organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296

10-(4-Chloro­phenyl)-7-methyl-5,6-di­hydro­benzo­[h]­pyrazolo­[5,1-b]­quinazoline and 2-(4-chloro­phenyl)-5-methyl-6,7-di­hydro­benzo­[h]­pyrazolo[1,5-a]­quinazoline: isomeric mol­ecules linked into hydrogen-bonded dimers or π-stacked chains

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cGrupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

*Correspondence e-mail: [email protected]

(Received 24 June 2004; accepted 25 June 2004; online 31 July 2004)

The isomeric title compounds 10-(4-chloro­phenyl)-7-methyl-5,6-di­hydro­benzo­[h]­pyrazolo­[5,1-b]­quinazoline, (I[link]), and 2-(4-chloro­phenyl)-5-methyl-6,7-di­hydro­benzo­[h]­pyrazolo­[1,5-a]quinazoline, (II[link]), both C21H16ClN3, exhibit peripheral delocalization in the heteroaromatic portion of the fused ring system. The mol­ecules of (I[link]) are linked into centrosymmetric dimers by a single C—H⋯π(arene) hydrogen bond, and the mol­ecules of (II[link]), where Z′ = 2, are linked by ππ stacking interactions into chains in which the two types of mol­ecules alternate.

Comment

The quinazoline skeleton is an important pharmacophore which occurs frequently in medicinal chemistry literature (Fry et al., 1994[Fry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093-1095.]). In particular, pyrazolo­[1,5-c]­quinazolinones have been shown to be potent amino acid antagonists (McQuaid et al., 1992[McQuaid, L., Smith, E., South, K., Mitch, C. H., Schoepp, D., True, R., Calligaro, D., O'Malley, P., Lodge, D. & Ornstein, P. (1992). J. Med. Chem. 35, 3319-3324.]), and anti-inflammatory, antiasthmatic and anti­allergenic agents and immunosuppressants (Casey et al., 1980[Casey, F. B., Abboa-Offei, B. E. & Marretta, J. (1980). J. Pharmacol. Exp. Ther. 213, 432-436.]). Continuing our studies of the application of free-solvent cyclo­condensation procedures under microwave irradiation, we have now prepared two benzo-fused pyrazolo­[5,1-b]quinazolines from a 5-amino­pyrazole and 2-acetyl-1-tetralone, resulting in a regioisomeric mixture 10-(4-chloro­phenyl)-7-methyl-5,6-di­hydro­benzo­[h]­pyrazolo­[5,1-b]­quinazoline, (I[link]), and 2-(4-chloro­phenyl)-5-methyl-6,7-di­hydro­benzo­[h]­pyrazolo[1,5-a]­quinazoline, (II[link]), in an approximate ratio of 1:4.

The isomeric compounds (I[link]) and (II[link]) both crystallize in space group P[\overline 1], but with Z′ values of 1 and 2, respectively. Within the mol­ecule of (I[link]) (Fig. 1[link]), the C10—C11 and C11—C12 bonds, which in the classically bond-localized form are double and single bonds, respectively, differ in length by only

[Scheme 1]
ca 0.01 Å (Table 1[link]). Similarly, the C12—N1 and N9—C10 bonds, which are formally double and single bonds, respectively, are nearly identical in length. At the same time, the N1a—C10 bond is much longer than the other formally single N—C bonds, N1a—C2 and N9—C10. Taken together, these observations indicate an important contribution to the overall molecular–electronic structure of the heterobicyclic portion of the mol­ecule, of a fairly delocalized 10-π periphery with a rather weak cross-ring bond. A similar pattern of distances, leading to a similar conclusion, is apparent in each of the two independent mol­ecules, 1 and 2, of compound (II[link]) (Fig. 2[link] Table 3[link]).

By contrast, the bond lengths in the terminal carbocyclic rings of the fused ring system, ring C4a/C5–C8/C8a in (I[link]) and rings Cn1c/Cn2–Cn5/Cn5a in (II[link]), where n = 1 or 2 for the mol­ecules of types 1 and 2 (Fig. 2[link]), are consistent with typical aromatic delocalization. For the intervening non-planar rings, the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence C2a/C3/C4/C4a/C8a/C8b in (I[link]), θ = 113.7 (4)° and φ = 268.4 (4)°, correspond to a conformation intermediate between the half-chair and screw-boat forms (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]). For the atom sequences Cn1b/Cn1c/Cn5a/Cn6/Cn7/Cn7a in (II[link]), the corresponding values are θ = 68.6 (4)° and φ = 205.6 (4)° for n = 1, and θ = 68.5 (4)° and φ = 206.6 (4)° for n = 2, corresponding very closely to the screw-boat conformation.

The mol­ecules in (I[link]) are linked into centrosymmetric dimers by means of a single C—H⋯π(arene) hydrogen bond (Table 2[link]). Atom C3 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H3A, to the chlorinated ring (C31–C36) in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a dimer centred at ([{1 \over 2}], [{1 \over 2}], [{1 \over 2}]) (Fig. 3[link]). There are no direction-specific interactions between these dimers.

In compound (II[link]), the mol­ecules are linked into chains by the concerted action of two independent ππ stacking interactions. The heterocyclic ring containing atom N19 in the type 1 mol­ecule at (x, y, z) makes a dihedral angle of 1.5 (2)° with each of the chlorinated rings in the two type 2 mol­ecules at (x, y, z) and (1 + x, y, z). The interplanar spacings are both ca 3.47 Å, and the ring-centroid separations are 3.544 (2) Å within the asymmetric unit, and 3.546 (2) Å to the mol­ecule at (1 + x, y, z). These interactions are augmented by an entirely complementary pair of interactions between the ring containing atom N29 in the type 2 mol­ecules at (x, y, z) and (1 + x, y, z), and the chlorinated ring in the type 1 mol­ecule at (x, y, z). Here, the dihedral angles between adjacent ring planes are both 7.2 (2)°, with interplanar spacings of ca 3.5 Å within the asymmetric unit and ca 3.47 Å to the adjacent unit. The respective ring-centroid separations are 3.589 (2) and 3.503 (2) Å. The effect of these interactions is to link the mol­ecules into a chain running parallel to the [100] direction, in which mol­ecules of the two types alternate. Two anti-parallel chains of this type pass through each unit cell (Fig. 4[link]), but there are no direction-specific interactions between adjacent chains.

[Figure 1]

Figure 1

A view of the mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]

Figure 2

The two independent mol­ecules of (II[link]), showing the atom-labelling scheme in (a) a type 1 mol­ecule and (b) a type 2 mol­ecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3]

Figure 3

Part of the crystal structure of (I[link]), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4]

Figure 4

A stereoview of part of the crystal structure of (II[link]), showing an anti-parallel pair of π-stacked chains along [100]. For the sake of clarity, H atoms have been omitted.

Experimental

Equimolar quantities of 5-amino-3-(4-chloro­phenyl)-1H-pyrazole (500 mg, 2.6 mmol) and 2-acetyl-1-tetralone (485 mg, 2.6 mmol) were placed in Pyrex open vessels and irradiated in a domestic microwave oven for 1.5 min at 600 W. The product mixture was extracted with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane–ethyl acetate (3:1 v/v) as eluant. Compound (I[link]) was obtained as the first fraction (yield 18%, m.p. 449 K). MS (EI, 70 eV, %): 348/346 (8/­35, M+1), 347/345 (39/100, M+), 344 (28), 166 (11), 75 (8). Analysis found: C 72.9, H 4.6, N 12.2%; C21H16ClN3 requires: C 72.9, H 4.7, N 12.2%. Yellow crystals of (I[link]) suitable for single-crystal X-ray diffraction were obtained by direct evaporation of the chromatographic eluate. Compound (II[link]) was obtained as the second fraction (yield 70%, m.p. 505 K). MS (EI, 70 eV, %): 348/346 (8/32, M+1), 347/345 (37/100, M+), 344 (24), 166 (22), 75 (30). Analysis found: C 72.8, H 4.6, N 12.1%; C21H16ClN3 requires: C 72.9, H 4.7, N 12.2%. Brown crystals of (II[link]) suitable for single-crystal X-ray diffraction were obtained by direct evaporation of the chromatographic eluate.

Compound (I)[link]

Crystal data
  • C21H16ClN3

  • Mr = 345.82

  • Triclinic, [P\overline 1]

  • a = 9.2382 (8) Å

  • b = 10.3054 (8) Å

  • c = 10.3184 (9) Å

  • α = 62.720 (4)°

  • β = 83.098 (4)°

  • γ = 70.531 (5)°

  • V = 822.54 (12) Å3

  • Z = 2

  • Dx = 1.396 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3763 reflections

  • θ = 3.3–27.6°

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.34 × 0.19 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.981

  • 17 454 measured reflections

  • 3763 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.094

  • θmax = 27.6°

  • h = −11 → 11

  • k = −13 → 12

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.153

  • S = 0.96

  • 3763 reflections

  • 229 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0709P)2 + 0.3108P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1

Selected geometric parameters (Å) for (I)[link]

N1—N1a 1.357 (3)
N1a—C2 1.365 (3)
C2—C2a 1.365 (4)
C2a—C8b 1.442 (4)
C8b—N9 1.319 (3)
N9—C10 1.351 (3)
C10—C11 1.381 (4)
C11—C12 1.393 (4)
C12—N1 1.345 (3)
N1a—C10 1.394 (3)

Table 2

Hydrogen-bonding geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.99 2.92 3.815 (3) 150
Symmetry code: (i) 1-x,1-y,1-z.

Compound (II)[link]

Crystal data
  • C21H16ClN3

  • Mr = 345.82

  • Triclinic, [P\overline 1]

  • a = 7.0098 (3) Å

  • b = 15.0306 (7) Å

  • c = 17.0060 (8) Å

  • α = 111.492 (2)°

  • β = 101.406 (3)°

  • γ = 97.981 (3)°

  • V = 1589.81 (13) Å3

  • Z = 4

  • Dx = 1.445 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7321 reflections

  • θ = 3.0–27.6°

  • μ = 0.25 mm−1

  • T = 120 (2) K

  • Needle, pale brown

  • 0.14 × 0.04 × 0.03 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.993

  • 35 785 measured reflections

  • 7321 independent reflections

  • 4073 reflections with I > 2σ(I)

  • Rint = 0.113

  • θmax = 27.6°

  • h = −8 → 9

  • k = −19 → 19

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.152

  • S = 1.03

  • 7321 reflections

  • 453 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1965P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 3

Selected geometric parameters (Å) for (II)[link]

N11—N11a 1.359 (3)
N11a—C11b 1.381 (3)
C11b—C17a 1.378 (4)
C17a—C18 1.419 (4)
C18—N19 1.321 (3)
N19—C19a 1.351 (3)
C19a—C110 1.379 (4)
C110—C111 1.398 (4)
C111—N11 1.348 (3)
N11a—C19a 1.393 (3)
N21—N21a 1.355 (3)
N21a—C21b 1.378 (3)
C21b—C27a 1.381 (4)
C27a—C28 1.422 (4)
C28—N29 1.316 (3)
N29—C29a 1.350 (3)
C29a—C210 1.377 (4)
C210—C211 1.390 (4)
C211—N21 1.348 (3)
N21a—C29a 1.403 (3)

Crystals of compounds (I[link]) and (II[link]) are triclinic. For each, the space group P[\overline 1] was selected and confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

For both compounds, data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 3-17.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information



Comment top

The quinazoline skeleton is an important pharmacophore which occurs frequently in medicinal chemistry literature (Fry et al., 1994). In particular, pyrazolo[1,5-c]quinazolinones have been shown to be potent amino acid antagonists (McQuaid et al., 1992), and antiinflammatory, antiasthmatic and antiallergenic agents and immunosuppressants (Casey et al., 1980). Continuing our studies of the application of free-solvent cyclocondensation procedures under microwave irradiation, we have now prepared two benzo-fused pyrazolo[5,1-b]quinazolines from a 5-aminopyrazole and 2-acetyl-1-tetralone, resulting in a regioisomeric mixture of 9-(4-chlorophenyl)-7-methyl-5,6-dihydrobenzo[h]pyrazolo[5,1-b]quinazoline, (I), and 2-(4-chlorophenyl)-5-methyl-6,7-dihydrobenzo[e]pyrazolo[5,1-b]quinazoline, (II), in an approximate ratio of 1:4. \sch

The isomeric compounds (I) and (II) both crystallize in space group P1, but with Z' values of 1 and 2, respectively. Within the molecule of (I) (Fig. 1), the C10—C11 and C11—C12 bonds, which in the classically bond-localized form are double and single bonds respectively, differ in length by only ca 0.01 Å (Table 1). Similarly, the C12—N1 and N9—C10 bonds, which are formally double and single bonds, respectively, are nearly identical in length. At the same time, the N1a—C10 bond is much longer than the other formally single N—C bonds, N1a—C2 and N9—C10. Taken together, these observations indicate an important contribution to the overall molecular-electronic structure of the heterobicyclic portion of the molecule, of a fairly delocalized 10-π periphery with a rather weak cross-ring bond. A similar pattern of distances, leading to a similar conclusion, is apparent in each of the two independent molecules, 1 and 2, of compound (II) (Fig. 2, Table 3).

By contrast, the bond lengths in the terminal carbocyclic rings of the fused ring system, ring C4a/C5—C8/C8a in (I) and the rings Cn1C/Cn2—Cn5/Cn5A in (II), where n = 1 or 2 for the molecules of types 1 and 2 (Fig. 2), are consistent with typical aromatic delocalization. For the intervening non-planar rings, the ring-puckering parameters (Cremer & Pople, 1975) for the atom sequence C2a/C3/C4/C4a/C8a/C8b in (I), θ = 113.7 (4)° and ϕ = 268.4 (4)°, correspond to a conformation intermediate between the half-chair and screw-boat forms (Evans & Boeyens, 1989). For the atom sequences Cn1B/Cn1C/Cn5A/Cn6/Cn7/Cn7A in (II), the corresponding values are θ = 68.6 (4)° and ϕ = 205.6 (4)° for n = 1, and θ = 68.5 (4)° and ϕ = 206.6 (4)° for n = 2, corresponding very closely to the screw-boat conformation.

The molecules in (I) are linked into centrosymmetric dimers by means of a single C—H···π(arene) hydrogen bond (Table 2). Atom C3 in the molecule at (x, y, z) acts as hydrogen-bond donor, via the axial atom H3A, to the chlorinated ring (C31—C36) in the molecule at (1 − x, 1 − y, 1 − z), so generating a dimer centred at (1/2, 1/2, 1/2) (Fig. 3). There are no direction-specific interactions between these dimers.

In compound (II), the molecules are linked into chains by the concerted action of two independent ππ stacking interactions. The heterocyclic ring containing atom N19 in the type 1 molecule at (x, y, z) makes a dihedral angle of 1.5 (2)° with each of the chlorinated rings in the two type 2 molecules at (x, y, z) and (1 + x, y, z). The interplanar spacings are both ca 3.47 Å, and the ring-centroid separations are 3.544 (2) Å within the asymmetric unit, and 3.546 (2) Å to the molecule at (1 + x, y, z). These interactions are augmented by an entirely complementary pair of interactions between the ring containing atom N29 in the type 2 molecules at (x, y, z) and (1 + x, y, z), and the chlorinated ring in the type 1 molecule at (x, y, z). Here, the dihedral angles between adjacent ring planes are both 7.2 (2)°, with interplanar spacings of ca 3.5 Å within the asymmetric unit and ca 3.47 Å to the adjacent unit. The respective ring-centroid separations are 3.589 (2) and 3.503 (2) Å. The effect of these interactions is to link the molecules into a chain running parallel to the [100] direction, in which molecules of the two types alternate. Two antiparallel chains of this type pass through each unit cell (Fig. 4), but there are no direction-specific interactions between adjacent chains.

Table 2. Hydrogen bond parameters (Å, °) for compound (I); Cg1 is centroid of ring (C31—C36)

Experimental top

Equimolar amounts of 5-amino-3-(4-chlorophenyl)-1H-pyrazole (500 mg, 2.6 mmol) and 2-acetyl-1-tetralone (485 mg, 2.6 mmol) were placed in Pyrex open vessels and irradiated in a domestic microwave oven for 1.5 min at 600 W. The product mixture was extracted with ethanol. After the solvent had been removed, the products were separated by column chromatography on silica gel, using hexane-ethyl acetate (3:1 v/v) as eluent. Compound (I) was obtained as the first fraction (yield 18%, m.p. 449 K). MS (EI, 70 eV, %): 348/346 (8/35, M+1), 347/345 (39/100, M+), 344 (28), 166 (11), 75 (8). Analysis, found: C 72.9, H 4.6, N 12.2%; C21H16ClN3 requires: C 72.9, H 4.7, N 12.2%. Yellow crystals of (I) suitable for single-crystal X-ray diffraction were obtained by direct evaporation of the chromatographic eluate. Compound (II) was obtained as the second fraction (yield 70%, m.p. 505 K). MS (EI, 70 eV, %): 348/346 (8/32, M+1), 347/345 (37/100, M+), 344 (24), 166 (22), 75 (30). Analysis, found: C 72.8, H 4.6, N 12.1%; C21H16ClN3 requires: C 72.9, H 4.7, N 12.2%. Brown crystals of (II) suitable for single-crystal X-ray diffraction were obtained by direct evaporation of the chromatographic eluate.

Refinement top

Crystals of compounds (I) and (II) are triclinic. For each, the space group P1 was selected and then confirmed by the structure analysis. All H atoms were located from difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (aromatic and heteroaromatic), 0.98 (CH3) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The two independent molecules of (II), showing the atom-labelling scheme. (a) A type 1 molecule. (b) A type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing an antiparallel pair of π-stacked chains along [100]. For the sake of clarity, H atoms have been omitted.
(I) 9-(4-Chlorophenyl)-7-methyl-5,6-dihydrobenzo[h]pyrazolo[3,2-b]quinazoline top
Crystal data top
C21H16ClN3 Z = 2
Mr = 345.82 F(000) = 360
Triclinic, P1 Dx = 1.396 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.2382 (8) Å Cell parameters from 3763 reflections
b = 10.3054 (8) Å θ = 3.3–27.6°
c = 10.3184 (9) Å µ = 0.24 mm1
α = 62.720 (4)° T = 120 K
β = 83.098 (4)° Plate, yellow
γ = 70.531 (5)° 0.34 × 0.19 × 0.08 mm
V = 822.54 (12) Å3
Data collection top
Nonius KappaCCD area-detector

diffractometer
3763 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 2156 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.094
Detector resolution: 9.091 pixels mm-1 θmax = 27.6°, θmin = 3.3°
ϕ and ω scans h = 1111
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
k = 1312
Tmin = 0.914, Tmax = 0.981 l = 1313
17454 measured reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.3108P]

where P = (Fo2 + 2Fc2)/3
3763 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = 0.30 e Å3
Crystal data top
C21H16ClN3 γ = 70.531 (5)°
Mr = 345.82 V = 822.54 (12) Å3
Triclinic, P1 Z = 2
a = 9.2382 (8) Å Mo Kα radiation
b = 10.3054 (8) Å µ = 0.24 mm1
c = 10.3184 (9) Å T = 120 K
α = 62.720 (4)° 0.34 × 0.19 × 0.08 mm
β = 83.098 (4)°
Data collection top
Nonius KappaCCD area-detector

diffractometer
3763 independent reflections
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
2156 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.981 Rint = 0.094
17454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065 0 restraints
wR(F2) = 0.153 H-atom parameters constrained
S = 0.96 Δρmax = 0.30 e Å3
3763 reflections Δρmin = 0.30 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
N1 0.5577 (3) 0.6152 (2) 0.2713 (2) 0.0255 (5)
N1a 0.5130 (3) 0.6765 (2) 0.3669 (2) 0.0243 (5)
C2 0.3685 (3) 0.7693 (3) 0.3697 (3) 0.0255 (6)
C2a 0.3464 (3) 0.8265 (3) 0.4691 (3) 0.0242 (6)
C3 0.1939 (3) 0.9296 (3) 0.4859 (3) 0.0264 (6)
C4 0.2139 (3) 1.0496 (3) 0.5235 (3) 0.0270 (6)
C5 0.3036 (3) 1.0335 (3) 0.7534 (3) 0.0286 (7)
C4a 0.3231 (3) 0.9742 (3) 0.6536 (3) 0.0246 (6)
C6 0.4060 (3) 0.9650 (3) 0.8719 (3) 0.0319 (7)
C7 0.5291 (3) 0.8343 (3) 0.8922 (3) 0.0301 (7)
C8 0.5501 (3) 0.7751 (3) 0.7927 (3) 0.0276 (6)
C8a 0.4484 (3) 0.8441 (3) 0.6724 (3) 0.0245 (6)
C8b 0.4733 (3) 0.7819 (3) 0.5657 (3) 0.0227 (6)
N9 0.6107 (3) 0.6882 (2) 0.5635 (2) 0.0252 (5)
C10 0.6331 (3) 0.6356 (3) 0.4620 (3) 0.0238 (6)
C11 0.7595 (3) 0.5459 (3) 0.4217 (3) 0.0267 (6)
C12 0.7079 (3) 0.5372 (3) 0.3054 (3) 0.0264 (6)
C21 0.2530 (3) 0.7957 (3) 0.2637 (3) 0.0323 (7)
C31 0.7918 (3) 0.4546 (3) 0.2206 (3) 0.0250 (6)
C32 0.7111 (3) 0.4332 (3) 0.1301 (3) 0.0284 (7)
C33 0.7858 (3) 0.3537 (3) 0.0516 (3) 0.0295 (7)
C34 0.9444 (3) 0.2940 (3) 0.0637 (3) 0.0286 (7)
Cl34 1.04079 (9) 0.19353 (9) 0.03472 (9) 0.0413 (3)
C35 1.0280 (3) 0.3134 (3) 0.1521 (3) 0.0305 (7)
C36 0.9516 (3) 0.3938 (3) 0.2302 (3) 0.0293 (7)
H3A 0.1381 0.8667 0.5641 0.032*
H3B 0.1315 0.9821 0.3938 0.032*
H4A 0.2541 1.1232 0.4388 0.045 (9)*
H4B 0.1129 1.1078 0.5452 0.030 (7)*
H5 0.2189 1.1223 0.7404 0.034*
H6 0.3919 1.0074 0.9389 0.038*
H7 0.5984 0.7858 0.9740 0.036*
H8 0.6350 0.6863 0.8063 0.033*
H11 0.8606 0.4997 0.4643 0.032*
H21A 0.2779 0.8591 0.1644 0.048*
H21B 0.1504 0.8486 0.2852 0.048*
H21C 0.2547 0.6966 0.2719 0.048*
H32 0.6022 0.4743 0.1223 0.034*
H33 0.7293 0.3402 0.0098 0.035*
H35 1.1369 0.2720 0.1593 0.037*
H36 1.0086 0.4076 0.2910 0.035*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
N1 0.0274 (14) 0.0257 (12) 0.0236 (13) 0.0049 (10) 0.0026 (10) 0.0139 (10)
N1a 0.0261 (13) 0.0252 (12) 0.0228 (13) 0.0078 (10) 0.0000 (10) 0.0116 (10)
C2 0.0233 (16) 0.0258 (15) 0.0229 (15) 0.0043 (12) 0.0008 (12) 0.0095 (12)
C2a 0.0254 (15) 0.0225 (14) 0.0214 (15) 0.0072 (12) 0.0010 (12) 0.0073 (12)
C3 0.0231 (15) 0.0298 (15) 0.0253 (15) 0.0052 (12) 0.0020 (12) 0.0130 (12)
C4 0.0251 (16) 0.0254 (15) 0.0294 (16) 0.0071 (12) 0.0002 (12) 0.0117 (13)
C5 0.0299 (16) 0.0282 (15) 0.0270 (16) 0.0091 (13) 0.0042 (13) 0.0126 (13)
C4a 0.0245 (15) 0.0252 (14) 0.0251 (15) 0.0085 (12) 0.0024 (12) 0.0120 (12)
C6 0.0373 (18) 0.0345 (16) 0.0274 (17) 0.0139 (14) 0.0069 (14) 0.0163 (14)
C7 0.0342 (17) 0.0339 (16) 0.0231 (16) 0.0105 (13) 0.0011 (13) 0.0130 (13)
C8 0.0240 (15) 0.0287 (15) 0.0287 (16) 0.0059 (12) 0.0003 (12) 0.0131 (13)
C8a 0.0240 (15) 0.0279 (15) 0.0227 (15) 0.0117 (12) 0.0005 (12) 0.0096 (12)
C8b 0.0234 (15) 0.0219 (14) 0.0214 (15) 0.0075 (12) 0.0017 (12) 0.0084 (12)
N9 0.0275 (13) 0.0265 (12) 0.0244 (13) 0.0088 (10) 0.0012 (10) 0.0134 (11)
C10 0.0241 (15) 0.0223 (14) 0.0245 (15) 0.0079 (12) 0.0008 (12) 0.0093 (12)
C11 0.0230 (15) 0.0281 (15) 0.0286 (16) 0.0061 (12) 0.0006 (12) 0.0133 (13)
C12 0.0254 (16) 0.0244 (14) 0.0280 (16) 0.0071 (12) 0.0012 (12) 0.0112 (12)
C21 0.0261 (16) 0.0375 (17) 0.0315 (17) 0.0047 (13) 0.0033 (13) 0.0166 (14)
C31 0.0273 (16) 0.0235 (14) 0.0211 (15) 0.0060 (12) 0.0011 (12) 0.0081 (12)
C32 0.0261 (16) 0.0259 (15) 0.0277 (16) 0.0036 (12) 0.0006 (12) 0.0104 (13)
C33 0.0279 (17) 0.0294 (15) 0.0311 (17) 0.0061 (13) 0.0000 (13) 0.0152 (13)
C34 0.0335 (17) 0.0266 (15) 0.0257 (16) 0.0075 (13) 0.0011 (13) 0.0131 (13)
Cl34 0.0385 (5) 0.0466 (5) 0.0441 (5) 0.0042 (4) 0.0021 (4) 0.0309 (4)
C35 0.0275 (16) 0.0299 (16) 0.0312 (17) 0.0071 (13) 0.0010 (13) 0.0127 (13)
C36 0.0334 (18) 0.0298 (15) 0.0275 (16) 0.0120 (13) 0.0001 (13) 0.0132 (13)
Geometric parameters (Å, º) top
N1—N1a 1.357 (3) C5—H5 0.95
N1a—C2 1.365 (3) C4a—C8a 1.399 (4)
C2—C2a 1.365 (4) C6—C7 1.389 (4)
C2a—C8b 1.442 (4) C6—H6 0.95
C8b—N9 1.319 (3) C7—C8 1.381 (4)
N9—C10 1.351 (3) C7—H7 0.95
C10—C11 1.381 (4) C8—C8a 1.398 (4)
C11—C12 1.393 (4) C8—H8 0.95
C12—N1 1.345 (3) C8a—C8b 1.471 (4)
N1a—C10 1.394 (3) C11—H11 0.95
C2—C21 1.492 (4) C12—C31 1.473 (4)
C21—H21A 0.98 C31—C36 1.393 (4)
C21—H21B 0.98 C31—C32 1.394 (4)
C21—H21C 0.98 C32—C33 1.379 (4)
C2a—C3 1.502 (4) C32—H32 0.95
C3—C4 1.524 (4) C33—C34 1.383 (4)
C3—H3A 0.99 C33—H33 0.95
C3—H3B 0.99 C34—C35 1.382 (4)
C4—C4a 1.507 (4) C34—Cl34 1.741 (3)
C4—H4A 0.99 C35—C36 1.385 (4)
C4—H4B 0.99 C35—H35 0.95
C5—C4a 1.387 (4) C36—H36 0.95
C5—C6 1.390 (4)
C12—N1—N1a 104.2 (2) C6—C7—H7 120.2
N1—N1a—C2 124.6 (2) C7—C8—C8a 121.0 (3)
N1—N1a—C10 112.1 (2) C7—C8—H8 119.5
C2—N1a—C10 123.2 (2) C8a—C8—H8 119.5
N1a—C2—C2a 116.5 (2) C8—C8a—C4a 119.3 (2)
N1a—C2—C21 115.8 (2) C8—C8a—C8b 120.6 (2)
C2a—C2—C21 127.7 (2) C4a—C8a—C8b 120.1 (2)
C2—C21—H21A 109.5 N9—C8b—C2a 123.5 (2)
C2—C21—H21B 109.5 N9—C8b—C8a 118.2 (2)
H21A—C21—H21B 109.5 C2a—C8b—C8a 118.4 (2)
C2—C21—H21C 109.5 C8b—N9—C10 117.5 (2)
H21A—C21—H21C 109.5 N9—C10—C11 133.9 (2)
H21B—C21—H21C 109.5 N9—C10—N1a 120.5 (2)
C2—C2a—C8b 118.7 (2) C11—C10—N1a 105.6 (2)
C2—C2a—C3 122.8 (2) C10—C11—C12 105.6 (2)
C8b—C2a—C3 118.4 (2) C10—C11—H11 127.2
C2a—C3—C4 111.3 (2) C12—C11—H11 127.2
C2a—C3—H3A 109.4 N1—C12—C11 112.5 (2)
C4—C3—H3A 109.4 N1—C12—C31 117.8 (2)
C2a—C3—H3B 109.4 C11—C12—C31 129.7 (3)
C4—C3—H3B 109.4 C36—C31—C32 118.4 (3)
H3A—C3—H3B 108.0 C36—C31—C12 121.6 (2)
C4a—C4—C3 110.7 (2) C32—C31—C12 119.9 (2)
C4a—C4—H4A 109.5 C33—C32—C31 121.5 (3)
C3—C4—H4A 109.5 C33—C32—H32 119.3
C4a—C4—H4B 109.5 C31—C32—H32 119.3
C3—C4—H4B 109.5 C32—C33—C34 118.9 (3)
H4A—C4—H4B 108.1 C32—C33—H33 120.6
C4a—C5—C6 121.0 (3) C34—C33—H33 120.6
C4a—C5—H5 119.5 C35—C34—C33 121.2 (3)
C6—C5—H5 119.5 C35—C34—Cl34 119.3 (2)
C5—C4a—C8a 119.4 (2) C33—C34—Cl34 119.6 (2)
C5—C4a—C4 121.2 (2) C34—C35—C36 119.4 (3)
C8a—C4a—C4 119.5 (2) C34—C35—H35 120.3
C7—C6—C5 119.8 (3) C36—C35—H35 120.3
C7—C6—H6 120.1 C35—C36—C31 120.7 (3)
C5—C6—H6 120.1 C35—C36—H36 119.7
C8—C7—C6 119.7 (3) C31—C36—H36 119.7
C8—C7—H7 120.2
C12—N1—N1a—C2 178.2 (2) C4a—C8a—C8b—N9 161.9 (2)
C12—N1—N1a—C10 0.9 (3) C8—C8a—C8b—C2a 162.6 (2)
N1—N1a—C2—C2a 176.9 (2) C4a—C8a—C8b—C2a 18.0 (4)
C10—N1a—C2—C2a 2.1 (4) C2a—C8b—N9—C10 1.9 (4)
N1—N1a—C2—C21 3.4 (4) C8a—C8b—N9—C10 178.1 (2)
C10—N1a—C2—C21 177.7 (2) C8b—N9—C10—C11 175.6 (3)
N1a—C2—C2a—C8b 2.0 (4) C8b—N9—C10—N1a 1.8 (4)
C21—C2—C2a—C8b 177.7 (3) N1—N1a—C10—N9 178.9 (2)
N1a—C2—C2a—C3 179.7 (2) C2—N1a—C10—N9 0.2 (4)
C21—C2—C2a—C3 0.0 (4) N1—N1a—C10—C11 0.8 (3)
C2—C2a—C3—C4 144.8 (3) C2—N1a—C10—C11 178.3 (2)
C8b—C2a—C3—C4 37.5 (3) N9—C10—C11—C12 178.1 (3)
C2a—C3—C4—C4a 52.6 (3) N1a—C10—C11—C12 0.4 (3)
C6—C5—C4a—C8a 0.4 (4) N1a—N1—C12—C11 0.6 (3)
C6—C5—C4a—C4 179.0 (3) N1a—N1—C12—C31 179.5 (2)
C3—C4—C4a—C5 146.1 (3) C10—C11—C12—N1 0.2 (3)
C3—C4—C4a—C8a 35.4 (3) C10—C11—C12—C31 178.8 (3)
C4a—C5—C6—C7 0.6 (4) N1—C12—C31—C36 168.5 (2)
C5—C6—C7—C8 1.2 (4) C11—C12—C31—C36 12.8 (4)
C6—C7—C8—C8a 0.6 (4) N1—C12—C31—C32 12.7 (4)
C7—C8—C8a—C4a 0.5 (4) C11—C12—C31—C32 165.9 (3)
C7—C8—C8a—C8b 178.9 (2) C36—C31—C32—C33 0.1 (4)
C5—C4a—C8a—C8 1.0 (4) C12—C31—C32—C33 178.6 (2)
C4—C4a—C8a—C8 179.5 (2) C31—C32—C33—C34 0.1 (4)
C5—C4a—C8a—C8b 178.4 (2) C32—C33—C34—C35 0.3 (4)
C4—C4a—C8a—C8b 0.1 (4) C32—C33—C34—Cl34 179.9 (2)
C2—C2a—C8b—N9 0.1 (4) C33—C34—C35—C36 0.1 (4)
C3—C2a—C8b—N9 177.9 (2) Cl34—C34—C35—C36 179.8 (2)
C2—C2a—C8b—C8a 180.0 (2) C34—C35—C36—C31 0.1 (4)
C3—C2a—C8b—C8a 2.2 (4) C32—C31—C36—C35 0.3 (4)
C8—C8a—C8b—N9 17.5 (4) C12—C31—C36—C35 178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
C3—H3A···Cg1i 0.99 2.92 3.815 (3) 150
Symmetry code: (i) x+1, y+1, z+1.
(II) 2-(4-Chlorophenyl)-5-methyl-6,7-dihydrobenzo[e]pyrazolo[2,3-b]quinazoline top
Crystal data top
C21H16ClN3 Z = 4
Mr = 345.82 F(000) = 720
Triclinic, P1 Dx = 1.445 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0098 (3) Å Cell parameters from 7321 reflections
b = 15.0306 (7) Å θ = 3.0–27.6°
c = 17.0060 (8) Å µ = 0.25 mm1
α = 111.492 (2)° T = 120 K
β = 101.406 (3)° Needle, pale brown
γ = 97.981 (3)° 0.14 × 0.04 × 0.03 mm
V = 1589.81 (13) Å3
Data collection top
Nonius KappaCCD area-detector

diffractometer
7321 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 4073 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.113
Detector resolution: 9.091 pixels mm-1 θmax = 27.6°, θmin = 3.0°
ϕ and ω scans h = 89
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
k = 1919
Tmin = 0.949, Tmax = 0.993 l = 2222
35785 measured reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.1965P]

where P = (Fo2 + 2Fc2)/3
7321 reflections (Δ/σ)max < 0.001
453 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = 0.37 e Å3
Crystal data top
C21H16ClN3 γ = 97.981 (3)°
Mr = 345.82 V = 1589.81 (13) Å3
Triclinic, P1 Z = 4
a = 7.0098 (3) Å Mo Kα radiation
b = 15.0306 (7) Å µ = 0.25 mm1
c = 17.0060 (8) Å T = 120 K
α = 111.492 (2)° 0.14 × 0.04 × 0.03 mm
β = 101.406 (3)°
Data collection top
Nonius KappaCCD area-detector

diffractometer
7321 independent reflections
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
4073 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.993 Rint = 0.113
35785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061 0 restraints
wR(F2) = 0.152 H-atom parameters constrained
S = 1.03 Δρmax = 0.30 e Å3
7321 reflections Δρmin = 0.37 e Å3
453 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Cl14 0.62859 (10) 0.90803 (5) 0.31741 (5) 0.0308 (2)
N11 0.5024 (3) 0.42836 (16) 0.24275 (15) 0.0256 (5)
N11a 0.4963 (3) 0.35103 (16) 0.26626 (14) 0.0227 (5)
N19 0.5274 (3) 0.31548 (17) 0.39424 (15) 0.0263 (5)
C11b 0.4606 (4) 0.2532 (2) 0.21034 (17) 0.0229 (6)
C11c 0.4432 (4) 0.2215 (2) 0.11577 (18) 0.0244 (6)
C12 0.5273 (4) 0.2821 (2) 0.07935 (18) 0.0265 (7)
C13 0.5161 (4) 0.2454 (2) 0.00915 (18) 0.0283 (7)
C14 0.4190 (4) 0.1488 (2) 0.06282 (19) 0.0311 (7)
C15 0.3350 (4) 0.0882 (2) 0.02794 (18) 0.0296 (7)
C15a 0.3476 (4) 0.1226 (2) 0.06073 (18) 0.0263 (7)
C16 0.2648 (4) 0.0573 (2) 0.10087 (18) 0.0302 (7)
C17 0.4042 (4) 0.0786 (2) 0.18979 (18) 0.0290 (7)
C17a 0.4509 (4) 0.18713 (19) 0.24891 (18) 0.0237 (6)
C18 0.4903 (4) 0.2215 (2) 0.34146 (18) 0.0245 (6)
C19a 0.5276 (4) 0.3805 (2) 0.35650 (18) 0.0244 (6)
C110 0.5556 (4) 0.4814 (2) 0.39119 (18) 0.0261 (7)
C111 0.5387 (4) 0.5070 (2) 0.31936 (17) 0.0232 (6)
C131 0.5579 (4) 0.6054 (2) 0.31877 (18) 0.0232 (6)
C132 0.5459 (4) 0.6180 (2) 0.24087 (18) 0.0253 (6)
C133 0.5664 (4) 0.7099 (2) 0.23978 (18) 0.0274 (7)
C134 0.6000 (4) 0.79088 (19) 0.31782 (18) 0.0243 (6)
C135 0.6134 (4) 0.7813 (2) 0.39600 (18) 0.0276 (7)
C136 0.5913 (4) 0.6884 (2) 0.39648 (18) 0.0280 (7)
C181 0.4976 (4) 0.1508 (2) 0.38531 (19) 0.0319 (7)
Cl24 0.05261 (11) 0.09943 (5) 0.27457 (5) 0.0378 (2)
N21 0.0130 (3) 0.53992 (16) 0.24916 (15) 0.0275 (6)
N21a 0.0454 (3) 0.63920 (16) 0.28162 (14) 0.0234 (5)
N29 0.1396 (3) 0.77941 (16) 0.42033 (15) 0.0271 (6)
C21b 0.0335 (4) 0.6966 (2) 0.23437 (18) 0.0236 (6)
C21c 0.0385 (4) 0.6542 (2) 0.13807 (17) 0.0240 (6)
C22 0.1612 (4) 0.5596 (2) 0.08740 (18) 0.0271 (7)
C23 0.2294 (4) 0.5262 (2) 0.00278 (18) 0.0285 (7)
C24 0.1771 (4) 0.5858 (2) 0.04435 (19) 0.0290 (7)
C25 0.0588 (4) 0.6796 (2) 0.00475 (19) 0.0285 (7)
C25a 0.0096 (4) 0.7150 (2) 0.09532 (19) 0.0265 (7)
C26 0.1341 (4) 0.8176 (2) 0.14903 (18) 0.0301 (7)
C27 0.0763 (4) 0.8630 (2) 0.23393 (18) 0.0287 (7)
C27a 0.0839 (4) 0.7971 (2) 0.28284 (18) 0.0234 (6)
C28 0.1345 (4) 0.8352 (2) 0.37605 (18) 0.0272 (7)
C29a 0.0993 (4) 0.6813 (2) 0.37368 (18) 0.0256 (6)
C210 0.1005 (4) 0.6040 (2) 0.39874 (19) 0.0280 (7)
C211 0.0471 (4) 0.5199 (2) 0.32108 (18) 0.0242 (6)
C231 0.0242 (4) 0.4165 (2) 0.30983 (18) 0.0240 (6)
C232 0.0117 (4) 0.3414 (2) 0.22687 (19) 0.0278 (7)
C233 0.0363 (4) 0.2443 (2) 0.21597 (19) 0.0294 (7)
C234 0.0228 (4) 0.2223 (2) 0.2884 (2) 0.0285 (7)
C235 0.0135 (4) 0.2947 (2) 0.3713 (2) 0.0321 (7)
C236 0.0357 (4) 0.3918 (2) 0.38153 (19) 0.0293 (7)
C281 0.1848 (4) 0.9444 (2) 0.42988 (19) 0.0319 (7)
H12 0.5924 0.3488 0.1158 0.032*
H13 0.5752 0.2865 0.0332 0.034*
H14 0.4101 0.1241 0.1238 0.037*
H15 0.2677 0.0222 0.0654 0.036*
H16A 0.2473 0.0124 0.0612 0.036*
H16B 0.1320 0.0680 0.1081 0.036*
H17A 0.3404 0.0399 0.2178 0.035*
H17B 0.5300 0.0585 0.1816 0.035*
H18A 0.5614 0.1872 0.4483 0.048*
H18B 0.5748 0.1035 0.3597 0.048*
H18C 0.3612 0.1156 0.3764 0.048*
H110 0.5809 0.5244 0.4512 0.031*
H132 0.5231 0.5620 0.1875 0.030*
H133 0.5576 0.7176 0.1863 0.033*
H135 0.6375 0.8378 0.4491 0.033*
H136 0.5989 0.6812 0.4502 0.034*
H22 0.1977 0.5181 0.1154 0.033*
H23 0.3125 0.4621 0.0363 0.034*
H24 0.2224 0.5623 0.1064 0.035*
H25 0.0237 0.7204 0.0240 0.034*
H26A 0.1144 0.8583 0.1150 0.036*
H26B 0.2774 0.8162 0.1625 0.036*
H27A 0.1690 0.9277 0.2712 0.034*
H27B 0.0606 0.8736 0.2207 0.034*
H210 0.1314 0.6074 0.4569 0.034*
H232 0.0195 0.3571 0.1772 0.033*
H233 0.0623 0.1934 0.1592 0.035*
H235 0.0231 0.2785 0.4207 0.038*
H236 0.0592 0.4422 0.4384 0.035*
H28A 0.1935 0.9571 0.4914 0.048*
H28B 0.0801 0.9731 0.4079 0.048*
H28C 0.3135 0.9741 0.4253 0.048*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
N11 0.0283 (13) 0.0215 (13) 0.0271 (14) 0.0053 (10) 0.0072 (10) 0.0103 (11)
N11a 0.0233 (12) 0.0234 (13) 0.0212 (13) 0.0040 (10) 0.0052 (10) 0.0098 (11)
C11b 0.0216 (14) 0.0219 (15) 0.0219 (16) 0.0054 (11) 0.0049 (11) 0.0055 (13)
C11c 0.0234 (15) 0.0274 (16) 0.0245 (16) 0.0089 (12) 0.0072 (12) 0.0112 (13)
C12 0.0292 (16) 0.0247 (16) 0.0271 (17) 0.0096 (12) 0.0087 (13) 0.0104 (13)
C13 0.0316 (16) 0.0305 (17) 0.0268 (17) 0.0078 (13) 0.0117 (13) 0.0140 (14)
C14 0.0347 (17) 0.0341 (18) 0.0265 (17) 0.0128 (14) 0.0121 (13) 0.0110 (14)
C15 0.0323 (17) 0.0239 (16) 0.0247 (17) 0.0036 (13) 0.0068 (13) 0.0027 (13)
C15a 0.0255 (15) 0.0285 (16) 0.0255 (17) 0.0074 (12) 0.0084 (12) 0.0104 (13)
C16 0.0341 (17) 0.0218 (15) 0.0291 (18) 0.0028 (13) 0.0089 (13) 0.0052 (13)
C17 0.0364 (17) 0.0245 (16) 0.0255 (17) 0.0075 (13) 0.0107 (13) 0.0081 (13)
C17a 0.0217 (14) 0.0222 (15) 0.0284 (17) 0.0072 (12) 0.0075 (12) 0.0103 (13)
C18 0.0217 (15) 0.0293 (16) 0.0260 (17) 0.0063 (12) 0.0075 (12) 0.0142 (14)
C181 0.0383 (18) 0.0286 (17) 0.0285 (18) 0.0087 (14) 0.0079 (13) 0.0115 (14)
N19 0.0298 (13) 0.0268 (14) 0.0230 (13) 0.0076 (11) 0.0073 (10) 0.0105 (11)
C19a 0.0235 (15) 0.0262 (16) 0.0224 (16) 0.0038 (12) 0.0050 (12) 0.0099 (13)
C110 0.0290 (16) 0.0251 (16) 0.0213 (16) 0.0055 (12) 0.0077 (12) 0.0062 (13)
C111 0.0212 (14) 0.0234 (15) 0.0220 (16) 0.0032 (11) 0.0062 (12) 0.0065 (13)
C131 0.0206 (14) 0.0244 (15) 0.0241 (16) 0.0042 (12) 0.0066 (12) 0.0092 (13)
C132 0.0268 (15) 0.0204 (15) 0.0240 (16) 0.0040 (12) 0.0067 (12) 0.0045 (13)
C133 0.0292 (16) 0.0292 (17) 0.0258 (17) 0.0074 (13) 0.0081 (12) 0.0126 (14)
C134 0.0231 (15) 0.0206 (15) 0.0290 (17) 0.0052 (12) 0.0069 (12) 0.0099 (13)
Cl14 0.0388 (4) 0.0216 (4) 0.0313 (4) 0.0060 (3) 0.0095 (3) 0.0101 (3)
C135 0.0357 (17) 0.0227 (16) 0.0213 (16) 0.0051 (13) 0.0096 (13) 0.0050 (13)
C136 0.0351 (17) 0.0254 (16) 0.0222 (16) 0.0058 (13) 0.0096 (13) 0.0078 (13)
N21 0.0274 (13) 0.0242 (13) 0.0301 (15) 0.0044 (10) 0.0070 (11) 0.0110 (11)
N21a 0.0228 (12) 0.0221 (13) 0.0222 (14) 0.0038 (10) 0.0056 (10) 0.0064 (10)
C21b 0.0203 (14) 0.0285 (16) 0.0238 (16) 0.0060 (12) 0.0060 (12) 0.0123 (13)
C21c 0.0226 (15) 0.0253 (15) 0.0234 (16) 0.0075 (12) 0.0060 (12) 0.0085 (13)
C22 0.0264 (16) 0.0258 (16) 0.0300 (18) 0.0055 (12) 0.0093 (13) 0.0118 (13)
C23 0.0274 (16) 0.0281 (16) 0.0267 (17) 0.0069 (13) 0.0050 (13) 0.0083 (14)
C24 0.0316 (16) 0.0319 (17) 0.0212 (16) 0.0087 (13) 0.0036 (13) 0.0095 (14)
C25 0.0309 (16) 0.0308 (17) 0.0276 (17) 0.0078 (13) 0.0096 (13) 0.0151 (14)
C25a 0.0233 (15) 0.0288 (16) 0.0292 (17) 0.0084 (12) 0.0080 (12) 0.0124 (14)
C26 0.0354 (17) 0.0264 (16) 0.0286 (17) 0.0048 (13) 0.0092 (13) 0.0119 (14)
C27 0.0316 (16) 0.0238 (16) 0.0289 (17) 0.0043 (13) 0.0077 (13) 0.0096 (13)
C27a 0.0206 (14) 0.0235 (15) 0.0264 (17) 0.0066 (12) 0.0083 (12) 0.0087 (13)
C28 0.0235 (15) 0.0269 (16) 0.0282 (17) 0.0067 (12) 0.0077 (12) 0.0073 (14)
N29 0.0277 (13) 0.0248 (13) 0.0259 (14) 0.0050 (10) 0.0080 (10) 0.0072 (11)
C29a 0.0248 (15) 0.0273 (16) 0.0228 (16) 0.0058 (12) 0.0065 (12) 0.0081 (13)
C210 0.0313 (16) 0.0300 (17) 0.0213 (16) 0.0061 (13) 0.0055 (12) 0.0100 (14)
C211 0.0218 (15) 0.0282 (16) 0.0235 (16) 0.0043 (12) 0.0083 (12) 0.0107 (13)
C231 0.0180 (14) 0.0281 (16) 0.0249 (17) 0.0036 (12) 0.0056 (11) 0.0103 (13)
C232 0.0268 (16) 0.0318 (17) 0.0253 (17) 0.0061 (13) 0.0057 (12) 0.0130 (14)
C233 0.0294 (16) 0.0297 (17) 0.0266 (17) 0.0077 (13) 0.0076 (13) 0.0083 (14)
C234 0.0221 (15) 0.0286 (17) 0.0377 (19) 0.0059 (12) 0.0085 (13) 0.0163 (15)
Cl24 0.0397 (5) 0.0290 (4) 0.0461 (5) 0.0074 (3) 0.0098 (4) 0.0178 (4)
C235 0.0320 (17) 0.0332 (18) 0.0345 (19) 0.0067 (13) 0.0076 (14) 0.0184 (15)
C236 0.0307 (17) 0.0303 (17) 0.0262 (17) 0.0070 (13) 0.0083 (13) 0.0103 (14)
C281 0.0365 (18) 0.0262 (16) 0.0271 (17) 0.0060 (13) 0.0060 (13) 0.0060 (14)
Geometric parameters (Å, º) top
N11—N11a 1.359 (3) N21—N21a 1.355 (3)
N11a—C11b 1.381 (3) N21a—C21b 1.378 (3)
C11b—C17a 1.378 (4) C21b—C27a 1.381 (4)
C17a—C18 1.419 (4) C27a—C28 1.422 (4)
C18—N19 1.321 (3) C28—N29 1.316 (3)
N19—C19a 1.351 (3) N29—C29a 1.350 (3)
C19a—C110 1.379 (4) C29a—C210 1.377 (4)
C110—C111 1.398 (4) C210—C211 1.390 (4)
C111—N11 1.348 (3) C211—N21 1.348 (3)
N11a—C19a 1.393 (3) N21a—C29a 1.403 (3)
C11b—C11c 1.474 (4) C21b—C21c 1.470 (4)
C11c—C12 1.403 (4) C21c—C22 1.405 (4)
C11c—C15a 1.412 (4) C21c—C25a 1.406 (4)
C12—C13 1.381 (4) C22—C23 1.383 (4)
C12—H12 0.95 C22—H22 0.95
C13—C14 1.382 (4) C23—C24 1.382 (4)
C13—H13 0.95 C23—H23 0.95
C14—C15 1.383 (4) C24—C25 1.383 (4)
C14—H14 0.95 C24—H24 0.95
C15—C15a 1.383 (4) C25—C25a 1.386 (4)
C15—H15 0.95 C25—H25 0.95
C15a—C16 1.502 (4) C25a—C26 1.501 (4)
C16—C17 1.522 (4) C26—C27 1.517 (4)
C16—H16A 0.99 C26—H26A 0.99
C16—H16B 0.99 C26—H26B 0.99
C17—C17a 1.516 (4) C27—C27a 1.509 (4)
C17—H17A 0.99 C27—H27A 0.99
C17—H17B 0.99 C27—H27B 0.99
C18—C181 1.507 (4) C28—C281 1.506 (4)
C181—H18A 0.98 C210—H210 0.95
C181—H18B 0.98 C211—C231 1.477 (4)
C181—H18C 0.98 C231—C236 1.390 (4)
C110—H110 0.95 C231—C232 1.393 (4)
C111—C131 1.470 (4) C232—C233 1.383 (4)
C131—C132 1.393 (4) C232—H232 0.95
C131—C136 1.395 (4) C233—C234 1.377 (4)
C132—C133 1.377 (4) C233—H233 0.95
C132—H132 0.95 C234—C235 1.376 (4)
C133—C134 1.382 (4) C234—Cl24 1.751 (3)
C133—H133 0.95 C235—C236 1.387 (4)
C134—C135 1.375 (4) C235—H235 0.95
C134—Cl14 1.747 (3) C236—H236 0.95
C135—C136 1.387 (4) C281—H28A 0.98
C135—H135 0.95 C281—H28B 0.98
C136—H136 0.95 C281—H28C 0.98
C111—N11—N11a 104.0 (2) C211—N21—N21a 104.2 (2)
N11—N11a—C11b 126.4 (2) N21—N21a—C21b 127.1 (2)
N11—N11a—C19a 112.1 (2) N21—N21a—C29a 111.6 (2)
C11b—N11a—C19a 121.6 (2) C21b—N21a—C29a 121.3 (2)
C17a—C11b—N11a 115.9 (2) N21a—C21b—C27a 116.2 (2)
C17a—C11b—C11c 121.8 (2) N21a—C21b—C21c 122.3 (2)
N11a—C11b—C11c 122.2 (2) C27a—C21b—C21c 121.4 (2)
C12—C11c—C15a 119.0 (2) C22—C21c—C25a 118.6 (3)
C12—C11c—C11b 123.6 (2) C22—C21c—C21b 124.1 (2)
C15a—C11c—C11b 117.2 (2) C25a—C21c—C21b 117.3 (2)
C13—C12—C11c 120.4 (3) C23—C22—C21c 120.7 (3)
C13—C12—H12 119.8 C23—C22—H22 119.6
C11c—C12—H12 119.8 C21c—C22—H22 119.6
C12—C13—C14 120.2 (3) C24—C23—C22 120.2 (3)
C12—C13—H13 119.9 C24—C23—H23 119.9
C14—C13—H13 119.9 C22—C23—H23 119.9
C13—C14—C15 120.1 (3) C23—C24—C25 119.7 (3)
C13—C14—H14 119.9 C23—C24—H24 120.1
C15—C14—H14 119.9 C25—C24—H24 120.1
C15a—C15—C14 120.9 (3) C24—C25—C25a 121.0 (3)
C15a—C15—H15 119.6 C24—C25—H25 119.5
C14—C15—H15 119.6 C25a—C25—H25 119.5
C15—C15a—C11c 119.3 (3) C25—C25a—C21c 119.7 (3)
C15—C15a—C16 122.0 (2) C25—C25a—C26 121.2 (3)
C11c—C15a—C16 118.7 (2) C21c—C25a—C26 119.1 (2)
C15a—C16—C17 110.9 (2) C25a—C26—C27 110.6 (2)
C15a—C16—H16A 109.5 C25a—C26—H26A 109.5
C17—C16—H16A 109.5 C27—C26—H26A 109.5
C15a—C16—H16B 109.5 C25a—C26—H26B 109.5
C17—C16—H16B 109.5 C27—C26—H26B 109.5
H16A—C16—H16B 108.1 H26A—C26—H26B 108.1
C17a—C17—C16 110.7 (2) C27a—C27—C26 110.8 (2)
C17a—C17—H17A 109.5 C27a—C27—H27A 109.5
C16—C17—H17A 109.5 C26—C27—H27A 109.5
C17a—C17—H17B 109.5 C27a—C27—H27B 109.5
C16—C17—H17B 109.5 C26—C27—H27B 109.5
H17A—C17—H17B 108.1 H27A—C27—H27B 108.1
C11b—C17a—C18 120.0 (2) C21b—C27a—C28 119.8 (3)
C11b—C17a—C17 117.9 (2) C21b—C27a—C27 118.1 (2)
C18—C17a—C17 122.1 (2) C28—C27a—C27 122.1 (2)
N19—C18—C17a 123.3 (2) N29—C28—C27a 123.4 (3)
N19—C18—C181 116.1 (2) N29—C28—C281 116.1 (2)
C17a—C18—C181 120.7 (2) C27a—C28—C281 120.5 (3)
C18—C181—H18A 109.5 C28—N29—C29a 117.3 (2)
C18—C181—H18B 109.5 N29—C29a—C210 132.1 (3)
H18A—C181—H18B 109.5 N29—C29a—N21a 122.0 (2)
C18—C181—H18C 109.5 C210—C29a—N21a 105.9 (2)
H18A—C181—H18C 109.5 C29a—C210—C211 105.5 (2)
H18B—C181—H18C 109.5 C29a—C210—H210 127.2
C18—N19—C19a 117.1 (2) C211—C210—H210 127.2
N19—C19a—C110 132.0 (3) N21—C211—C210 112.8 (2)
N19—C19a—N11a 122.1 (2) N21—C211—C231 119.0 (2)
C110—C19a—N11a 106.0 (2) C210—C211—C231 128.3 (3)
C19a—C110—C111 105.4 (2) C236—C231—C232 118.6 (3)
C19a—C110—H110 127.3 C236—C231—C211 120.8 (3)
C111—C110—H110 127.3 C232—C231—C211 120.6 (3)
N11—C111—C110 112.6 (2) C233—C232—C231 120.7 (3)
N11—C111—C131 119.0 (2) C233—C232—H232 119.6
C110—C111—C131 128.5 (3) C231—C232—H232 119.6
C132—C131—C136 118.6 (3) C234—C233—C232 119.3 (3)
C132—C131—C111 120.8 (2) C234—C233—H233 120.4
C136—C131—C111 120.6 (2) C232—C233—H233 120.4
C133—C132—C131 121.2 (3) C235—C234—C233 121.5 (3)
C133—C132—H132 119.4 C235—C234—Cl24 119.3 (2)
C131—C132—H132 119.4 C233—C234—Cl24 119.2 (2)
C132—C133—C134 118.9 (3) C234—C235—C236 118.9 (3)
C132—C133—H133 120.5 C234—C235—H235 120.6
C134—C133—H133 120.5 C236—C235—H235 120.6
C135—C134—C133 121.4 (3) C235—C236—C231 121.0 (3)
C135—C134—Cl14 119.2 (2) C235—C236—H236 119.5
C133—C134—Cl14 119.4 (2) C231—C236—H236 119.5
C134—C135—C136 119.3 (3) C28—C281—H28A 109.5
C134—C135—H135 120.4 C28—C281—H28B 109.5
C136—C135—H135 120.4 H28A—C281—H28B 109.5
C135—C136—C131 120.5 (3) C28—C281—H28C 109.5
C135—C136—H136 119.7 H28A—C281—H28C 109.5
C131—C136—H136 119.7 H28B—C281—H28C 109.5
C111—N11—N11a—C11b 179.2 (2) C211—N21—N21a—C21b 178.7 (2)
C111—N11—N11a—C19a 0.3 (3) C211—N21—N21a—C29a 0.1 (3)
N11—N11a—C11b—C17a 176.6 (2) N21—N21a—C21b—C27a 176.7 (2)
C19a—N11a—C11b—C17a 2.2 (3) C29a—N21a—C21b—C27a 2.1 (3)
N11—N11a—C11b—C11c 6.2 (4) N21—N21a—C21b—C21c 6.4 (4)
C19a—N11a—C11b—C11c 175.0 (2) C29a—N21a—C21b—C21c 174.8 (2)
C17a—C11b—C11c—C12 153.6 (3) N21a—C21b—C21c—C22 22.3 (4)
N11a—C11b—C11c—C12 23.5 (4) C27a—C21b—C21c—C22 154.4 (3)
C17a—C11b—C11c—C15a 22.0 (4) N21a—C21b—C21c—C25a 161.7 (2)
N11a—C11b—C11c—C15a 160.9 (2) C27a—C21b—C21c—C25a 21.6 (4)
C15a—C11c—C12—C13 0.2 (4) C25a—C21c—C22—C23 1.4 (4)
C11b—C11c—C12—C13 175.7 (2) C21b—C21c—C22—C23 177.4 (2)
C11c—C12—C13—C14 1.0 (4) C21c—C22—C23—C24 0.1 (4)
C12—C13—C14—C15 0.8 (4) C22—C23—C24—C25 1.0 (4)
C13—C14—C15—C15a 0.5 (4) C23—C24—C25—C25a 0.3 (4)
C14—C15—C15a—C11c 1.7 (4) C24—C25—C25a—C21c 1.3 (4)
C14—C15—C15a—C16 177.5 (3) C24—C25—C25a—C26 178.5 (3)
C12—C11c—C15a—C15 1.5 (4) C22—C21c—C25a—C25 2.1 (4)
C11b—C11c—C15a—C15 177.3 (2) C21b—C21c—C25a—C25 178.4 (2)
C12—C11c—C15a—C16 177.7 (2) C22—C21c—C25a—C26 177.7 (2)
C11b—C11c—C15a—C16 1.9 (4) C21b—C21c—C25a—C26 1.4 (4)
C15—C15a—C16—C17 140.1 (3) C25—C25a—C26—C27 141.3 (3)
C11c—C15a—C16—C17 39.1 (3) C21c—C25a—C26—C27 38.5 (3)
C15a—C16—C17—C17a 53.3 (3) C25a—C26—C27—C27a 53.2 (3)
N11a—C11b—C17a—C18 4.3 (4) N21a—C21b—C27a—C28 3.0 (3)
C11c—C11b—C17a—C18 173.0 (2) C21c—C21b—C27a—C28 174.0 (2)
N11a—C11b—C17a—C17 177.8 (2) N21a—C21b—C27a—C27 179.0 (2)
C11c—C11b—C17a—C17 5.0 (4) C21c—C21b—C27a—C27 4.0 (4)
C16—C17—C17a—C11b 32.8 (3) C26—C27—C27a—C21b 33.7 (3)
C16—C17—C17a—C18 149.2 (2) C26—C27—C27a—C28 148.3 (2)
C11b—C17a—C18—N19 3.5 (4) C21b—C27a—C28—N29 1.1 (4)
C17—C17a—C18—N19 178.6 (2) C27—C27a—C28—N29 179.0 (2)
C11b—C17a—C18—C181 174.8 (2) C21b—C27a—C28—C281 178.5 (2)
C17—C17a—C18—C181 3.1 (4) C27—C27a—C28—C281 0.5 (4)
C17a—C18—N19—C19a 0.3 (4) C27a—C28—N29—C29a 1.8 (4)
C181—C18—N19—C19a 178.1 (2) C281—C28—N29—C29a 178.6 (2)
C18—N19—C19a—C110 178.3 (3) C28—N29—C29a—C210 176.7 (3)
C18—N19—C19a—N11a 1.9 (4) C28—N29—C29a—N21a 2.7 (4)
N11—N11a—C19a—N19 179.9 (2) N21—N21a—C29a—N29 179.7 (2)
C11b—N11a—C19a—N19 0.9 (4) C21b—N21a—C29a—N29 0.8 (4)
N11—N11a—C19a—C110 0.3 (3) N21—N21a—C29a—C210 0.2 (3)
C11b—N11a—C19a—C110 179.3 (2) C21b—N21a—C29a—C210 178.7 (2)
N19—C19a—C110—C111 180.0 (3) N29—C29a—C210—C211 179.6 (3)
N11a—C19a—C110—C111 0.2 (3) N21a—C29a—C210—C211 0.2 (3)
N11a—N11—C111—C110 0.1 (3) N21a—N21—C211—C210 0.0 (3)
N11a—N11—C111—C131 179.2 (2) N21a—N21—C211—C231 179.8 (2)
C19a—C110—C111—N11 0.0 (3) C29a—C210—C211—N21 0.1 (3)
C19a—C110—C111—C131 179.3 (3) C29a—C210—C211—C231 179.6 (3)
N11—C111—C131—C132 2.2 (4) N21—C211—C231—C236 172.7 (2)
C110—C111—C131—C132 176.9 (3) C210—C211—C231—C236 7.0 (4)
N11—C111—C131—C136 178.6 (2) N21—C211—C231—C232 6.5 (4)
C110—C111—C131—C136 2.2 (4) C210—C211—C231—C232 173.8 (3)
C136—C131—C132—C133 0.1 (4) C236—C231—C232—C233 0.3 (4)
C111—C131—C132—C133 179.1 (2) C211—C231—C232—C233 179.0 (2)
C131—C132—C133—C134 0.2 (4) C231—C232—C233—C234 0.7 (4)
C132—C133—C134—C135 0.0 (4) C232—C233—C234—C235 0.4 (4)
C132—C133—C134—Cl14 179.4 (2) C232—C233—C234—Cl24 179.6 (2)
C133—C134—C135—C136 0.4 (4) C233—C234—C235—C236 0.3 (4)
Cl14—C134—C135—C136 179.8 (2) Cl24—C234—C235—C236 179.6 (2)
C134—C135—C136—C131 0.7 (4) C234—C235—C236—C231 0.8 (4)
C132—C131—C136—C135 0.5 (4) C232—C231—C236—C235 0.5 (4)
C111—C131—C136—C135 178.7 (2) C211—C231—C236—C235 179.7 (3)

Experimental details

(I) (II)
Crystal data
Chemical formula C21H16ClN3 C21H16ClN3
Mr 345.82 345.82
Crystal system, space group Triclinic, P1 Triclinic, P1
Temperature (K) 120 120
a, b, c (Å) 9.2382 (8), 10.3054 (8), 10.3184 (9) 7.0098 (3), 15.0306 (7), 17.0060 (8)
α, β, γ (°) 62.720 (4), 83.098 (4), 70.531 (5) 111.492 (2), 101.406 (3), 97.981 (3)
V3) 822.54 (12) 1589.81 (13)
Z 2 4
Radiation type Mo Kα Mo Kα
µ (mm1) 0.24 0.25
Crystal size (mm) 0.34 × 0.19 × 0.08 0.14 × 0.04 × 0.03
Data collection
Diffractometer Nonius KappaCCD area-detector

diffractometer
Nonius KappaCCD area-detector

diffractometer
Absorption correction Multi-scan

(SADABS; Sheldrick, 2003)
Multi-scan

(SADABS; Sheldrick, 2003)
Tmin, Tmax 0.914, 0.981 0.949, 0.993
No. of measured, independent and

observed [I > 2σ(I)] reflections
17454, 3763, 2156 35785, 7321, 4073
Rint 0.094 0.113
(sin θ/λ)max1) 0.653 0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.153, 0.96 0.061, 0.152, 1.03
No. of reflections 3763 7321
No. of parameters 229 453
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å3) 0.30, 0.30 0.30, 0.37

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
N1—N1a 1.357 (3) N9—C10 1.351 (3)
N1a—C2 1.365 (3) C10—C11 1.381 (4)
C2—C2a 1.365 (4) C11—C12 1.393 (4)
C2a—C8b 1.442 (4) C12—N1 1.345 (3)
C8b—N9 1.319 (3) N1a—C10 1.394 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A D—H H···A D···A D—H···A
C3—H3A···Cg1i 0.99 2.92 3.815 (3) 150
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
N11—N11a 1.359 (3) N21—N21a 1.355 (3)
N11a—C11b 1.381 (3) N21a—C21b 1.378 (3)
C11b—C17a 1.378 (4) C21b—C27a 1.381 (4)
C17a—C18 1.419 (4) C27a—C28 1.422 (4)
C18—N19 1.321 (3) C28—N29 1.316 (3)
N19—C19a 1.351 (3) N29—C29a 1.350 (3)
C19a—C110 1.379 (4) C29a—C210 1.377 (4)
C110—C111 1.398 (4) C210—C211 1.390 (4)
C111—N11 1.348 (3) C211—N21 1.348 (3)
N11a—C19a 1.393 (3) N21a—C29a 1.403 (3)
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JQ and JP thank COLCIENCIAS and the Universidad de Valle for financial support. JC thanks the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) for financial support.

References

First citationCasey, F. B., Abboa-Offei, B. E. & Marretta, J. (1980). J. Pharmacol. Exp. Ther. 213, 432–436.  CAS PubMed Web of Science Google Scholar

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar

First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar

First citationFry, D. W., Kraker, A. J., McMichael, A., Ambroso, L. A., Nelson, J. M., Leopold, W. R., Connors, R. W. & Bridges, A. L. (1994). Science, 265, 1093–1095.  CrossRef CAS PubMed Web of Science Google Scholar

First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar

First citationMcQuaid, L., Smith, E., South, K., Mitch, C. H., Schoepp, D., True, R., Calligaro, D., O'Malley, P., Lodge, D. & Ornstein, P. (1992). J. Med. Chem. 35, 3319–3324.  CrossRef PubMed CAS Web of Science Google Scholar

First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar

First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar

First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar

First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 3–17.  Web of Science CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds