organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-C-Hydro­xymethyl-2,3-O-iso­propyl­­idene-D-ribono-1,5-lactam

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England, and cEcole Normale Supérieure, Département de Chimie, UMR 8642, 24 rue Lhomond, 75231 Paris Cedex 05, France

*Correspondence e-mail: [email protected]

(Received 22 March 2004; accepted 5 April 2004; online 30 April 2004)

The title compound, C9H14NO5, was formed by catalytic hydrogenation of an azido­lactone using Pd-black in 1,4-dioxane.

Comment

The replacement of the ring O atom of a carbohydrate by nitro­gen gives a range of sugar mimics (Winchester & Fleet, 1992[Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199-210.]), many of which are natural products widely spread in plants (Asano et al., 2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymm. 11, 1645-1680.]). Because of the multitude of potential biological activities, interest in understanding the structures in the search for transition-state analogues continues (Heck et al., 2004[Heck, M. P., Vincent, S. P., Murray, B. W., Bellamy, F., Wong, C. H. & Mioskowski, C. (2004). J. Am. Chem. Soc. 126, 1971-1979.]). Almost all of the natural products and their synthetic analogues contain straight carbon chains; however, there are some very promising indications that carbohydrate mimics with hydroxy­methyl branches (Ichikawa & Igarashi, 1995[Ichikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4586.]; Ichikawa et al., 1998[Ichikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007-3018.]), as well as their deoxy­genated equivalents (Lillelund et al., 2003[Lillelund, V. H., Liu, H. Z., Liang, X. F., Sohoel, H. & Bols, M. (2003). Org. Biomol. Chem. 1, 282-287.]; Ostrowski et al., 2003[Ostrowski, J., Altenbach, H. J., Wischnat, R. & Brauer, D. J. (2003). Eur. J. Org. Chem. pp. 1104-1110.]), will show significant inhibition of sugar-metabolizing enzymes. However, the chemistry of simple branched sugars as starting materials is little explored. The title compound, (3[link]), is a powerful intermediate in which a stereochemical ambiguity arises from an aldol reaction; additionally, information about the conformation of both protected and unprotected lactams may help to understand the basis of their biological activity.[link]

[Scheme 1]

The azido­lactol (1[link]) was prepared from D-ribose and submitted to the key aldol branching step. Subsequent oxidation of the aldol product with bromine water gave the branched azido­lactone (2[link]). Hydro­genation of (2[link]) resulted in initial reduction of the azide to the corresponding amine which underwent subsequent isomerization to the title lactam (3[link]). The X-ray crystal structure of (3[link]) removes any ambiguity about the course of the aldol condensation.

[Figure 1]

Figure 1

The molecular structure of (3), with 50% probability displacement ellipsoids.

Experimental

2-C-Hydroxymethyl-2,3-O-isopropylidene-D-ribono-1,5-lactam was obtained on reduction of 5-azido-2,3-O-isopropylidene-D-hamamelono-1,4-lactone, (2[link]), using Pd-black and hydrogen gas in 1,4-dioxane at low reaction concentration (2.5 mg ml−1). A quantitative yield of the title compound was obtained. The title material was then recrystallized using solvent evaporation (methanol), appearing as colourless block crystals.

Crystal data
  • C9H14NO5

  • Mr = 216.21

  • Orthorhombic, P212121

  • a = 7.3137 (1) Å

  • b = 10.6657 (2) Å

  • c = 12.6476 (3) Å

  • V = 986.59 (3) Å3

  • Z = 4

  • Dx = 1.456 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1329 reflections

  • θ = 5–27°

  • μ = 0.12 mm−1

  • T = 150 K

  • Block, colourless

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.976, Tmax = 0.988

  • 2272 measured reflections

  • 1315 independent reflections

  • 1195 reflections with I > 2σ(I)

  • Rint = 0.01

  • θmax = 27.5°

  • h = −9 → 9

  • k = −13 → 13

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 0.98

  • 1315 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F*) + (0.0403p)2 + 0.549p] where p = 0.333max(Fo2,0) + 0.667Fc2

  • (Δ/σ)max < 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1

Selected geometric parameters (Å, °)

C1—C14 1.528 (3)
C1—O11 1.428 (2)
C1—C6 1.531 (3)
C1—C2 1.521 (3)
C2—O9 1.432 (2)
C2—C3 1.513 (3)
C3—O8 1.431 (2)
C3—C4 1.517 (3)
C4—N5 1.473 (3)
N5—C6 1.331 (3)
C6—O7 1.259 (3)
O9—C10 1.438 (2)
C10—C13 1.513 (3)
C10—C12 1.512 (3)
C10—O11 1.444 (2)
C14—O15 1.419 (3)
C14—C1—O11 107.00 (17)
C14—C1—C6 110.38 (17)
O11—C1—C6 107.11 (16)
C14—C1—C2 114.23 (17)
O11—C1—C2 103.03 (16)
C6—C1—C2 114.30 (16)
O9—C2—C3 110.70 (16)
O9—C2—C1 102.89 (15)
C3—C2—C1 111.33 (17)
O8—C3—C4 109.83 (16)
O8—C3—C2 111.11 (16)
C4—C3—C2 109.97 (16)
N5—C4—C3 110.11 (16)
C6—N5—C4 125.82 (18)
O7—C6—N5 122.03 (19)
O7—C6—C1 118.13 (18)
N5—C6—C1 119.79 (18)
C10—O9—C2 108.04 (15)
C13—C10—C12 114.02 (19)
C13—C10—O11 107.24 (16)
C12—C10—O11 110.31 (17)
C13—C10—O9 111.49 (18)
C12—C10—O9 107.55 (17)
O11—C10—O9 105.94 (16)
C1—O11—C10 109.05 (14)
O15—C14—C1 109.28 (17)

H atoms were placed geometrically after each cycle, at a distance of 1.0 Å; Uiso values were set to 1.2 times the Ueq value of the parent atom. The absolute configuration was assumed to be the same as that of the sugar and the Friedel pairs were merged in the final refinement.

Data collection: COLLECT (Nonius, 1997–2001[Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information



Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Hydroxymethyl-2,3-O-isopropylidene-D-ribono-1,5-lactam top
Crystal data top
C9H14NO5 Dx = 1.456 Mg m3
Mr = 216.21 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 1329 reflections
a = 7.3137 (1) Å θ = 5–27°
b = 10.6657 (2) Å µ = 0.12 mm1
c = 12.6476 (3) Å T = 150 K
V = 986.59 (3) Å3 Plate, colourless
Z = 4 0.20 × 0.10 × 0.10 mm
F(000) = 460
Data collection top
Nonius KappaCCD

diffractometer
1195 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.01
ω scans θmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan

(DENZO/SCALEPACK; Otwinowski & Minor, 1996)
h = 99
Tmin = 0.976, Tmax = 0.988 k = 1313
2272 measured reflections l = 1616
1315 independent reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(F*) + (0.0403p)2 + 0.549p]

where p = 0.333max(Fo2,0) + 0.667Fc2
S = 0.98 (Δ/σ)max = 0.000238
1315 reflections Δρmax = 0.44 e Å3
136 parameters Δρmin = 0.25 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
C1 0.7866 (3) 0.0035 (2) 0.02895 (15) 0.0188
C2 0.7198 (3) 0.11166 (19) 0.03931 (16) 0.0193
C3 0.6725 (3) 0.0679 (2) 0.14980 (15) 0.0201
C4 0.5206 (3) 0.0288 (2) 0.14517 (16) 0.0229
N5 0.5697 (2) 0.12992 (17) 0.07111 (15) 0.0231
C6 0.6915 (3) 0.1217 (2) 0.00682 (17) 0.0206
O7 0.7278 (2) 0.21316 (13) 0.06611 (13) 0.0263
O8 0.6178 (2) 0.17082 (15) 0.21510 (11) 0.0246
O9 0.5593 (2) 0.15309 (15) 0.01535 (11) 0.0233
C10 0.5842 (3) 0.1282 (2) 0.12615 (16) 0.0202
O11 0.7351 (2) 0.04121 (14) 0.13309 (11) 0.0213
C12 0.4107 (3) 0.0679 (2) 0.16656 (17) 0.0270
C13 0.6394 (3) 0.2453 (2) 0.18566 (19) 0.0292
C14 0.9941 (3) 0.0134 (2) 0.02935 (16) 0.0218
O15 1.0513 (2) 0.05872 (15) 0.07082 (12) 0.0291
H21 0.8129 0.1802 0.0492 0.0233*
H31 0.7838 0.0248 0.1813 0.0262*
H41 0.4980 0.0634 0.2173 0.0283*
H42 0.4059 0.0146 0.1199 0.0283*
H121 0.4229 0.0489 0.2435 0.0338*
H122 0.3890 0.0127 0.1269 0.0338*
H123 0.3048 0.1253 0.1548 0.0338*
H131 0.6555 0.2262 0.2625 0.0368*
H132 0.7581 0.2780 0.1564 0.0368*
H133 0.5432 0.3116 0.1772 0.0368*
H141 1.0564 0.0687 0.0449 0.0264*
H142 1.0305 0.0751 0.0866 0.0264*
H2 1.1000 0.1353 0.0668 0.0500*
H5 0.6767 0.1578 0.2858 0.0500*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
C1 0.0176 (10) 0.0214 (9) 0.0176 (9) 0.0002 (8) 0.0004 (8) 0.0006 (8)
C2 0.0184 (9) 0.0199 (9) 0.0194 (9) 0.0000 (8) 0.0014 (8) 0.0007 (8)
C3 0.0200 (9) 0.0221 (10) 0.0182 (9) 0.0017 (8) 0.0010 (8) 0.0019 (8)
C4 0.0229 (10) 0.0246 (11) 0.0213 (10) 0.0012 (9) 0.0052 (9) 0.0020 (8)
N5 0.0229 (8) 0.0226 (8) 0.0237 (8) 0.0016 (8) 0.0054 (8) 0.0017 (8)
C6 0.0189 (9) 0.0219 (9) 0.0209 (10) 0.0006 (8) 0.0004 (8) 0.0004 (8)
O7 0.0277 (8) 0.0214 (7) 0.0298 (8) 0.0024 (7) 0.0048 (7) 0.0043 (6)
O8 0.0267 (8) 0.0261 (8) 0.0209 (7) 0.0028 (7) 0.0006 (6) 0.0043 (6)
O9 0.0232 (7) 0.0294 (8) 0.0172 (7) 0.0093 (7) 0.0018 (6) 0.0017 (6)
C10 0.0210 (10) 0.0226 (10) 0.0169 (9) 0.0027 (9) 0.0016 (8) 0.0009 (8)
O11 0.0227 (7) 0.0248 (7) 0.0163 (6) 0.0055 (7) 0.0009 (6) 0.0005 (6)
C12 0.0222 (10) 0.0334 (12) 0.0254 (11) 0.0006 (10) 0.0011 (9) 0.0033 (10)
C13 0.0319 (12) 0.0249 (11) 0.0307 (11) 0.0028 (10) 0.0048 (10) 0.0046 (10)
C14 0.0180 (9) 0.0242 (10) 0.0231 (10) 0.0007 (9) 0.0001 (9) 0.0004 (9)
O15 0.0294 (8) 0.0325 (8) 0.0255 (8) 0.0114 (7) 0.0059 (7) 0.0040 (7)
Geometric parameters (Å, º) top
C1—C14 1.528 (3) O8—H5 1.002
C1—O11 1.428 (2) O9—C10 1.438 (2)
C1—C6 1.531 (3) C10—C13 1.513 (3)
C1—C2 1.521 (3) C10—C12 1.512 (3)
C2—H21 1.007 C10—O11 1.444 (2)
C2—O9 1.432 (2) C12—H123 0.998
C2—C3 1.513 (3) C12—H122 1.007
C3—H31 1.016 C12—H121 0.998
C3—O8 1.431 (2) C13—H133 1.003
C3—C4 1.517 (3) C13—H132 1.006
C4—H42 1.010 C13—H131 0.999
C4—H41 0.998 C14—H142 1.013
C4—N5 1.473 (3) C14—H141 1.007
N5—C6 1.331 (3) C14—O15 1.419 (3)
C6—O7 1.259 (3) O15—H2 0.892
C14—C1—O11 107.00 (17) H5—O8—C3 106.752
C14—C1—C6 110.38 (17) C10—O9—C2 108.04 (15)
O11—C1—C6 107.11 (16) C13—C10—C12 114.02 (19)
C14—C1—C2 114.23 (17) C13—C10—O11 107.24 (16)
O11—C1—C2 103.03 (16) C12—C10—O11 110.31 (17)
C6—C1—C2 114.30 (16) C13—C10—O9 111.49 (18)
H21—C2—O9 112.952 C12—C10—O9 107.55 (17)
H21—C2—C3 105.327 O11—C10—O9 105.94 (16)
O9—C2—C3 110.70 (16) C1—O11—C10 109.05 (14)
H21—C2—C1 113.805 H123—C12—H122 109.083
O9—C2—C1 102.89 (15) H123—C12—H121 109.798
C3—C2—C1 111.33 (17) H122—C12—H121 109.056
H31—C3—O8 110.168 H123—C12—C10 109.863
H31—C3—C4 107.155 H122—C12—C10 109.099
O8—C3—C4 109.83 (16) H121—C12—C10 109.920
H31—C3—C2 108.516 H133—C13—H132 108.752
O8—C3—C2 111.11 (16) H133—C13—H131 109.264
C4—C3—C2 109.97 (16) H132—C13—H131 109.064
H42—C4—H41 108.764 H133—C13—C10 109.966
H42—C4—N5 109.677 H132—C13—C10 109.488
H41—C4—N5 110.531 H131—C13—C10 110.279
H42—C4—C3 107.994 H142—C14—H141 107.835
H41—C4—C3 109.712 H142—C14—O15 109.835
N5—C4—C3 110.11 (16) H141—C14—O15 109.681
C6—N5—C4 125.82 (18) H142—C14—C1 109.874
O7—C6—N5 122.03 (19) H141—C14—C1 110.317
O7—C6—C1 118.13 (18) O15—C14—C1 109.28 (17)
N5—C6—C1 119.79 (18) H2—O15—C14 112.190
 

Acknowledgements

Financial support (to MIS), provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar

First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymm. 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar

First citationHeck, M. P., Vincent, S. P., Murray, B. W., Bellamy, F., Wong, C. H. & Mioskowski, C. (2004). J. Am. Chem. Soc. 126, 1971–1979.  Web of Science CrossRef PubMed CAS Google Scholar

First citationIchikawa, Y. & Igarashi, Y. (1995). Tetrahedron Lett. 36, 4586.  Google Scholar

First citationIchikawa, Y., Igarashi, Y., Ichikawa, M. & Suhara, Y. (1998). J. Am. Chem. Soc. 120, 3007–3018.  Web of Science CrossRef CAS Google Scholar

First citationLillelund, V. H., Liu, H. Z., Liang, X. F., Sohoel, H. & Bols, M. (2003). Org. Biomol. Chem. 1, 282–287.  Web of Science CrossRef PubMed CAS Google Scholar

First citationNonius (1997–2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar

First citationOstrowski, J., Altenbach, H. J., Wischnat, R. & Brauer, D. J. (2003). Eur. J. Org. Chem. pp. 1104–1110.  CSD CrossRef Google Scholar

First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar

First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

First citationWinchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210.  CrossRef PubMed CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds