Sleep and Memory Consolidation: The Role of Electrophysiological Neuroimaging
Schlaf und Gedächtniskonsolidierung: Welchen Beitrag kann elektrophysiologisches Neuroimaging liefern?
Peter Anderer
Department of Psychiatry, University of Vienna, Austria
Search for more papers by this authorGeorg Gruber
Department of Psychiatry, University of Vienna, Austria
Austrian Research Institute for Artificial Intelligence, Vienna, Austria
Search for more papers by this authorGerhard Klösch
Department of Neurology, University of Vienna, Austria
Search for more papers by this authorWolfgang Klimesch
Department of Physiological Psychology, University of Salzburg, Austria
Search for more papers by this authorBernd Saletu
Department of Psychiatry, University of Vienna, Austria
Search for more papers by this authorJosef Zeitlhofer
Department of Neurology, University of Vienna, Austria
Search for more papers by this authorPeter Anderer
Department of Psychiatry, University of Vienna, Austria
Search for more papers by this authorGeorg Gruber
Department of Psychiatry, University of Vienna, Austria
Austrian Research Institute for Artificial Intelligence, Vienna, Austria
Search for more papers by this authorGerhard Klösch
Department of Neurology, University of Vienna, Austria
Search for more papers by this authorWolfgang Klimesch
Department of Physiological Psychology, University of Salzburg, Austria
Search for more papers by this authorBernd Saletu
Department of Psychiatry, University of Vienna, Austria
Search for more papers by this authorJosef Zeitlhofer
Department of Neurology, University of Vienna, Austria
Search for more papers by this authorAbstract
enSummary Memory consolidation involves a complex series of molecular, cellular and network-level processes that take place on time scales from millisecond to months. Evidence from a wide range of experimental observations supports the hypothesis that parts of these processes occur during sleep when the brain is not engaged in processing and encoding incoming information. Indeed, sleep seems to be favorable for brain plasticity. Experience-dependent cortical plasticity observed during sleep has been hypothesized to be part of the global process of memory consolidation. Thus, studying task-dependent, regionally specific reactivation of neuronal assemblies during posttraining sleep may make important contributions to elucidating the role of sleep in memory trace processing. A new methodology – low-resolution brain electromagnetic tomography (LORETA) – offers the possibility of localizing electrical activity produced by cortical neuronal generators under normal (undisturbed) sleeping conditions. The high time resolution of brain electrical data can be exploited to produce neuroimages for specific EEG spectral frequency bands (e.g. delta, theta, or spindle bands). This makes it possible to investigate, dependent on the type of memory, when– in which sleep stages (S2 sleep, SWS, REM sleep) – and where– in which cortical brain regions (primary sensory cortex, higher association cortex) – experience-dependent reactivation occurs.
Abstract
deZusammenfassung An der Gedächtniskonsolidierung ist eine komplexe Abfolge von Prozessen auf molekularer, zellulärer und Netzwerkebene beteiligt, die im Zeitbereich von einigen Millisekunden bis zu mehreren Monaten ablaufen. Eine Vielzahl experimenteller Befunde unterstützt die Hypothese, dass Teile dieser Prozesse im Schlaf stattfinden, wenn das Gehirn nicht mit der Verarbeitung und Speicherung neuer Information beschäftigt ist. Tatsächlich bietet der Schlaf besonders günstige Bedingungen für neuronale Plastizität und es wird angenommen, dass die im Schlaf beobachtete erfahrungsabhängige kortikale Plastizität ein wesentlicher Bestandteil des globalen Prozesses der Gedächtniskonsolidierung sei. Somit kann die Untersuchung der aufgabenabhängigen, regional spezifischen Reaktivierung neuronaler Ensembles während des auf eine Lernperiode folgenden Schlafs einen wesentlichen Beitrag zum Verständnis der Rolle des Schlafs in der Gedächtnisverarbeitung liefern. Eine neue Technik –„Low-resolution brain electromagnetic tomography (LORETA)”– bietet die Möglichkeit der Lokalisation der durch neuronale kortikale Generatoren erzeugten elektrischen Aktivität unter normalen (ungestörten) Schlafbedingungen. Die hohe zeitliche Auflösung der gehirnelektrischen Daten ermöglicht die Erstellung von Neuroimages für spezifische EEG-Frequenzbänder (z. B. Delta, Theta oder Spindel-Bänder). Dadurch wird es möglich, in Abhängigkeit von der Art der Aufgabe zu untersuchen, wann– während welcher Schlafstadien (S2, SWS, REM) – und wo– in welchen kortikalen Gehirnregionen (primärer sensorischer Kortex, höherer Assoziationskortex) eine aufgabenabhängige Reaktivierung auftritt.
References
- [1] Achermann P, Borbély AA: Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81: 213 – 222, 1997.DOI: 10.1016/s0306-4522(97)00186-3
- [2] Alvarez P, Squire LR: Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci USA: 91: 7041 – 7045, 1994.
- [3] Amzica H, Steriade M: The K-complex: its slow (< 1-Hz) rhythmicity and relation to delta waves. Neurology 49: 952 – 959, 1997.
- [4] Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B: Electrical sources of P300 event-related brain potentials revealed by low resolution electromagnetic tomography. 1. Effects of normal aging. Neuropsychobiology 37: 20 – 27, 1998.
- [5] Anderer P, Klösch G, Gruber G, Trenker E, Pascual-Marqui RD, Zeitlhofer J, Barbanoj MJ, Rappelsberger P, Saletu B: Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex. Neuroscience 103: 581 – 592, 2001.DOI: 10.1016/s0306-4522(01)00028-8
- [6] Anderer P, Gruber G, Saletu B, Klösch G, Zeitlhofer J, Pascual-Marqui RD: Non-invasive electrophysiological neuroimaging of sleep. In: Hirata K: Recent Advances in Human Brain Mapping, Elsevier, Amsterdam, pp 795 – 800, 2002.
- [7] Beier KM, Kubicki S: Cortical distribution of 2 delta frequencies in slow wave sleep. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb: 18: 47 – 51, 1987.
- [8] Borbély AA, Hayaishi O, Sejnowski TJ, Altman JS: The Regulation of Sleep, HFSP, Strasbourg, 2000.
- [9] Born J, Fehm HL: Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Exp Clin Endocrinol Diabetes: 106: 153 – 164, 1998.
- [10] Born J, Plihal W: Gedächtnisbildung im Schlaf: Die Bedeutung von Schlafstadien und Streßhormonfreisetzung. Psychol Rundsch: 51: 198 – 200, 2000.
- [11] Born J, DeKloet R, Wenz H, Kern W, Fehm HL: Changes in slow wave sleep after glucocorticoids and antimineralocorticoids: A cue for central type I corticotropin releasing hormone in humans. J Clin Endocrinol Metab: 23: 126 – 130, 1991.
- [12] Born J, Hansen K, Marshall L, Mölle M, Fehm HL: Timing the end of nocturnal sleep. Nature: 397: 29 – 30, 1999.
- [13] Buckner RL, Koutstaal W: Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proc Natl Acad Sci USA: 95: 891 – 898, 1998.
- [14] Burgess AP, Gruzelier JH: Short duration synchronization of human theta rhythm during recognition memory, Neuroreport: 8: 1039 – 1042, 1997.
- [15] Burgess AP, Gruzelier JH: Localization of word and face recognition memory using topographical EEG. Psychophysiology: 34: 7 – 16, 1997.
- [16] Burgess AP, Gruzelier JH: Short duration power changes in the EEG during recognition memory for words and faces. Psychophysiology: 37: 596 – 606, 2000.DOI: 10.1017/s0048577200981356
- [17] Buzsáki G: Two-stage model of memory trace formation: A role for ”noisy”, brain states. Neuroscience: 31: 551 – 570, 1989.
- [18] Buzsáki G: The hippocampo-neocortical dialogue. Cereb Cortex: 6: 81 – 92, 1996.
- [19] Buzsáki G: Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res: 7, Supplement 1: 17 – 23, 1998.
- [20] Cabeza R, Nyberg L: Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci: 12: 1 – 47, 2000.
- [21] Cartwright RD: Problem solving in REM, NREM, and waking. Psychophysiology: 9, 108, 1972.
- [22]
Castalado V,
Krynicki V,
Goldstein J: Sleep stages and verbal memory.
Percept Mot Skills:
39: 1023 – 1030, 1974.
10.2466/pms.1974.39.3.1023 Google Scholar
- [23] Cleeremans A, McClelland JL: Learning the structure of event sequences. J Exp Psychol Gen: 120: 235 – 253, 1991.
- [24] Cohen NJ, Squire LR: Preserved learning and attention of a pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science: 210: 207 – 210, 1980.
- [25] Eckstrand BR, Barett TR, West JN, Maier WG: The effect of sleep on human long-term memory. In: Drucker-Colin RR, McGaugh JL: Neurobiology of Sleep and Memory, Academic Press, New York, pp 419 – 438, 1977.
- [26] Eckstrand BR, Sullivan MG, Parker DF, West JN: Spontaneous recovery and sleep. J Exp Psychol: 88: 142 – 144, 1971.
- [27] Empson JA, Clarke PR: Rapid eye movements and remembering. Nature: 227: 287 – 288, 1970.
- [28] Feldman R, Dement W: Possible relationships between REM sleep and memory consolidation. Psychophysiology 5: 243 – 251, 1968.
- [29] Gais S, Plihal W, Wagner U, Born J: Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3: 1335 – 1339, 2000.
- [30] Gevins A, Smith ME, McEvoy L, Yu D: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374 – 385, 1997.
- [31] Givens B: Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. Neuroreport 8: 159 – 163, 1996.
- [32] Greenberg R, Pillard R, Pearlman C: The effect of dream (stage REM) deprivation on adaptation to stress. Psychosom Med 34: 257 – 262, 1972.
- [33] Greenberg R, Pearlman C, Schwartz WR, Grossman H: Memory, Emotion, and REM sleep. J of Abnorm Psychol 92: 378 – 381, 1983.
- [34] Hazlett EA, Buchsbaum MS, Mohs RC, Spiegel-Cohen J, Wei TC, Azueta R, Haznedar MM, Singer MB, Shihabuddin L, Luu-Hsia C, Harvey PD: Age-related shift in brain region activity during successful memory performance. Neurobiol Aging 19: 437 – 445, 1998.
- [35] Hoffmann KL, McNaughton BL: Sleep on it: cortical reorganization after-the-fact. Trends Neurosci 25 (1): 1 – 2, 2002.
- [36] Hong CC, Gillin JC, Dow BM, Wu J, Buchsbaum MS: Localized and lateralized cerebral glucose metabolism associated with eye movements during REM sleep and wakefulness: a positron emission tomography (PET) study. Sleep 18: 570 – 580, 1995.
- [37] Horn JA: Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br J Psychiat: 162: 413 – 419, 1993.
- [38] Jenkins JG, Dallenbach KM: Oblivicence during sleep and waking. Am J Psychol 35: 605 – 612, 1924.
- [39] Joels M, De Koet ER: Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Prog Neurobiol 43: 1 – 36, 1994.
- [40] Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR: Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399: 781 – 784, 1999.
- [41] Karni A, Tanne D, Rubenstein BS, Askenasy JJM, Sagi D: Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265: 679 – 681, 1994.
- [42] Kattler H, Dijk D-J, Borbely AA: Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3: 159 – 164, 1994.
- [43] Klimesch W: EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev: 29: 169 – 195, 1999.
- [44] Klimesch W, Schimke H, Schwaiger J: Episodic and semantic memory: An analysis in the EEG-theta and alpha band. Electroencephalogr Clin Neurophysiol 91: 428 – 441, 1994.
- [45] Klimesch W, Doppelmayr M, Russegger H, Pachinger T: Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 7: 1235 – 1240, 1996.
- [46] Klimesch W, Doppelmayr M, Pachinger T, Ripper B: Brain oscillations and human memory performance: EEG correlates in the upper alpha and theta bands, Neurosci Lett 238: 9 – 12, 1997.
- [47] Klimesch W, Doppelmayr M, Schimke H, Ripper B: Theta synchronization and alpha desynchronization in a memory task, Psychophysiology 34: 169 – 176, 1997.
- [48] Klimesch W, Doppelmayr M, Schwaiger J, Winkler T, Gruber W: Theta oscillation and the ERP old/new effect: independent phenomena? Clin Neurophysiol 111: 781 – 793, 2000.
- [49] Kroll NEA, Knight RT, Metcalfe J, Wolf ES, Tulving E: Cohesion failure as a source of memory illusions. J Mem Lang 35: 176 – 196, 1996.
- [50] Krueger JM, Obal F: A neuronal group theory of sleep function. J Sleep Res 2: 63 – 69, 1993.
- [51] Lewin I, Glaubman H: The effect of REM deprivation: Is it detrimental, beneficial, or neutral? Psychophysiology 12: 349 – 353, 1975.
- [52] Maguire EA, Frith CD, Morris RG: The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122: 1839 – 1850, 1999.
- [53] Maquet P: Sleep on it! Nat Neurosci 3: 1235 – 1236, 2000.
- [54] Maquet P: Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 9: 207 – 231, 2000.
- [55] Maquet P: The role of sleep in learning and memory. Science 294: 1048 – 1052, 2001.
- [56] Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, DelFiore G, Degueldre C, Meulemans T, Luxen A, Franck G, Van Der Linden M, Smith C, Cleeremans A: Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3: 831 – 836, 2000.
- [57] Markowitsch H: Neuropsychologie des Gedächtnisses. Spektrum der Wissenschaft 9: 52 – 61, 1996.
- [58] McGaugh JL: Memory a century of consolidation. Science 287: 248 – 251, 2000.
- [59] Müller GE, Pilzecker Z: Z Psychol 1: 1, 1900.
- [60] Muzio JW, Roffwarg HP, Anders CB, Muzio LG: Retention of rote learned meaningful verbal material and alternation in the normal EEG pattern. Psychophysiology 9: 108, 1972.
- [61] O'Keefe J, Burgess N: Theta activity, virtual navigation and the human hippocampus. Trends Cogn Sci 3: 403 – 406, 1999.
- [62] Pascual-Marqui RD, Michel CM, Lehmann D: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18: 49 – 65, 1994.
- [63] Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MC, Hell D, Koukkou M: Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia. Psychiatry Res 90: 169 – 179, 1999.
- [64] Pavlides C, Watanabe Y, Magarinos AM, McEwen BS: Opposing roles of type I and Type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience 68: 387 – 394, 1995.DOI: 10.1016/0306-4522(95)00151-8
- [65] Pavlides C, Ogawa S, Kimura A, McEwen BS: Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res 738: 229 – 235, 1996.
- [66] Pfurtscheller G, Aranibar A: Event-related cortical synchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42: 817 – 826, 1977.
- [67] Plihal W, Born J: Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9: 534 – 547, 1997.
- [68] Plihal W, Born J: Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36: 571 – 582, 1999.DOI: 10.1017/s0048577299971536
- [69] Plihal W, Born J: Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport 10: 2741 – 2747, 1999.
- [70] Plihal W, Pietrowsky R., Born J: Dexamethasone blocks sleep induced improvement of declarative memory. Psychoneuroendocrionology 24: 312 – 331, 1999.
- [71] Roth T, Costa e Silva JA, Chase MH: Sleep and cognitive (memory) function: research and clinical perspectives. Sleep Medicine 2: 379 – 387, 2001.
- [72] Saletu B, Saletu-Zyhlarz GM: Was Sie schon immer über Schlaf wissen wollten, Ueberreuter, Wien, 2001.
- [73] Sejnowski TJ, Destexhe A: Why do we sleep? Brain Res 15: 208 – 223, 2000.
- [74] Siapas AG, Wilson MA: Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21: 1123 – 1128, 1998.
- [75] Siegel JM: The REM sleep-memory consolidation hypothesis. Science 294: 1058 – 1063, 2001.
- [76] Skaggs WE, McNaughton BL: Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271: 1870 – 1873, 1996.
- [77] Smith C: Sleep states and memory processes. Behav Brain Res 69: 137 – 145, 1995.
- [78] Squire LR: Memory and Brain. Oxford Univ Press, Oxford, 1987.
- [79] Squire LR: Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review 99: 195 – 231, 1992.
- [80] Squire LR, Alvarez P: Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5: 169 – 177, 1995.
- [81] Squire LR, Kandell E: Memory. From mind to molecules. W.H. Freeman and Company, New York, 1999.
- [82] Steriade M: Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci 22: 337 – 345, 1999.
- [83] Steriade M, Amzica F: Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1: 1 – 10, 1998.
- [84] Steriade M, Amzica F: Slow sleep oscillation, rhythmic K-complexes, and their paroxysmal developments. J Sleep Res 7 (Suppl 1): 30 – 35, 1998.
- [85] Stickgold R: Sleep: off-line memory reprocessing, Trends Cogn Sci 2 (12): 484 – 492, 1998.
- [86] Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA: Visual discrimination task improvement: A multi-step process occurring during sleep. J Cogn Neurosci 12: 246 – 54, 2000.
- [87] Stickgold R, James L, Hobson JA: Visual discrimination learning requires sleep after training. Nat Neurosci 3: 1237 – 1238, 2000.DOI: 10.1038/81756
- [88] Stickgold R, Hobson JA, Fosse R, Fosse M: Sleep, learning, and dreams: off-line memory reprocessing. Science 294: 1052 – 1057, 2001.
- [89] Sutherland GR, McNaughton B: Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10: 180 – 186, 2000.
- [90] Talairach J, Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart, 1988.
- [91] Tesche CD, Karhu J: Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci USA 97: 919 – 924, 2000.
- [92] Tilley AJ, Empson JA: REM sleep and memory consolidation. Biol Psychol 6: 293 – 300, 1978.
- [93] Tilley AJ, Empson JA: Picture recall and recognition following total and selective sleep deprivation. In: Koella WP: Sleep '80, Karger, Basel, pp 367 – 369, 1981.
- [94] Tulving E, Markowitsch HJ: Memory beyond the hippocampus. Curr Opin Neurobiol 7: 209 – 216, 1997.
- [95] Werth E, Achermann P, Borbély AA: Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport 8: 123 – 127, 1996.
- [96] Werth E, Achermann P, Borbély AA: Fronto-occipital EEG power gradients in human sleep. J Sleep Res 6: 102 – 112, 1997.
- [97] Wilson MA, McNaughton BL: Reactivation of hippocampal ensemble memories during sleep. Science 265: 676 – 679, 1994.
- [98]
Winson J: The meaning of dreams.
Sci Am
263: 42 – 48, 1990.
10.1038/scientificamerican1190-86 Google Scholar
- [99] Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WE Jr., Fallon JH, Keator D: Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 156: 1149 – 1158, 1999.
- [100] Yonelinas AP, Kroll NEA, Dobbins IG, Lazzara M: Recollection and familiarity deficits in amnesia: Convergence of remember/know, process dissociation, and ROC data. Neuropsychology 12: 1 – 17, 1998.
- [101] Zeitlhofer J, Anderer P, Obergottsberger S, Schimicek P, Lurger S, Marschnigg E, Saletu B, Deecke L: Topographic mapping of EEG during sleep. Brain Topogr 6: 123 – 129, 1993.
- [102] Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B: Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6: 149 – 155, 1997.