The Growth Form of Croton pullei (Euphorbiaceae) - Functional Morphology and Biomechanics of a Neotropical Liana
F. Gallenmüller
Botanical Garden, University of Freiburg, Germany, Plant Biomechanics Group
Search for more papers by this authorU. Müller
Wageningen Agricultural University, Netherlands, Forestry Department
Search for more papers by this authorN. Rowe
Laboratoire de Paléobotanique ISEM, UMR 5554 CNRS, Université de Montpellier 2, 34095 Montpellier Cedex 05, France
Search for more papers by this authorT. Speck
Botanical Garden, University of Freiburg, Germany, Plant Biomechanics Group
Search for more papers by this authorF. Gallenmüller
Botanical Garden, University of Freiburg, Germany, Plant Biomechanics Group
Search for more papers by this authorU. Müller
Wageningen Agricultural University, Netherlands, Forestry Department
Search for more papers by this authorN. Rowe
Laboratoire de Paléobotanique ISEM, UMR 5554 CNRS, Université de Montpellier 2, 34095 Montpellier Cedex 05, France
Search for more papers by this authorT. Speck
Botanical Garden, University of Freiburg, Germany, Plant Biomechanics Group
Search for more papers by this authorAbstract
Abstract: Croton pullei (Euphorbiaceae) is a woody climber of the lowland rainforest in French Guyana and Surinam. During ontogeny, a shift from a juvenile free-standing growth phase to an older supported growth phase is observed. The following biomechanical parameters were studied: structural Young's modulus, structural torsional modulus, flexural stiffness and bend to twist ratios. Changes in anatomical development were also analysed for different stages of development of C. pullei which differ significantly in their mechanical properties. Free-standing plants show a nearly constant structural Young's modulus and structural torsional modulus during ontogeny, with flexural stiffness increasing proportionally with the axial second moment of area. These patterns are typical for ?semi-self-supporting plants”. In contrast, supported plants show a significant decrease in structural Young's modulus in older stem parts, as well as a decrease in structural torsional modulus. Due to the decrease in structural Young's modulus, flexural stiffness does not increase proportionally with the axial second moment of area. These patterns are typical for non-self-supporting lianas. In all supported plants, a sudden transition occurs from early dense wood to a wood type with a much higher proportion of large diameter vessels. In contrast, only the dense wood type is present in all tested free-standing plants. The data are compared with results from other climbing species of the same study area and discussed with reference to observed features characterizing the growth form and life history of C. pullei.
References
- 1 Bodig, J. and Jayne, B. A. (1982) Mechanics of wood and wood composites. New York Van Nostrand Reinhold Co..
- 2 Caballé, G. (1986) Les peuplements de lianes ligneuses dans une forêt du nord-est du Gabon. Mémoires du Musée Nationale de l'Histoire Naturelle, Vol. 132 Paris Editions du Muséum pp. 91–96.
- 3 Caballé, G. (1993) Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Botanical Journal of the Linnean Society 113 41–60.
- 4 Caballé, G. (1998) Le port autoportant des lianes tropicales: une synthèse des stratégies de croissance. Canadian Journal of Botany 76 1703–1716.
- 5
Darwin, C. (1867) On the movements and habits of climbing plants.
Journal of the Linnean Society (Botany)
9 1–118.
10.1111/j.1095-8339.1865.tb00011.x Google Scholar
- 6 Ennos, A. R. (1993) The mechanics of the flower stem of the sedge Carex acutiformis. Annals of Botany 72 123–127.
- 7 Ennos, A. R., Spatz, H.-Ch., and Speck, T. (2000) The functional morphology of the petioles of the banana Musa textilis. Submitted.
- 8 Fisher, J. B., and Ewers, F. W. (1989) Wound healing in stems of lianas after twisting and girdling. Botanical Gazette 150 251–265.
- 9 Fisher, J. B., and Ewers, F. W. (1991) Structural responses to stem injury in vines. The Biology of Vines F. E. Putz and H. A. Mooney, eds. Cambridge University Press pp. 73–97.
- 10 Fisher, J. B., and Ewers, F. W. (1992) Xylem pathways in liana stems with variant secondary growth. Botanical Journal of the Linnean Society 108 181–202.
- 11 Gartner, B. L. (1991) Structural stability and architecture of vines vs. shrubs of poison oak, Toxicondendron diversilobum. Ecology 72 2005–2015.
- 12 Gentry, A. B. (1991) The distribution and evolution of climbing plants. The Biology of Vines F. E. Putz and H. A. Mooney, eds. Cambridge University Press pp. 181–204.
- 13 Gerlach, D. (1984) Botanische Mikrotechnik. 3. Aufl. Stuttgart , New York Thieme Verlag pp. 243–244.
- 14 Haberlandt, G. (1924) Physiologische Pflanzenanatomie. 6. Aufl. Leipzig Engelmann.
- 15
Hallé, F.,
Oldeman, R. A. A., and
Tomlinson, P. B. (1978) Tropical Trees and Forests. An Architectural Analysis.
Berlin, Heidelberg, New York
Springer Verlag.
10.1007/978-3-642-81190-6 Google Scholar
- 16 Köhler, L., Speck, T., and Spatz, H.-Ch. (2000) Micromechanics and anatomical changes during early ontogeny of two lianescent Aristolochia species. Planta 210 691–700.
- 17 Niklas, K. J. (1982) Computer simulations of early land plant branching morphologies: canalisation of patterns during evolution? Paleobiology 8 196–210.
- 18 Niklas, K. J. (1992) Plant Biomechanics. An engineering approach to plant form and function. Chicago The University of Chicago Press.
- 19 Niklas, K. J. (1994) Plant Allometry. Chicago The University of Chicago Press.
- 20 Niklas, K. J. (1997) The Evolutionary Biology of Plants. Chicago The University of Chicago Press.
- 21 Putz, F. E. (1983) Liana biomass and leaf area of a “Tierra Firme” forest in the Rio Negro Basin, Venezuela.. Biotropica 15 (3) 185–189.
- 22
Putz, F. E. (1984) The natural history of lianas on Barro Colorado Island, Panama..
Ecology
65 (6) 1713–1724.
10.2307/1937767 Google Scholar
- 23 Putz, F. E. (1990) Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama.. Biotropica 22 (1) 103–105.
- 24 Putz, F. E., and Chai, P. (1987) Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75 523–531.
- 25 Putz, F. E., and Holbrook, N. M. (1991) Biomechanical studies of vines. The Biology of Vines F. E. Putz and H. A. Mooney, eds. Cambridge University Press pp. 73–97.
- 26 Roark, R. J., and Young, W. C. (1975) Formulas for stress and strain. 5th edn. London McGraw-Hill.
- 27 Rowe, N. P., and Speck, T. (1996) Biomechanical characteristics of the ontogeny and growth habit of the tropical liana Condylocarpon guianense (Apocynaceae).. International Journal of Plant Science 157 (4) 406–417.
- 28 Rowe, N. P., and Speck, T. (1998) Biomechanics of plant growth forms: the trouble with fossil plants. Revue of Palaeobotany and Palynology 102 43–62.
- 29 Rowe, N. P., and Speck, T. (2000) Biomechanical variation of non-self-supporting plant growth habits: a comparison of herbaceous and large-bodied woody plants. L'Arbre, Biologie et Developpement C. Edelin, ed. Naturalia Monspeliensia, Numéro hors série A7.
- 30 Schenck, H. (1892) Beiträge zur Anatomie der Lianen, im Besonderen der in Brasilien einheimischen Arten. 1. Beiträge zur Biologie der Lianen. Botanische Mitteilungen aus den Tropen 4 A. F. W. Schimper, ed. Jena Fischer pp. 1–253.
- 31 Schenck, H. (1893) Beiträge zur Anatomie der Lianen, im Besonderen der in Brasilien einheimischen Arten. 2. Beiträge zur Biologie der Lianen. Botanische Mitteilungen aus den Tropen 5 A. F. W. Schimper, ed. Jena Fischer pp. 1–271.
- 32 Schenck, H. (1912) Lianen. Handbuch der Naturwissenschaften, Bd. 6. Jena Fischer pp. 176–185.
- 33 Speck, T. (1991) Changes of the bending-mechanics of lianas and self-supporting taxa during ontogeny. Natural Structures. Principles, Strategies, and Models in Architecture and Nature, Proceedings of the II. International Symposium of the Sonderforschungsbereich 230 Part I. Mitteilungen des SFB 230 (6) 89–95.
- 34 Speck, T. (1994) Bending stability of plant stems: ontogenetical, ecological, and phylogenetical aspects.. Biomimetics 2 (2) 109–128.
- 35 Speck, T. (1997) Ecobiomechanics: biomechanical analyses help to understand aut- and synecology of plants. Plant Biomechanics 1997: Conference Proceedings I, Centre for Biomimetics G. Jeronomidis and J. F. V. Vincent, eds. Reading The University of Reading pp. 9–15.
- 36 Speck, T., Neinhuis, C., Gallenmüller, F., and Rowe, N. P. (1997) Trees and shrubs in the mainly lianescent genus Aristolochia s.l.: secondary evolution of the self-supporting growth habit? Plant Biomechanics 1997: Conference Proceedings I, Centre for Biomimetics G. Jeronomidis and J. F. V. Vincent, eds. Reading The University of Reading pp. 201–207.
- 37 Speck, T. and Rowe, N. P. (1999) A quantitative approach to analytically defining size, form and habit in living and fossil plants. The Evolution of Plant Architecture A. R. Hemsley and M. Kurmann, eds. Kew Royal Botanical Gardens pp. 447–479.
- 38 Speck, T., Rowe, N. P., Brüchert, F., Haberer, W., Gallenmüller, F., and Spatz, H.-Ch. (1996) How plants adjust the “material properties” of their stems according to differing mechanical constraints during growth - an example of smart design in nature. Bioengineering. PD-Volume 77, Proceedings of the 1996 Engineering Systems Design and Analysis Conference, Volume 5 A. E. Engin, ed. ASME pp. 233–241.
- 39 Vincent, J. F. V. (1992) Plants. Biomechanics - Material: A practical approach J. F. V. Vincent, ed. Oxford IRL Press pp. 165–191.
- 40 Vogel, S. (1992) Twist-to-Bend Ratios and Cross-Sectional Shapes of Petioles and Stems.. Journal of Experimental Botany 43 (256) 1527–1532.
- 41 Vogel, S. (1995) Twist-to-bend ratios of woody structures.. Journal of Experimental Botany 46 (289) 981–985.
- 42 Webster, G. L. (1993) A provisional synopsis of the sections of the genus Croton (Euphorbiaceae). Taxon 42 793–823.
- 43 Webster, G. L., Del-Arco-Aguilar, M. J., and Smith, B. A. (1996) Systematic distribution of foliar trichome types in Croton (Euphorbiaceae). Botanical Journal of the Linnean Society 121 41–57.
- 44 Westermeier, M. and Ambronn, H. (1881) Beziehungen zwischen Lebensweise und Struktur der Schling- und Kletterpflanzen. Flora 69 417–436.
- 45
Zobel, B. J. and
van Buijtenen, J. P. (1989) Wood Variation. Its Causes and Control.
Berlin, Heidelberg, New York
Springer-Verlag pp. 147–148.
10.1007/978-3-642-74069-5 Google Scholar