organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296

Ethyl 2-amino-4-tert-butyl-1,3-thiazole-5-carboxyl­ate and 6-methylimidazo­[2,1-b]­thia­zole–2-amino-1,3-thia­zole (1/1)

CROSSMARK_Color_square_no_text.svg

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

*Correspondence e-mail: [email protected]

(Received 17 June 2004; accepted 24 June 2004; online 21 July 2004)

The structure of ethyl 2-amino-4-tert-butyl-1,3-thia­zole-5-carboxyl­ate, C10H16N2O2S, (I[link]), and the structure of the 1:1 adduct 6-methyl­imidazo­[2,1-b]­thia­zole–2-amino-1,3-thia­zole (1/1), C6H6N2S·C3H4N2S, (II[link]), have been determined. The mol­ecules in (I[link]) associate via a hydrogen-bonded R[{_2^2}](8) dimer consisting of N—H⋯N interactions, with the hydrogen-bonding array additionally involving N—H⋯O interactions to one of the carboxyl­ate O atoms. The 2-amino­thia­zole mol­ecules in (II[link]) also associate via an N—H⋯N hydrogen-bonded R[{_2^2}](8) dimer, with an additional N—H⋯N interaction to the Nsp2 atom of the imidazo­thia­zole moiety, creating hydrogen-bonded quartets.

Comment

Amino­thia­zoles have been extensively studied for a range of biological and industrial applications (Lynch et al., 1999[Lynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Acta Cryst. B55, 758-766.]; Toplak et al., 2003[Toplak, R., Lah, N., Volmajer, J., Leban, I. & Le Maréchal, A. M. (2003). Acta Cryst. C59, o502-o505.]). 2-Amino-1,3-thia­zole, the structure of which was reported in 1982 (Caranoni & Reboul, 1982[Caranoni, P. C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255-1259.]), is itself listed as a thyroid inhibitor (Merck, 2001[Merck (2001). The Merck Index, 13th ed. New York: John Wiley & Sons.]). A search of the Cambridge Structural Database (CSD, Version 5.25 of April 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals that there are 73 crystal structures containing the 2-amino­thia­zole moiety, with 51 of those being pure organics. The present authors have recently published a paper on the packing modes of 2-amino-4-phenyl-1,3-thia­zole derivatives (Lynch et al., 2002[Lynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123-136.]) and have been investigating the structural aspects of 2-amino­thia­zole derivatives for the last six years. One such compound reported during this time was ethyl 4-tert-butyl-2-(3-phenyl­ureido)-1,3-thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o733-o734.]), which is currently the only structure of a 4-tert-butyl-5-ester derivative of an amino­thia­zole. However, we have recently determined the structure of ethyl 2-amino-4-tert-butyl-1,3-thia­zole-5-carboxyl­ate, (I[link]), and report it here.

Another amino­thia­zole derivative is imidazo­[2,1-b]­thia­zole, which has 11 analogues whose structures have previously been reported in the CSD. This bicyclic ring system can be prepared by refluxing a halo­methyl ketone with 2-amino­thia­zole in ethanol. In an attempt to do so, using chloro­acetone, an incomplete reaction yielded a mixture of the imidazo­[2,1-b]­thia­zole derivative with the starting thia­zole. The crystals that formed from the impure product were subsequently found to contain the 1:1 adduct of 6-methyl­imidazo­[2,1-b]­thia­zole with 2-amino­thia­zole, (II[link]), the structure of which is also reported here.

[Scheme 1]

The structure of (I[link]) consists of a single mol­ecule (Fig. 1[link]) which associates, via hydrogen-bonding interactions, to three symmetry-equivalent mol­ecules (Fig. 2[link]). One symmetry-equivalent mol­ecule forms a hydrogen-bonded R[{_2^2}](8) graph-set dimer (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) with (I[link]) through an N—H⋯N interaction (Table 1[link]), a feature common for 2-amino­thia­zole derivatives, while the other two associate to and from (I[link]) through an N—H⋯O interaction. A similar packing mode has previously been observed in the structure of ethyl 2-amino-4-phenyl-1,3-thia­zole-5-carboxyl­ate (Lynch et al., 2002[Lynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123-136.]), but is not observed in any other 5-ester-substituted 2-amino­thia­zole. This is probably due to the fact that, in each of these other structures, there are alternative exocyclic hydrogen-bonding acceptor atoms in addition to the two carboxyl­ate O atoms. The ethyl chain twists out of the plane of the thia­zole ring, with the C51—O52—C53—C54 torsion angle being 85.5 (2)°, compared with −168.5 (3)° in ethyl 4-tert-butyl-2-(3-phenyl­ureido)-1,3-thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o733-o734.]). One of the methyl groups in the tert-butyl moiety is aligned with the thia­zole ring, with the N3—C4—C41—C42 torsion angle being −1.8 (2)°, similar to what was observed in ethyl 4-tert-butyl-2-(3-phenyl­ureido)-1,3-thia­zole-5-carboxyl­ate [comparative torsion angle = 7.2 (5)°].

The structure of (II[link]) comprises two adduct mol­ecules associated by a single hydrogen-bonding interaction from one of the 2-amino H atoms to the Nsp2 atom in the imidazo­thia­zole system (Fig. 3[link]). Although one of the present authors (DEL) has determined 16 co-crystal structures containing 2-­amino­thia­zole derivatives, there are only two previously reported co-crystals containing 2-amino­thia­zole itself (Kuz'mina & Struchkov, 1984[Kuz'mina, L. G. & Struchkov, Y. T. (1984). Zh. Strukt. Khim. 25, 88-92. (In Russian.)]; Moers et al., 2000[Moers, O., Wijaya, K., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 738-752.]), and both of these are organic salts. The structure of (II[link]) is unique in that it is the first adduct (not an organic salt) of 2-amino­thia­zole. The mol­ecules in (II[link]) pack across an inversion centre to construct an associated quartet, with the 2-amino­thia­zoles forming a hydrogen-bonded R[{_2^2}](8) graph-set dimer (Fig. 4[link]). Hydro­gen-bonding associations are listed in Table 2[link]. A C—H⋯N close contact is also observed between atom C2A and the 2-amino N atom. The distance between atoms N7A and S1B is 3.294 (3) Å.

The determination of the structure of (II[link]) and examination of the packing associations may now lead to a series of adducts containing 2-amino­thia­zole and heterocyclic bases, as opposed to continuing to try to obtain co-crystals (either adducts or organic salts) with organic acids.

[Figure 1]

Figure 1

The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]

Figure 2

A packing diagram for (I[link]). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{3 \over 2}] − x, y + [{1 \over 2}], [{3 \over 2}] − z.]
[Figure 3]

Figure 3

The molecular configuration and atom-numbering scheme for (II[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4]

Figure 4

A packing diagram for (II[link]). [Symmetry code: (i) −x, 1 − y, 1 − z.]

Experimental

Compound (I[link]) was obtained from Key Organics Ltd and was crystallized from ethanol. Compound (II[link]) was prepared by refluxing equimolar amounts of 2-amino-1,3-thia­zole and chloro­acetone in ethanol for 16 h. Upon removal of the reaction solvent, the product was washed with aqueous NaOH and then extracted into di­chloro­methane. Crystals of (II[link]) grew from the resultant liquid after removal of the extraction solvent.

Compound (I)[link]

Crystal data
  • C10H16N2O2S

  • Mr = 228.31

  • Monoclinic, P21/n

  • a = 10.6248 (8) Å

  • b = 8.6055 (5) Å

  • c = 13.0135 (9) Å

  • β = 92.977 (4)°

  • V = 1188.24 (14) Å3

  • Z = 4

  • Dx = 1.276 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3289 reflections

  • θ = 2.9–27.5°

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.42 × 0.32 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]) Tmin = 0.913, Tmax = 0.977

  • 9227 measured reflections

  • 2093 independent reflections

  • 1668 reflections with I > 2σ(I)

  • Rint = 0.082

  • θmax = 25.0°

  • h = −12 → 12

  • k = −10 → 10

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.08

  • 2093 reflections

  • 140 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0328P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1

Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N3i 0.88 2.14 3.016 (2) 173
N21—H22⋯O51ii 0.88 2.02 2.858 (2) 158
Symmetry codes: (i) 1-x,1-y,1-z; (ii) [{\script{3\over 2}}-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z].

Compound (II)[link]

Crystal data
  • C6H6N2S·C3H4N2S

  • Mr = 238.33

  • Triclinic, [P\overline 1]

  • a = 6.9195 (2) Å

  • b = 9.1860 (2) Å

  • c = 9.6953 (3) Å

  • α = 69.5204 (17)°

  • β = 71.4823 (16)°

  • γ = 74.2770 (17)°

  • V = 538.48 (3) Å3

  • Z = 2

  • Dx = 1.470 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9410 reflections

  • θ = 2.9–27.5°

  • μ = 0.47 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.26 × 0.08 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.]) Tmin = 0.885, Tmax = 0.982

  • 12 593 measured reflections

  • 2472 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.072

  • θmax = 27.6°

  • h = −8 → 9

  • k = −11 → 11

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.05

  • 2472 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3904P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.44 e Å−3

Table 2

Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N21B—H21B⋯N3Bi 0.88 2.14 3.010 (2) 170
N21B—H22B⋯N7A 0.88 2.10 2.933 (2) 159
C2A—H2A⋯N21Bii 0.95 2.59 3.531 (2) 174
Symmetry codes: (i) -x,1-y,1-z; (ii) x,y-1,z.

All H atoms were included in the refinement at calculated positions in the riding-model approximation, with N—H distances of 0.88 Å, and C—H distances of 0.95 (aromatic H atoms), 0.98 (CH3 H atoms) and 0.99 Å (CH2 H atoms), and with Uiso(H) = 1.25Ueq(C,N).

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLUTON94 (Spek, 1994[Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.]) and PLATON97 (Spek, 1997[Spek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.]); software used to prepare material for publication: SHELXL97.

Supporting information



Comment top

Aminothiazoles have been extensively studied for a range of biological and industrial applications (Lynch et al., 1999; Toplak et al., 2003). 2-Amino-1,3-thiazole, the structure of which was reported in 1982 (Caranoni & Reboul, 1982), is itself listed as a thyroid inhibitor (Merck Index, 2001). A search of the Cambridge Structural Database (CSD, Version?; Allen, 2002) reveals that there are 73 crystal structures containing the 2-aminothiazole moiety, with 51 of those being pure organics. The present authors have recently published a paper on the packing modes of 2-amino-4-phenyl-1,3-thiazole derivatives (Lynch et al., 2002) and have been investigating the structural aspects of 2-aminothiazole derivatives for the last six years. One such compound reported during this time was ethyl 4-tert-butyl-2-(3-phenylureido)-1,3-thiazole-5-carboxylate (Lynch & McClenaghan, 2002), which is currently the only structure of a 4-tert-butyl-5-ester derivative of an aminothiazole. However, we have recently determined the structure of ethyl 2-amino-4-tert-butyl-1,3-thiazole-5-carboxylate, (I), and report it here.

Another aminothiazole derivative is imidazo[2,1-b]thiazole, which has 11 analogues whose structures have been previously reported in the CSD. This bicyclic ring system can be prepared by refluxing a halomethylketone with 2-aminothiazole in ethanol. In an attempt to do so, using chloroacetone, an incomplete reaction yielded a mixture of the imidazo[2,1-b]thiazole derivative with the starting thiazole. The crystals that formed from the impure product were subsequently found to contain the 1:1 adduct of 6-methylimidazo[2,1-b]thiazole with 2-aminothiazole, (II), the structure of which is also reported here. \sch

The structure of (I) consists of a single molecule (Fig. 1) which associates, via hydrogen-bonding interactions, to three symmetry-equivalent molecules (Fig. 2). One symmetry-equivalent molecule forms a hydrogen-bonded R22(8) graph-set dimer (Etter, 1990) with (I) through an N—H···N interaction (Table 1), a feature common for 2-aminothiazole derivatives, while the other two associate to and from (I) through an N—H···O interaction. A similar packing mode has previously been observed in the structure of ethyl 2-amino-4-phenyl-1,3-thiazole-5-carboxylate (Lynch et al., 2002), but is not observed in any other 5-ester substituted 2-aminothiazole. This is probably due to the fact that, in each of these other structures, there are alternative exocyclic hydrogen-bonding acceptor atoms in addition to the two carboxylate O atoms. The ethyl chain twists out of the plane of the thiazole ring, with the C51—O52—C53—C54 torsion angle being 85.5 (2)°, compared with −168.5 (3)° in ethyl 4-tert-butyl-2-(3-phenylureido)-1,3-thiazole-5-carboxylate (Lynch & McClenaghan, 2002). One of the methyl groups in the tert-butyl moiety is aligned with the thiazole ring, with the N3—C4—C41—C42 torsion angle being −1.8 (2)°, similar to what was observed in ethyl 4-tert-butyl-2-(3-phenylureido)-1,3-thiazole-5-carboxylate [comparative torsion angle 7.2 (5)°].

The structure of (II) comprises two adduct molecules associated by a single hydrogen-bonding interaction from one of the 2-amino H atoms to the Nsp2 atom in the imidazothiazole (Fig. 3). Although one of the present authors (DEL) has determined 16 co-crystal structures containing 2-aminothiazole derivatives, there are only two previously reported co-crystals containing 2-aminothiazole itself (Kuz'mina & Struchkov, 1984; Moers et al., 2000), and both of these are organic salts. The structure of (II) is unique in that it is the first adduct (not an organic salt) of 2-aminothiazole. The molecules in (II) pack across an inversion centre to construct an associated quartet, with the 2-aminothiazoles forming a hydrogen-bonded R22(8) graph-set dimer (Fig. 4). Hydrogen-bonding associations are listed in Table 2. A C—H···N close contact is also observed between atom C2A and the 2-amino N atom. The distance between atoms N7A and S1B is 3.294 (3) Å.

The determination of the structure of (II), and examination of the packing associations, may now lead to a series of adducts containing 2-aminothiazole and heterocyclic bases, as opposed to continuing to try to obtain co-crystals (either adducts or organic salts) with organic acids.

Experimental top

Compound (I) was obtained from Key Organics Ltd. and was crystallized from ethanol. Compound (II) was prepared by refluxing equimolar amounts of 2-amino-1,3-thiazole and chloroacetone in ethanol for 16 h. Upon removal of the reaction solvent, the product was washed with aqueous NaOH and then extracted into dichloromethane. Crystals of (II) grew from the resultant liquid after removal of the extraction solvent.

Refinement top

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with N—H distances of 0.88 Å, and C—H distances of 0.95 (aromatic H atoms), 0.98 (CH3 H atoms) and 0.99 Å (CH2 H atoms), and with Uiso(H) = 1.25Ueq(C,N).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998) for (I); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (II). For both compounds, cell refinement: DENZO and COLLECT; data reduction: DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I). [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 3/2 − x, y + 1/2, 3/2 − z.]
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A packing diagram for (II). [Symmetry code: (i) −x, 1 − y, 1 − z.]
(I) Ethyl 2-amino-4-tert-butyl-1,3-thiazole-5-carboxylate top
Crystal data top
C10H16N2O2S F(000) = 488
Mr = 228.31 Dx = 1.276 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3289 reflections
a = 10.6248 (8) Å θ = 2.9–27.5°
b = 8.6055 (5) Å µ = 0.26 mm1
c = 13.0135 (9) Å T = 120 K
β = 92.977 (4)° Prism, colourless
V = 1188.24 (14) Å3 0.42 × 0.32 × 0.08 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD area-detector

diffractometer
2093 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode 1668 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.082
Detector resolution: 9.091 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ϕ and ω scans h = 1212
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
k = 1010
Tmin = 0.913, Tmax = 0.977 l = 1515
9227 measured reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.0328P]

where P = (Fo2 + 2Fc2)/3
2093 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = 0.34 e Å3
Crystal data top
C10H16N2O2S V = 1188.24 (14) Å3
Mr = 228.31 Z = 4
Monoclinic, P21/n Mo Kα radiation
a = 10.6248 (8) Å µ = 0.26 mm1
b = 8.6055 (5) Å T = 120 K
c = 13.0135 (9) Å 0.42 × 0.32 × 0.08 mm
β = 92.977 (4)°
Data collection top
Bruker-Nonius KappaCCD area-detector

diffractometer
2093 independent reflections
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
1668 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.977 Rint = 0.082
9227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041 0 restraints
wR(F2) = 0.106 H-atom parameters constrained
S = 1.08 Δρmax = 0.20 e Å3
2093 reflections Δρmin = 0.34 e Å3
140 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.73102 (5) 0.23587 (6) 0.65724 (3) 0.02690 (19)
C2 0.62597 (18) 0.3504 (2) 0.58627 (14) 0.0256 (5)
N21 0.57163 (16) 0.47329 (19) 0.62767 (12) 0.0318 (4)
H21 0.5186 0.5309 0.5900 0.040*
H22 0.5887 0.4969 0.6927 0.040*
N3 0.60506 (15) 0.30740 (18) 0.48900 (11) 0.0242 (4)
C4 0.67079 (18) 0.1747 (2) 0.46746 (14) 0.0233 (4)
C41 0.64797 (18) 0.1044 (2) 0.35997 (14) 0.0260 (5)
C42 0.5490 (2) 0.1988 (3) 0.29758 (15) 0.0366 (5)
H41 0.4713 0.2036 0.3348 0.046*
H42 0.5316 0.1491 0.2306 0.046*
H43 0.5807 0.3043 0.2873 0.046*
C43 0.7696 (2) 0.1048 (2) 0.30173 (15) 0.0326 (5)
H44 0.8007 0.2116 0.2964 0.041*
H45 0.7526 0.0622 0.2326 0.041*
H46 0.8333 0.0411 0.3389 0.041*
C44 0.5958 (2) 0.0610 (2) 0.37003 (15) 0.0306 (5)
H47 0.6590 0.1266 0.4064 0.038*
H48 0.5759 0.1039 0.3013 0.038*
H49 0.5191 0.0581 0.4088 0.038*
C5 0.74610 (18) 0.1188 (2) 0.54923 (14) 0.0249 (4)
C51 0.83058 (18) 0.0117 (2) 0.56901 (14) 0.0261 (5)
O51 0.87845 (14) 0.03732 (17) 0.65452 (10) 0.0345 (4)
O52 0.85479 (13) 0.09931 (15) 0.48804 (9) 0.0288 (3)
C53 0.9321 (2) 0.2367 (2) 0.50785 (16) 0.0312 (5)
H51 0.9964 0.2144 0.5637 0.039*
H52 0.9764 0.2640 0.4452 0.039*
C54 0.8522 (3) 0.3706 (2) 0.5382 (2) 0.0484 (6)
H53 0.8094 0.3440 0.6008 0.060*
H54 0.9055 0.4621 0.5512 0.060*
H55 0.7893 0.3933 0.4825 0.060*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.0291 (3) 0.0302 (3) 0.0211 (3) 0.0021 (2) 0.0018 (2) 0.0009 (2)
C2 0.0268 (11) 0.0267 (10) 0.0232 (10) 0.0036 (8) 0.0002 (8) 0.0000 (8)
N21 0.0404 (11) 0.0325 (9) 0.0220 (8) 0.0094 (8) 0.0049 (7) 0.0022 (8)
N3 0.0277 (9) 0.0246 (8) 0.0203 (8) 0.0001 (7) 0.0004 (7) 0.0006 (7)
C4 0.0235 (10) 0.0247 (10) 0.0219 (9) 0.0045 (8) 0.0031 (8) 0.0015 (8)
C41 0.0264 (11) 0.0305 (11) 0.0213 (9) 0.0015 (8) 0.0012 (8) 0.0005 (8)
C42 0.0438 (14) 0.0413 (12) 0.0237 (10) 0.0090 (10) 0.0068 (9) 0.0071 (9)
C43 0.0385 (13) 0.0374 (12) 0.0225 (10) 0.0001 (10) 0.0071 (9) 0.0011 (9)
C44 0.0306 (12) 0.0337 (11) 0.0276 (10) 0.0024 (9) 0.0029 (9) 0.0067 (9)
C5 0.0272 (11) 0.0270 (10) 0.0208 (9) 0.0024 (8) 0.0030 (8) 0.0006 (8)
C51 0.0255 (11) 0.0292 (11) 0.0239 (10) 0.0035 (8) 0.0039 (8) 0.0021 (9)
O51 0.0395 (9) 0.0393 (9) 0.0241 (7) 0.0101 (7) 0.0042 (6) 0.0016 (6)
O52 0.0315 (8) 0.0315 (8) 0.0233 (7) 0.0067 (6) 0.0017 (6) 0.0011 (6)
C53 0.0293 (12) 0.0332 (11) 0.0315 (11) 0.0087 (9) 0.0046 (9) 0.0010 (9)
C54 0.0551 (16) 0.0331 (12) 0.0583 (15) 0.0020 (11) 0.0163 (13) 0.0017 (12)
Geometric parameters (Å, º) top
S1—C2 1.7214 (19) C43—H45 0.98
S1—C5 1.7434 (18) C43—H46 0.98
C2—N3 1.327 (2) C44—H47 0.98
C2—N21 1.332 (2) C44—H48 0.98
N21—H21 0.88 C44—H49 0.98
N21—H22 0.88 C5—C51 1.452 (3)
N3—C4 1.375 (2) C51—O51 1.219 (2)
C4—C5 1.384 (3) C51—O52 1.332 (2)
C4—C41 1.532 (2) O52—C53 1.455 (2)
C41—C42 1.529 (3) C53—C54 1.496 (3)
C41—C43 1.532 (3) C53—H51 0.99
C41—C44 1.535 (3) C53—H52 0.99
C42—H41 0.98 C54—H53 0.98
C42—H42 0.98 C54—H54 0.98
C42—H43 0.98 C54—H55 0.98
C43—H44 0.98
C2—S1—C5 88.99 (9) H44—C43—H46 109.5
N3—C2—N21 123.57 (17) H45—C43—H46 109.5
N3—C2—S1 115.09 (14) C41—C44—H47 109.5
N21—C2—S1 121.34 (14) C41—C44—H48 109.5
C2—N21—H21 120.0 H47—C44—H48 109.5
C2—N21—H22 120.0 C41—C44—H49 109.5
H21—N21—H22 120.0 H47—C44—H49 109.5
C2—N3—C4 111.38 (15) H48—C44—H49 109.5
N3—C4—C5 114.28 (16) C4—C5—C51 137.07 (18)
N3—C4—C41 117.14 (15) C4—C5—S1 110.22 (14)
C5—C4—C41 128.52 (17) C51—C5—S1 112.69 (13)
C42—C41—C4 110.29 (16) O51—C51—O52 122.07 (17)
C42—C41—C43 108.08 (16) O51—C51—C5 121.76 (18)
C4—C41—C43 110.68 (16) O52—C51—C5 116.15 (16)
C42—C41—C44 107.26 (17) C51—O52—C53 116.77 (14)
C4—C41—C44 109.21 (15) O52—C53—C54 110.44 (17)
C43—C41—C44 111.25 (16) O52—C53—H51 109.6
C41—C42—H41 109.5 C54—C53—H51 109.6
C41—C42—H42 109.5 O52—C53—H52 109.6
H41—C42—H42 109.5 C54—C53—H52 109.6
C41—C42—H43 109.5 H51—C53—H52 108.1
H41—C42—H43 109.5 C53—C54—H53 109.5
H42—C42—H43 109.5 C53—C54—H54 109.5
C41—C43—H44 109.5 H53—C54—H54 109.5
C41—C43—H45 109.5 C53—C54—H55 109.5
H44—C43—H45 109.5 H53—C54—H55 109.5
C41—C43—H46 109.5 H54—C54—H55 109.5
C5—S1—C2—N3 1.16 (16) C41—C4—C5—C51 2.1 (4)
C5—S1—C2—N21 179.29 (17) N3—C4—C5—S1 1.1 (2)
N21—C2—N3—C4 178.48 (18) C41—C4—C5—S1 176.03 (16)
S1—C2—N3—C4 2.0 (2) C2—S1—C5—C4 0.00 (15)
C2—N3—C4—C5 2.0 (2) C2—S1—C5—C51 178.60 (15)
C2—N3—C4—C41 175.51 (16) C4—C5—C51—O51 174.3 (2)
N3—C4—C41—C42 1.8 (2) S1—C5—C51—O51 3.8 (2)
C5—C4—C41—C42 175.29 (19) C4—C5—C51—O52 7.1 (3)
N3—C4—C41—C43 117.77 (19) S1—C5—C51—O52 174.81 (13)
C5—C4—C41—C43 65.2 (3) O51—C51—O52—C53 5.6 (3)
N3—C4—C41—C44 119.42 (18) C5—C51—O52—C53 175.82 (16)
C5—C4—C41—C44 57.7 (3) C51—O52—C53—C54 85.5 (2)
N3—C4—C5—C51 179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
N21—H21···N3i 0.88 2.14 3.016 (2) 173
N21—H22···O51ii 0.88 2.02 2.858 (2) 158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.
(II) 6-Methylimidazo[2,1-b]thiazole 2-amino-1,3-thiazole top
Crystal data top
C6H6N2S·C3H4N2S Z = 2
Mr = 238.33 F(000) = 248
Triclinic, P1 Dx = 1.470 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9195 (2) Å Cell parameters from 9410 reflections
b = 9.1860 (2) Å θ = 2.9–27.5°
c = 9.6953 (3) Å µ = 0.47 mm1
α = 69.5204 (17)° T = 120 K
β = 71.4823 (16)° Plate, colourless
γ = 74.2770 (17)° 0.26 × 0.08 × 0.04 mm
V = 538.48 (3) Å3
Data collection top
Bruker-Nonius KappaCCD area-detector

diffractometer
2472 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode 2224 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.072
Detector resolution: 9.091 pixels mm-1 θmax = 27.6°, θmin = 3.2°
ϕ and ω scans h = 89
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
k = 1111
Tmin = 0.885, Tmax = 0.982 l = 1212
12593 measured reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3904P]

where P = (Fo2 + 2Fc2)/3
2472 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = 0.44 e Å3
Crystal data top
C6H6N2S·C3H4N2S γ = 74.2770 (17)°
Mr = 238.33 V = 538.48 (3) Å3
Triclinic, P1 Z = 2
a = 6.9195 (2) Å Mo Kα radiation
b = 9.1860 (2) Å µ = 0.47 mm1
c = 9.6953 (3) Å T = 120 K
α = 69.5204 (17)° 0.26 × 0.08 × 0.04 mm
β = 71.4823 (16)°
Data collection top
Bruker-Nonius KappaCCD area-detector

diffractometer
2472 independent reflections
Absorption correction: multi-scan

(SORTAV; Blessing, 1995)
2224 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.982 Rint = 0.072
12593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040 0 restraints
wR(F2) = 0.105 H-atom parameters constrained
S = 1.05 Δρmax = 0.26 e Å3
2472 reflections Δρmin = 0.44 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1A 0.00960 (8) 0.08327 (6) 0.30204 (5) 0.03224 (15)
C2A 0.1187 (3) 0.2132 (2) 0.1913 (2) 0.0286 (4)
H2A 0.1030 0.3207 0.2263 0.036*
C3A 0.2265 (3) 0.1461 (2) 0.0524 (2) 0.0243 (4)
H3A 0.2955 0.1999 0.0225 0.030*
N4A 0.2258 (2) 0.01230 (17) 0.03015 (16) 0.0202 (3)
C5A 0.3102 (3) 0.1371 (2) 0.0801 (2) 0.0233 (4)
H5A 0.3949 0.1379 0.1790 0.029*
C6A 0.2462 (3) 0.2595 (2) 0.0171 (2) 0.0226 (4)
C61A 0.2951 (3) 0.4226 (2) 0.0846 (2) 0.0301 (4)
H61A 0.3603 0.4435 0.0190 0.038*
H62A 0.1670 0.4996 0.0937 0.038*
H63A 0.3902 0.4316 0.1855 0.038*
N7A 0.1235 (2) 0.21473 (18) 0.12958 (17) 0.0249 (3)
C8A 0.1169 (3) 0.0656 (2) 0.15266 (19) 0.0226 (4)
S1B 0.43793 (7) 0.20121 (5) 0.32915 (5) 0.02753 (15)
C2B 0.2352 (3) 0.3412 (2) 0.39595 (19) 0.0214 (3)
N21B 0.0592 (2) 0.38726 (19) 0.34887 (18) 0.0271 (3)
H21B 0.0415 0.4574 0.3837 0.034*
H22B 0.0448 0.3473 0.2832 0.034*
N3B 0.2716 (2) 0.39372 (18) 0.49329 (17) 0.0240 (3)
C4B 0.4678 (3) 0.3223 (2) 0.5168 (2) 0.0256 (4)
H4B 0.5206 0.3462 0.5841 0.032*
C5B 0.5789 (3) 0.2182 (2) 0.4401 (2) 0.0294 (4)
H5B 0.7148 0.1621 0.4457 0.037*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1A 0.0402 (3) 0.0267 (3) 0.0227 (2) 0.0067 (2) 0.0004 (2) 0.00468 (19)
C2A 0.0265 (9) 0.0212 (9) 0.0359 (10) 0.0024 (7) 0.0074 (8) 0.0073 (8)
C3A 0.0220 (8) 0.0198 (8) 0.0329 (10) 0.0007 (7) 0.0073 (7) 0.0115 (7)
N4A 0.0189 (7) 0.0199 (7) 0.0216 (7) 0.0012 (5) 0.0053 (5) 0.0073 (6)
C5A 0.0209 (8) 0.0242 (9) 0.0224 (8) 0.0043 (7) 0.0031 (6) 0.0058 (7)
C6A 0.0225 (8) 0.0205 (8) 0.0257 (9) 0.0028 (6) 0.0098 (7) 0.0051 (7)
C61A 0.0314 (10) 0.0210 (9) 0.0369 (11) 0.0039 (7) 0.0116 (8) 0.0052 (8)
N7A 0.0302 (8) 0.0223 (7) 0.0232 (7) 0.0025 (6) 0.0080 (6) 0.0082 (6)
C8A 0.0244 (8) 0.0230 (8) 0.0198 (8) 0.0021 (7) 0.0059 (7) 0.0069 (7)
S1B 0.0291 (3) 0.0251 (3) 0.0274 (3) 0.00164 (18) 0.00392 (18) 0.01401 (19)
C2B 0.0247 (8) 0.0162 (8) 0.0204 (8) 0.0027 (6) 0.0013 (6) 0.0065 (6)
N21B 0.0271 (8) 0.0276 (8) 0.0316 (8) 0.0007 (6) 0.0084 (6) 0.0176 (7)
N3B 0.0262 (8) 0.0217 (7) 0.0246 (8) 0.0019 (6) 0.0052 (6) 0.0102 (6)
C4B 0.0294 (9) 0.0230 (9) 0.0238 (9) 0.0054 (7) 0.0069 (7) 0.0052 (7)
C5B 0.0272 (9) 0.0271 (9) 0.0308 (10) 0.0011 (7) 0.0069 (7) 0.0077 (8)
Geometric parameters (Å, º) top
S1A—C8A 1.7324 (18) C61A—H62A 0.98
S1A—C2A 1.743 (2) C61A—H63A 0.98
C2A—C3A 1.334 (3) N7A—C8A 1.319 (2)
C2A—H2A 0.95 S1B—C5B 1.732 (2)
C3A—N4A 1.393 (2) S1B—C2B 1.7518 (17)
C3A—H3A 0.95 C2B—N3B 1.312 (2)
N4A—C8A 1.363 (2) C2B—N21B 1.345 (2)
N4A—C5A 1.381 (2) N21B—H21B 0.88
C5A—C6A 1.368 (3) N21B—H22B 0.88
C5A—H5A 0.95 N3B—C4B 1.391 (2)
C6A—N7A 1.388 (2) C4B—C5B 1.340 (3)
C6A—C61A 1.495 (3) C4B—H4B 0.95
C61A—H61A 0.98 C5B—H5B 0.95
C8A—S1A—C2A 89.74 (9) H61A—C61A—H63A 109.5
C3A—C2A—S1A 113.09 (14) H62A—C61A—H63A 109.5
C3A—C2A—H2A 123.5 C8A—N7A—C6A 104.09 (14)
S1A—C2A—H2A 123.5 N7A—C8A—N4A 112.88 (15)
C2A—C3A—N4A 111.98 (16) N7A—C8A—S1A 136.17 (14)
C2A—C3A—H3A 124.0 N4A—C8A—S1A 110.93 (13)
N4A—C3A—H3A 124.0 C5B—S1B—C2B 89.06 (9)
C8A—N4A—C5A 106.52 (14) N3B—C2B—N21B 124.61 (16)
C8A—N4A—C3A 114.26 (15) N3B—C2B—S1B 114.35 (13)
C5A—N4A—C3A 139.17 (15) N21B—C2B—S1B 121.04 (13)
C6A—C5A—N4A 105.51 (15) C2B—N21B—H21B 120.0
C6A—C5A—H5A 127.2 C2B—N21B—H22B 120.0
N4A—C5A—H5A 127.2 H21B—N21B—H22B 120.0
C5A—C6A—N7A 110.99 (16) C2B—N3B—C4B 109.87 (15)
C5A—C6A—C61A 128.64 (17) C5B—C4B—N3B 116.87 (17)
N7A—C6A—C61A 120.35 (16) C5B—C4B—H4B 121.6
C6A—C61A—H61A 109.5 N3B—C4B—H4B 121.6
C6A—C61A—H62A 109.5 C4B—C5B—S1B 109.85 (15)
H61A—C61A—H62A 109.5 C4B—C5B—H5B 125.1
C6A—C61A—H63A 109.5 S1B—C5B—H5B 125.1
C8A—S1A—C2A—C3A 0.24 (15) C3A—N4A—C8A—N7A 178.36 (14)
S1A—C2A—C3A—N4A 0.2 (2) C5A—N4A—C8A—S1A 178.08 (11)
C2A—C3A—N4A—C8A 0.0 (2) C3A—N4A—C8A—S1A 0.15 (19)
C2A—C3A—N4A—C5A 176.93 (19) C2A—S1A—C8A—N7A 177.8 (2)
C8A—N4A—C5A—C6A 0.15 (18) C2A—S1A—C8A—N4A 0.22 (14)
C3A—N4A—C5A—C6A 177.26 (19) C5B—S1B—C2B—N3B 0.48 (14)
N4A—C5A—C6A—N7A 0.16 (19) C5B—S1B—C2B—N21B 179.75 (16)
N4A—C5A—C6A—C61A 178.67 (17) N21B—C2B—N3B—C4B 179.87 (17)
C5A—C6A—N7A—C8A 0.4 (2) S1B—C2B—N3B—C4B 0.36 (19)
C61A—C6A—N7A—C8A 178.53 (16) C2B—N3B—C4B—C5B 0.0 (2)
C6A—N7A—C8A—N4A 0.5 (2) N3B—C4B—C5B—S1B 0.4 (2)
C6A—N7A—C8A—S1A 177.48 (16) C2B—S1B—C5B—C4B 0.45 (15)
C5A—N4A—C8A—N7A 0.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
N21B—H21B···N3Bi 0.88 2.14 3.010 (2) 170
N21B—H22B···N7A 0.88 2.10 2.933 (2) 159
C2A—H2A···N21Bii 0.95 2.59 3.531 (2) 174
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.

Experimental details

(I) (II)
Crystal data
Chemical formula C10H16N2O2S C6H6N2S·C3H4N2S
Mr 228.31 238.33
Crystal system, space group Monoclinic, P21/n Triclinic, P1
Temperature (K) 120 120
a, b, c (Å) 10.6248 (8), 8.6055 (5), 13.0135 (9) 6.9195 (2), 9.1860 (2), 9.6953 (3)
α, β, γ (°) 90, 92.977 (4), 90 69.5204 (17), 71.4823 (16), 74.2770 (17)
V3) 1188.24 (14) 538.48 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
µ (mm1) 0.26 0.47
Crystal size (mm) 0.42 × 0.32 × 0.08 0.26 × 0.08 × 0.04
Data collection
Diffractometer Bruker-Nonius KappaCCD area-detector

diffractometer
Bruker-Nonius KappaCCD area-detector

diffractometer
Absorption correction Multi-scan

(SORTAV; Blessing, 1995)
Multi-scan

(SORTAV; Blessing, 1995)
Tmin, Tmax 0.913, 0.977 0.885, 0.982
No. of measured, independent and

observed [I > 2σ(I)] reflections
9227, 2093, 1668 12593, 2472, 2224
Rint 0.082 0.072
(sin θ/λ)max1) 0.595 0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.08 0.040, 0.105, 1.05
No. of reflections 2093 2472
No. of parameters 140 137
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å3) 0.20, 0.34 0.26, 0.44

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, DENZO, SCALEPACK (Otwinowski & Minor, 1997) and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···A D—H H···A D···A D—H···A
N21—H21···N3i 0.88 2.14 3.016 (2) 173
N21—H22···O51ii 0.88 2.02 2.858 (2) 158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A D—H H···A D···A D—H···A
N21B—H21B···N3Bi 0.88 2.14 3.010 (2) 170
N21B—H22B···N7A 0.88 2.10 2.933 (2) 159
C2A—H2A···N21Bii 0.95 2.59 3.531 (2) 174
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service, Southampton, England.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationCaranoni, P. C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255–1259.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar

First citationKuz'mina, L. G. & Struchkov, Y. T. (1984). Zh. Strukt. Khim. 25, 88–92. (In Russian.)  CAS Google Scholar

First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o733–o734.  Web of Science CSD CrossRef IUCr Journals Google Scholar

First citationLynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123–136.  Web of Science CSD CrossRef CAS Google Scholar

First citationLynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Acta Cryst. B55, 758–766.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationMerck (2001). The Merck Index, 13th ed. New York: John Wiley & Sons.  Google Scholar

First citationMoers, O., Wijaya, K., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 738–752.  CAS Google Scholar

First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar

First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar

First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

First citationSpek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.  Google Scholar

First citationSpek, A. L. (1997). PLATON97. University of Utrecht, The Netherlands.  Google Scholar

First citationToplak, R., Lah, N., Volmajer, J., Leban, I. & Le Maréchal, A. M. (2003). Acta Cryst. C59, o502–o505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds