Glucose–fructose ingestion and exercise performance: The gastrointestinal tract and beyond
Corresponding Author
Robin Rosset
Department of Physiology, University of Lausanne, Lausanne, Switzerland
Correspondence: Robin Rosset, Department of Physiology, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland. E-mail: [email protected]Search for more papers by this authorLéonie Egli
Nestle Research Center Singapore, Singapore, Singapore
Search for more papers by this authorVirgile Lecoultre
Centre for Metabolic Disease, Broye Intercantonal Hospital, Estavayer-le-Lac, Switzerland
Search for more papers by this authorCorresponding Author
Robin Rosset
Department of Physiology, University of Lausanne, Lausanne, Switzerland
Correspondence: Robin Rosset, Department of Physiology, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland. E-mail: [email protected]Search for more papers by this authorLéonie Egli
Nestle Research Center Singapore, Singapore, Singapore
Search for more papers by this authorVirgile Lecoultre
Centre for Metabolic Disease, Broye Intercantonal Hospital, Estavayer-le-Lac, Switzerland
Search for more papers by this authorAbstract
Carbohydrate ingestion can improve endurance exercise performance. In the past two decades, research has repeatedly reported the performance benefits of formulations comprising both glucose and fructose (GLUFRU) over those based on glucose (GLU). This has been usually related to additive effects of these two monosaccharides on the gastrointestinal tract whereby intestinal carbohydrate absorption is enhanced and discomfort limited. This is only a partial explanation, since glucose and fructose are also metabolized through different pathways after being absorbed from the gut. In contrast to glucose that is readily used by every body cell type, fructose is specifically targeted to the liver where it is mainly converted into glucose and lactate. The ingestion of GLUFRU may thereby profoundly alter hepatic function ultimately raising both glucose and lactate fluxes. During exercise, this particular profile of circulating carbohydrate may induce a spectrum of effects on muscle metabolism possibly resulting in an improved performance. Compared to GLU alone, GLUFRU ingestion could also induce several non-metabolic effects which are so far largely unexplored. Through its metabolite lactate, fructose may act on central fatigue and/or alter metabolic regulation. Future research could further define the effects of GLUFRU over other exercise modalities and different athletic populations, using several of the hypotheses discussed in this review.
References
- Adopo, E., Peronnet, F., Massicotte, D., Brisson, G. R., & Hillaire-Marcel, C. (1994). Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. The Journal of Applied Physiology, 76(3), 1014–1019.
- Ahlborg, G., & Bjorkman, O. (1990). Splanchnic and muscle fructose metabolism during and after exercise. The Journal of Applied Physiology, 69(4), 1244–1251.
- American Dietetic, A., Dietitians of, C., American College of Sports, M., Rodriguez, N. R., Di Marco, N. M., & Langley, S. (2009). American college of sports medicine position stand: Nutrition and athletic performance. Medicine & Science in Sports & Exercise, 41(3), 709–731. doi: 10.1249/MSS.0b013e31890eb86
doi: 10.1249/MSS.0b013e31890eb86
10.1249/MSS.0b013e31890eb86 Google Scholar
- Brooks, G. A. (2009). Cell-cell and intracellular lactate shuttles. The Journal of Physiology, 587(Pt. 23), 5591–5600. doi: 10.1113/jphysiol.2009.178350
doi: 10.1113/jphysiol.2009.178350
10.1113/jphysiol.2009.178350 Google Scholar
- Cermak, N. M., & Van Loon, L. J. (2013). The use of carbohydrates during exercise as an ergogenic aid. Sports Medicine, 43(11), 1139–1155. doi: 10.1007/s40279-013-0079-0
doi: 10.1007/s40279-013-0079-0
10.1007/s40279?013?0079?0 Google Scholar
- Chen, L., Tuo, B., & Dong, H. (2016). Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients, 8(1), 43. doi: 10.3390/nu8010043
doi: 10.3390/nu8010043
10.3390/nu8010043 Google Scholar
- Coggan, A. R., & Coyle, E. F. (1991). Carbohydrate ingestion during prolonged exercise: Effects on metabolism and performance. Exercise and Sport Sciences Reviews, 19, 1–40. doi: 10.1249/00003677-199101000-00001
- Coyle, E. F., Coggan, A. R., Hemmert, M. K., & Ivy, J. L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. The Journal of Applied Physiology, 61(1), 165–172.
- Currell, K., & Jeukendrup, A. E. (2008). Superior endurance performance with ingestion of multiple transportable carbohydrates. Medicine & Science in Sports & Exercise, 40(2), 275–281. doi: 10.1249/mss.0b013e31815adf19
doi: 10.1249/mss.0b013e31815adf19
10.1249/mss.0b013e31815adf19 Google Scholar
- Decombaz, J., Sartori, D., Arnaud, M. J., Thelin, A. L., Schurch, P., & Howald, H. (1985). Oxidation and metabolic effects of fructose or glucose ingested before exercise. International Journal of Sports Medicine, 6(5), 282–286. doi: 10.1055/s-2008-1025852
- Décombaz, J., Jentjens, R. L., Ith, M., Scheurer, E., Buehler, T., Jeukendrup, A. E., & Boesch, C. (2011). Fructose and galactose enhance post-exercise human liver glycogen synthesis. Medicine & Science in Sports & Exercise, 43(10), 1964–1971. doi:10.1249/MSS.0b013e318218ca5a
- Dirlewanger, M., Schneiter, P., Jequier, E., & Tappy, L. (2000). Effects of fructose on hepatic glucose metabolism in humans. American Journal of Physiology – Endocrinology And Metabolism, 279(4), E907–E911.
- Egli, L., Lecoultre, V., Cros, J., Rosset, R., Marques, A. S., Schneiter, P., … Tappy, L. (2016). Exercise performed immediately after fructose ingestion enhances fructose oxidation and suppresses fructose storage. American Journal of Clinical Nutrition, 103(2), 348–355. doi: 10.3945/ajcn.115.116988
doi: 10.3945/ajcn.115.116988
10.3945/ajcn.115.116988 Google Scholar
- Emhoff, C. A., Messonnier, L. A., Horning, M. A., Fattor, J. A., Carlson, T. J., & Brooks, G. A. (2013). Direct and indirect lactate oxidation in trained and untrained men. Journal of Applied Physiology, 115(6), 829–838. doi: 10.1152/japplphysiol.00538.2013
doi: 10.1152/japplphysiol.00538.2013
10.1152/japplphysiol.00538.2013 Google Scholar
- Ferrannini, E., Natali, A., Brandi, L. S., Bonadonna, R., De Kreutzemberg, S. V., DelPrato, S., & Santoro, D. (1993). Metabolic and thermogenic effects of lactate infusion in humans. Journal of Applied Physiology, 265(3 Pt. 1), E504–E512.
- Fujisawa, T., Mulligan, K., Wada, L., Schumacher, L., Riby, J., & Kretchmer, N. (1993). The effect of exercise on fructose absorption. American Journal of Clinical Nutrition, 58(1), 75–79.
- Gonzalez, J. T., Fuchs, C. J., Betts, J. A., & van Loon, L. J. (2016). Liver glycogen metabolism during and after prolonged endurance-type exercise. American Journal of Physiology – Endocrinology and Metabolism, 311(3), E543–E553. doi: 10.1152/ajpendo.00232.2016
doi: 10.1152/ajpendo.00232.2016
10.1152/ajpendo.00232.2016 Google Scholar
- Gonzalez, J. T., Fuchs, C. J., Smith, F. E., Thelwall, P. E., Taylor, R., Stevenson, E. J., …. van Loon, L. J. (2015). Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. American Journal of Physiology – Endocrinology and Metabolism, 309(12), E1032–E1039. doi: 10.1152/ajpendo.00376.2015
doi: 10.1152/ajpendo.00376.2015
10.1152/ajpendo.00376.2015 Google Scholar
- Hawley, J. A., Bosch, A. N., Weltan, S. M., Dennis, S. C., & Noakes, T. D. (1994). Glucose kinetics during prolonged exercise in euglycaemic and hyperglycaemic subjects. Pflugers Archiv European Journal of Physiology, 426(5), 378–386. doi: 10.1007/BF00388300
- Hulston, C. J., Wallis, G. A., & Jeukendrup, A. E. (2009). Exogenous CHO oxidation with glucose plus fructose intake during exercise. Medicine & Science in Sports & Exercise, 41(2), 357–363. doi: 10.1249/MSS.0b013e3181857ee6
doi: 10.1249/MSS.0b013e3181857ee6
10.1249/MSS.0b013e3181857ee6 Google Scholar
- Jentjens, R. L., Moseley, L., Waring, R. H., Harding, L. K., & Jeukendrup, A. E. (2004). Oxidation of combined ingestion of glucose and fructose during exercise. Journal of Applied Physiology, 96(4), 1277–1284. doi: 10.1152/japplphysiol.00974.2003
doi: 10.1152/japplphysiol.00974.2003
10.1152/japplphysiol.00974.2003 Google Scholar
- Jentjens, R. L., Underwood, K., Achten, J., Currell, K., Mann, C. H., & Jeukendrup, A. E. (2006). Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. Journal of Applied Physiology, 100(3), 807–816. doi: 10.1152/japplphysiol.00322.2005
doi: 10.1152/japplphysiol.00322.2005
10.1152/japplphysiol.00322.2005 Google Scholar
- Jeukendrup, A. (2010). Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 452–457. doi: 10.1097/MCO.0b013e328339de9f
doi: 10.1097/MCO.0b013e328339de9f
10.1097/MCO.0b013e328339de9f Google Scholar
- Jeukendrup, A. (2014). A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Medicine, 44(Suppl. 1), S25–S33. doi: 10.1007/s40279-014-0148-z
doi: 10.1007/s40279-014-0148-z
10.1007/s40279?014?0148?z Google Scholar
- Jeukendrup, A., & Jentjens, R. (2000). Oxidation of carbohydrate feedings during prolonged exercise: Current thoughts, guidelines and directions for future research. Sports Medicine, 29(6), 407–424. doi: 10.2165/00007256-200029060-00004
- Jeukendrup, A., & Moseley, L. (2010). Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scandinavian Journal of Medicine & Science in Sports, 20(1), 112–121. doi: 10.1111/j.1600-0838.2008.00862.x
doi: 10.1111/j.1600-0838.2008.00862.x
10.1111/j.1600?0838.2008.00862.x Google Scholar
- Latulippe, M. E., & Skoog, S. M. (2011). Fructose malabsorption and intolerance: Effects of fructose with and without simultaneous glucose ingestion. Critical Reviews in Food Science and Nutrition, 51(7), 583–592. doi: 10.1080/10408398.2011.566646
doi: 10.1080/10408398.2011.566646
10.1080/10408398.2011.566646 Google Scholar
- Lecoultre, V., Benoit, R., Carrel, G., Schutz, Y., Millet, G. P., Tappy, L., & Schneiter, P. (2010). Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. American Journal of Clinical Nutrition, 92(5), 1071–1079. doi: 10.3945/ajcn.2010.29566
doi: 10.3945/ajcn.2010.29566
10.3945/ajcn.2010.29566 Google Scholar
- Massicotte, D., Peronnet, F., Adopo, E., Brisson, G. R., & Hillaire-Marcel, C. (1994). Effect of metabolic rate on the oxidation of ingested glucose and fructose during exercise. International Journal of Sports Medicine, 15(4), 177–180. doi: 10.1055/s-2007-1021043
doi: 10.1055/s-2007-1021043
10.1055/s?2007?1021043 Google Scholar
- Mayes, P. A. (1993). Intermediary metabolism of fructose. American Journal of Clinical Nutrition, 58(Suppl. 5), 754S–765S.
- Miller, B. F., Fattor, J. A., Jacobs, K. A., Horning, M. A., Navazio, F., Lindinger, M. I., & Brooks, G. A. (2002). Lactate and glucose interactions during rest and exercise in men: Effect of exogenous lactate infusion. The Journal of Physiology, 544(Pt. 3), 963–975. doi: 10.1113/jphysiol.2002.027128
- Miller, B. F., Fattor, J. A., Jacobs, K. A., Horning, M. A., Suh, S. H., Navazio, F., & Brooks, G. A. (2002). Metabolic and cardiorespiratory responses to “the lactate clamp”. American Journal of Physiology – Endocrinology and Metabolism, 283(5), E889–E898. doi: 10.1152/ajpendo.00266.2002
doi: 10.1152/ajpendo.00266.2002
10.1152/ajpendo.00266.2002 Google Scholar
- Moore, M. C., Coate, K. C., Winnick, J. J., An, Z., & Cherrington, A. D. (2012). Regulation of hepatic glucose uptake and storage in vivo. Advances in Nutrition: An International Review Journal, 3(3), 286–294. doi: 10.3945/an.112.002089
doi: 10.3945/an.112.002089
10.3945/an.112.002089 Google Scholar
- O'Brien, W. J., Stannard, S. R., Clarke, J. A., & Rowlands, D. S. (2013). Fructose-maltodextrin ratio governs exogenous and other CHO oxidation and performance. Medicine & Science in Sports & Exercise, 45(9), 1814–1824. doi: 10.1249/MSS.0b013e31828e12d4
doi: 10.1249/MSS.0b013e31828e12d4
10.1249/MSS.0b013e31828e12d4 Google Scholar
- Page, K. A., Chan, O., Arora, J., Belfort-Deaguiar, R., Dzuira, J., Roehmholdt, B., … Sherwin, R. S. (2013). Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA, 309(1), 63–70. doi: 10.1001/jama.2012.116975
doi: 10.1001/jama.2012.116975
10.1001/jama.2012.116975 Google Scholar
- Paquot, N., Schneiter, P., Cayeux, M. C., Chiolero, R., Temler, E., Jequier, E., & Tappy, L. (1995). Effects of infused sodium lactate on glucose and energy metabolism in healthy humans. Diabete & Metabolisme, 21(5), 345–352.
- Paquot, N., Schneiter, P., Jequier, E., Gaillard, R., Lefebvre, P. J., Scheen, A., & Tappy, L. (1996). Effects of ingested fructose and infused glucagon on endogenous glucose production in obese NIDDM patients, obese non-diabetic subjects, and healthy subjects. Diabetologia, 39(5), 580–586. doi: 10.1007/BF00403305
- Philp, A., Macdonald, A. L., & Watt, P. W. (2005). Lactate – a signal coordinating cell and systemic function. Journal of Experimental Biology, 208(Pt. 24), 4561–4575. doi: 10.1242/jeb.01961
doi: 10.1242/jeb.01961
10.1242/jeb.01961 Google Scholar
- Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a metabolite and a regulator in the central nervous system. International Journal of Molecular Sciences, 17(9). doi: 10.3390/ijms17091450
doi: 10.3390/ijms17091450
10.3390/ijms17091450 Google Scholar
- Record, C. O., Chase, R. A., Williams, R., & Appleton, D. (10.1016/0026-0495(81)90076-7
10.1016/0026?0495(81)90076?7 Google Scholar
- Rehrer, N. J., Wagenmakers, A. J., Beckers, E. J., Halliday, D., Leiper, J. B., Brouns, F., …. Saris, W. H. (1992). Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. The Journal of Physiology, 72(2), 468–475.
- Roberts, J. D., Tarpey, M. D., Kass, L. S., Tarpey, R. J., & Roberts, M. G. (2014). Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. Journal of the International Society of Sports Nutrition, 11(1), 8. doi: 10.1186/1550-2783-11-8
doi: 10.1186/1550-2783-11-8
10.1186/1550?2783?11?8 Google Scholar
- Rosensweig, N. S., & Herman, R. H. (1968). Control of jejunal sucrase and maltase activity by dietary sucrose or fructose in man: A model for the study of enzyme regulation in man. Journal of Clinical Investigation, 47(10), 2253–2262. doi: 10.1172/JCI105910
doi: 10.1172/JCI105910
10.1172/JCI105910 Google Scholar
- Rosset, R., Lecoultre, V., Egli, L., Cros, J., Dokumaci, A. S., Zwygart, K., … Tappy, L. (2017). Postexercise repletion of muscle energy stores with fructose or glucose in mixed meals. American Journal of Clinical Nutrition. doi:10.3945/ajcn.116.138214
10.3945/ajcn.116.138214 Google Scholar
- Rowlands, D. S., Houltham, S., Musa-Veloso, K., Brown, F., Paulionis, L., & Bailey, D. (2015). Fructose-glucose composite carbohydrates and endurance performance: Critical review and future perspectives. Sports Medicine, 45(11), 1561–1576. doi: 10.1007/s40279-015-0381-0
doi: 10.1007/s40279-015-0381-0
10.1007/s40279?015?0381?0 Google Scholar
- Rowlands, D. S., Thorburn, M. S., Thorp, R. M., Broadbent, S., & Shi, X. (2008). Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. Journal of Applied Physiology, 104(6), 1709–1719. doi: 10.1152/japplphysiol.00878.2007
doi: 10.1152/japplphysiol.00878.2007
10.1152/japplphysiol.00878.2007 Google Scholar
- Rumessen, J. J., Hamberg, O., & Gudmand-Hoyer, E. (1990). Interval sampling of end-expiratory hydrogen (H2) concentrations to quantify carbohydrate malabsorption by means of lactulose standards. Gut, 31(1), 37–42. doi: 10.1136/gut.31.1.37
- Shi, X., Summers, R. W., Schedl, H. P., Flanagan, S. W., Chang, R., & Gisolfi, C. V. (1995). Effects of carbohydrate type and concentration and solution osmolality on water absorption. Medicine & Science in Sports & Exercise, 27(12), 1607–1615. doi: 10.1249/00005768-199512000-00005
- Sole, C. C., & Noakes, T. D. (1989). Faster gastric emptying for glucose-polymer and fructose solutions than for glucose in humans. European Journal of Applied Physiology and Occupational Physiology, 58(6), 605–612. doi: 10.1007/BF00418506
- Stellingwerff, T., Boon, H., Gijsen, A. P., Stegen, J. H., Kuipers, H., & van Loon, L. J. (2007). Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Archiv European Journal of Physiology, 454(4), 635–647. doi: 10.1007/s00424-007-0236-0
doi: 10.1007/s00424-007-0236-0
10.1007/s00424?007?0236?0 Google Scholar
- Sun, S. Z., & Empie, M. W. (2012). Fructose metabolism in humans – what isotopic tracer studies tell us. Nutrition & Metabolism, 9(1), 89. doi: 10.1186/1743-7075-9-89
doi: 10.1186/1743-7075-9-89
10.1186/1743?7075?9?89 Google Scholar
- Tappy, L., Egli, L., Lecoultre, V., & Schneider, P. (2013). Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: A review of human trials. Nutrition & Metabolism, 10(1), 54. doi: 10.1186/1743-7075-10-54
doi: 10.1186/1743-7075-10-54
10.1186/1743?7075?10?54 Google Scholar
- Tappy, L., & Le, K. A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews, 90(1), 23–46. doi: 10.1152/physrev.00019.2009
doi: 10.1152/physrev.00019.2009
10.1152/physrev.00019.2009 Google Scholar
- Tappy, L., Paquot, N., Tounian, P., Schneiter, P., & Jéquier, E. (1995). Assessment of glucose metabolism in humans with the simultaneous use of indirect calorimetry and tracer techniques. Clinical Physiology, 15(1), 1–12. doi: 10.1111/j.1475-097X.1995.tb00425.x
- Tounian, P., Schneiter, P., Henry, S., Jequier, E., & Tappy, L. (1994). Effects of infused fructose on endogenous glucose production, gluconeogenesis, and glycogen metabolism. Am J Physiol, 267(5 Pt. 1), E710–E717.
- Triplett, D., Doyle, J. A., Rupp, J. C., & Benardot, D. (2010). An isocaloric glucose-fructose beverage's effect on simulated 100-km cycling performance compared with a glucose-only beverage. International Journal of Sport Nutrition and Exercise Metabolism, 20(2), 122–131. doi: 10.1123/ijsnem.20.2.122
- Tsintzas, O. K., Williams, C., Boobis, L., & Greenhaff, P. (1995). Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. The Journal of Physiology, 489(Pt. 1), 243–250. doi: 10.1113/jphysiol.1995.sp021046
- Underwood, A. H., & Newsholme, E. A. (1965). Some properties of fructose 1,6-diphosphatase of rat liver and their relation to the control of gluconeogenesis. Biochemical Journal, 95, 767–774. doi: 10.1042/bj0950767
- Van Hall, G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta Physiologica, 199(4), 499–508. doi: 10.1111/j.1748-1716.2010.02122.x
doi: 10.1111/j.1748-1716.2010.02122.x
10.1111/j.1748?1716.2010.02122.x Google Scholar
- Wallis, G. A., Dawson, R., Achten, J., Webber, J., & Jeukendrup, A. E. (2006). Metabolic response to carbohydrate ingestion during exercise in males and females. AJP: Endocrinology and Metabolism, 290(4), E708–E715. doi:10.1152/ajpendo.00357.2005
- Wallis, G. A., & Wittekind, A. (2013). Is there a specific role for sucrose in sports and exercise performance? International Journal of Sport Nutrition and Exercise Metabolism, 23(6), 571–583. doi: 10.1123/ijsnem.23.6.571
- Wasserman, D. H., Connolly, C. C., & Pagliassotti, M. J. (1991). Regulation of hepatic lactate balance during exercise. Medicine & Science in Sports & Exercise, 23(8), 912–919. doi: 10.1249/00005768-199108000-00005
- Weber, E., & Ehrlein, H. J. (1998). Relationships between gastric emptying and intestinal absorption of nutrients and energy in mini pigs. Digestive Diseases and Sciences, 43(6), 1141–1153. doi: 10.1023/A:1018874800819
- Wilson, P. B., & Ingraham, S. J. (2015). Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scandinavian Journal of Medicine & Science in Sports, 25(6), e613–e620. doi: 10.1111/sms.12386
doi: 10.1111/sms.12386
10.1111/sms.12386 Google Scholar
- Yau, A. M., McLaughlin, J., Maughan, R. J., Gilmore, W., & Evans, G. H. (2014). Short-term dietary supplementation with fructose accelerates gastric emptying of a fructose but not a glucose solution. Nutrition, 30(11–12), 1344–1348. doi: 10.1016/j.nut.2014.03.023
doi: 10.1016/j.nut.2014.03.023
10.1016/j.nut.2014.03.023 Google Scholar