Volume 15, Issue 1 204130 pp. 407-416
Article
Open Access

Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits

Michael S. Hsiao

Corresponding Author

Michael S. Hsiao

The Bradley Department of Electrical and Computer Engineering 340 Whittemore Virginia Tech. (VPI) Blacksburg, VA 24061, USA , vt.edu

Search for more papers by this author
First published: 10 July 2001
Citations: 1

Abstract

Estimating peak power involves optimization of the circuit′s switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP) of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.