.0384 (11) 0.0683 (12) 0.0007 (11) 0.0178 (10) 0.0024 (10)
O9 0.0536 (8) 0.0445 (9) 0.0629 (8) 0.0091 (7) 0.0238 (7) 0.0084 (7)
C10 0.0547 (12) 0.0485 (13) 0.0588 (11) 0.0002 (11) 0.0124 (10) 0.0119 (11)
C11 0.0645 (15) 0.0583 (15) 0.0834 (16) 0.0093 (13) 0.0151 (13) 0.0107 (14)
C12 0.0766 (18) 0.090 (2) 0.101 (2) 0.0251 (18) 0.0171 (17) 0.0306 (19)
C13 0.076 (2) 0.134 (4) 0.091 (2) 0.012 (2) 0.0308 (17) 0.039 (2)
C14 0.094 (2) 0.126 (3) 0.0740 (16) 0.000 (2) 0.0378 (16) 0.013 (2)
C15 0.0795 (17) 0.0705 (18) 0.0670 (13) 0.0040 (15) 0.0277 (13) 0.0079 (14)
C16 0.107 (2) 0.0459 (14) 0.0704 (14) 0.0090 (14) 0.0446 (15) 0.0049 (12)
C17 0.0870 (17) 0.0486 (13) 0.0581 (13) 0.0026 (13) 0.0327 (13) 0.0009 (11)
O18 0.1059 (15) 0.0488 (11) 0.1039 (14) 0.0088 (10) 0.0601 (12) 0.0129 (10)
C19 0.113 (3) 0.0477 (15) 0.106 (2) 0.0046 (17) 0.047 (2) 0.0117 (14)
O20 0.162 (2) 0.0595 (12) 0.1151 (15) 0.0126 (14) 0.0962 (17) 0.0001 (11)
N21 0.0880 (16) 0.0674 (15) 0.0744 (13) 0.0312 (13) 0.0263 (12) 0.0161 (12)
N22 0.0641 (14) 0.0817 (18) 0.0783 (14) 0.0264 (14) 0.0147 (11) 0.0003 (14)
N23 0.0623 (15) 0.133 (3) 0.130 (2) 0.0115 (19) 0.0331 (17) 0.001 (2)
Geometric parameters (Å, º) top
C1—H11 1.000 C10—C11 1.396 (4)
C1—O9 1.437 (2) C11—H111 1.002
C1—C5 1.517 (3) C11—C12 1.375 (4)
C1—C2 1.513 (4) C12—H121 1.001
C2—H21 1.000 C12—C13 1.361 (6)
C2—N21 1.464 (3) C13—H131 1.001
C2—C3 1.537 (3) C13—C14 1.365 (6)
C3—H31 1.001 C14—H141 1.001
C3—C16 1.523 (3) C14—C15 1.392 (4)
C3—O4 1.419 (3) C15—H151 1.001
O4—C5 1.444 (3) C16—H162 0.999
C5—H51 1.001 C16—H161 1.002
C5—C6 1.491 (4) C16—C17 1.502 (4)
C6—H62 1.000 C17—O20 1.186 (3)
C6—H61 1.001 C17—O18 1.320 (3)
C6—O7 1.432 (3) O18—C19 1.453 (3)
O7—C8 1.408 (3) C19—H193 1.001
C8—H81 1.001 C19—H192 1.001
C8—C10 1.499 (3) C19—H191 0.998
C8—O9 1.421 (3) N21—N22 1.232 (4)
C10—C15 1.368 (4) N22—N23 1.133 (4)
H11—C1—O9 108.170 C8—O9—C1 113.72 (16)
H11—C1—C5 111.834 C15—C10—C11 119.8 (2)
O9—C1—C5 111.79 (19) C15—C10—C8 121.2 (2)
H11—C1—C2 117.051 C11—C10—C8 119.0 (2)
O9—C1—C2 105.98 (19) H111—C11—C12 120.184
C5—C1—C2 101.85 (19) H111—C11—C10 120.109
H21—C2—N21 97.832 C12—C11—C10 119.7 (3)
H21—C2—C3 113.240 H121—C12—C13 119.784
N21—C2—C3 115.4 (2) H121—C12—C11 120.033
H21—C2—C1 111.780 C13—C12—C11 120.2 (3)
N21—C2—C1 116.74 (19) H131—C13—C14 119.623
C3—C2—C1 102.4 (2) H131—C13—C12 119.722
H31—C3—C16 105.628 C14—C13—C12 120.7 (3)
H31—C3—O4 112.780 H141—C14—C15 119.950
C16—C3—O4 110.4 (2) H141—C14—C13 119.942
H31—C3—C2 110.792 C15—C14—C13 120.1 (4)
C16—C3—C2 112.3 (2) H151—C15—C10 120.260
O4—C3—C2 105.1 (2) H151—C15—C14 120.169
C5—O4—C3 110.88 (18) C10—C15—C14 119.6 (3)
H51—C5—C6 105.154 H162—C16—H161 109.357
H51—C5—O4 113.166 H162—C16—C17 108.240
C6—C5—O4 110.1 (2) H161—C16—C17 108.084
H51—C5—C1 110.120 H162—C16—C3 108.243
C6—C5—C1 113.1 (2) H161—C16—C3 108.149
O4—C5—C1 105.3 (2) C17—C16—C3 114.7 (2)
H62—C6—H61 109.403 O20—C17—O18 123.5 (3)
H62—C6—O7 108.873 O20—C17—C16 124.4 (3)
H61—C6—O7 108.792 O18—C17—C16 112.1 (2)
H62—C6—C5 108.829 C19—O18—C17 116.2 (2)
H61—C6—C5 108.793 H193—C19—H192 109.351
O7—C6—C5 112.12 (19) H193—C19—H191 109.535
C8—O7—C6 110.38 (18) H192—C19—H191 109.543
H81—C8—C10 111.363 H193—C19—O18 109.420
H81—C8—O9 111.259 H192—C19—O18 109.412
C10—C8—O9 106.41 (17) H191—C19—O18 109.566
H81—C8—O7 107.889 N22—N21—C2 115.7 (2)
C10—C8—O7 109.96 (19) N23—N22—N21 171.7 (3)
O9—C8—O7 109.96 (18)
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar

First citationChakraborty, T. K., Jayaprakash, S. & Ghosh, S. (2003). Comb. Chem. High Throughput Screening, 5, 373–387.  CrossRef Google Scholar

First citationEdwards, A. A., Ichihara, O., Murfin, S., Wilkes, R., Watkin, D. J. & Fleet, G. W. J. (2004). J. Combinatorial Chem. 6, 230–238.  Web of Science CSD CrossRef CAS Google Scholar

First citationGellman, S. H. (1998). Acc. Chem. Res. 31, 173–180.  Web of Science CrossRef CAS Google Scholar

First citationGruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514.  Web of Science CrossRef PubMed CAS Google Scholar

First citationKrulle, T. M., Davis, B. G., Ardron, H., Long, D. D., Hindle, N. A., Smith, C., Brown, D., Lane, A. L., Watkin, D. J., Marquess, D. G. & Fleet, G. W. J. (1996). J. Chem. Soc. Chem. Commun. pp. 1271–1272.  Google Scholar

First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar

First citationLe, G. T., Abbenante, G., Becker, B., Gratwohl, M., Halliday, J., Tometzki, G., Zuegg, J. & Meutermans, W. (2003). Drug Discovery Today, 8, 701–709.  CrossRef PubMed CAS Google Scholar

First citationNonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar

First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar

First citationSanjayan, G., Stewart, A., Hachisu, S., Gonzalez, R., Watterson, M. P. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5847–5852.  Web of Science CrossRef CAS Google Scholar

First citationSchweizer, F. (2002). Angew. Chem. Int. Ed. 41, 231–253.  Web of Science CrossRef Google Scholar

First citationSmith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (1996). Org. Biomol. Chem. 1, 3647–3655.  Web of Science CrossRef Google Scholar

First citationSofia, M. J. (1998). Med. Chem. Res. 8, 362–378.  CAS Google Scholar

First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

First citationWatterson, M. P., Edwards, A. A., Leach, J. A., Smith, M. D., Ichihara, O. & Fleet, G. W. J. (2003). Tetrahedron Lett. 44, 5853–5857.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds