Physical implications of the X-ray properties of galaxy groups and clusters
Corresponding Author
Arif Babul
1 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada
Search for more papers by this authorCorresponding Author
Michael L. Balogh
2 Department of Physics, University of Durham, South Road, Durham DH1 3LE
Search for more papers by this authorCorresponding Author
Geraint F. Lewis
3 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Search for more papers by this authorCorresponding Author
Gregory B. Poole
1 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada
Search for more papers by this authorCorresponding Author
Arif Babul
1 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada
Search for more papers by this authorCorresponding Author
Michael L. Balogh
2 Department of Physics, University of Durham, South Road, Durham DH1 3LE
Search for more papers by this authorCorresponding Author
Geraint F. Lewis
3 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Search for more papers by this authorCorresponding Author
Gregory B. Poole
1 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada
Search for more papers by this author1 Only fully resolved observations are considered (i.e. with a quality index of 1).
2 We use the temperatures determined using the Raymond–Smith model with the metallicity fixed at half-solar for all groups except NGC 5846, for which this temperature is unconstrained. In this case, we adopt the low-metallicity determination.
Abstract
Within the standard framework of structure formation, where clusters and groups of galaxies are built up from the merging of smaller systems, the physical properties of the intracluster medium, such as the gas temperature and the total X-ray luminosity, are predicted to possess well-defined, self-similar scaling relations. Observed clusters and groups, however, show strong deviations from these predicted relations. We argue that these deviations are unlikely to be entirely due to observational biases; we assume they are physically based, due to the presence of excess entropy in the intracluster medium in addition to that generated by accretion shocks during the formation of the cluster. Several mechanisms have been suggested as a means of generating this entropy. Focusing on those mechanisms that pre-heat the gas before it becomes a constituent of the virialized cluster environment, we present a simple, intuitive, physically motivated, analytic model that successfully captures the important physics associated with the accretion of high-entropy gas on to group- and cluster-scale systems. We use the model to derive the new relationships between the observable properties of clusters and groups of galaxies, as well as the evolution of these relations. These include the luminosity–temperature and luminosity–σ relations, as well as the temperature distribution function and X-ray luminosity function. These properties are found to be a more accurate description of the observations than those predicted from the standard framework. Future observations that will further test the efficacy of the pre-heated gas scenario are also discussed.
Acknowledgments
- 1 Allen S. W., Fabian A. C., 1998, MNRAS, 297, 57
- 2
Arnaud M.,
Evrard A. E., 1999, MNRAS, 305, 631DOI: 10.1046/j.1365-8711.1999.02442.x
10.1046/j.1365-8711.1999.02442.x Google Scholar
- 3 Balogh M. L., Babul A., Patton D. R., 1999, MNRAS, 307, 463
- 4
Balogh M. L.,
Pearce F. R.,
Bower R. G.,
Kay S. T., 2001, MNRAS, 326, 1228
10.1111/j.1365-2966.2001.04667.x Google Scholar
- 5 Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
- 6 Bartlett J. G., 2000, astro-ph/0001267
- 7 Birkinshaw M., 1999, Phys. Rep., 310, 98
- 8 Bohringer H., Nulsen P. E. J., Braun R., Fabian A. C., 1995, MNRAS, 274, 67
- 9 Bondi H., 1952, MNRAS, 112, 195
- 10 Bower R. G., 1997, MNRAS, 288, 355
- 11 Bower R. G., Benson A. J., Lacey C. G., Baugh C. M., Cole S., Frenk C. S., 2001, MNRAS, 325, 2
- 12 Brandt W. N., Gallagher S. C., Laor A., Wills B. J., 1999, in Proc. Bologna 1999, X-ray Conf., X-ray Astronomy 1999: Stellar Endpoints, AGN and the Diffuse Background, in press (astro-ph/9910302)
- 13 Brighenti F., Mathews W. G., 2001, ApJ, 553, 103
- 14 Bryan G. L., 2000, ApJ, 544, L1
- 15 Bryan G. L., Voit G. M., 2001, ApJ, 556, 590
- 16
Bullock J. S.,
Kolatt T. S.,
Sigad Y.,
Somerville R. S.,
Kravtsov A. V.,
Klypin A. A.,
Primack J. R.,
Dekel A., 2001, MNRAS, 321, 559
10.1046/j.1365-8711.2001.04068.x Google Scholar
- 17 Burles S., Tytler D., 1998, ApJ, 499, 699
- 18 Burles S., Nollett K. M., Turner M. S., 2001, ApJ, 552, 1
- 19 Cavaliere A., Menci N., Tozzi P., 1997, ApJ, 484, L21
- 20 Cavaliere A., Menci N., Tozzi P., 1998, ApJ, 501, 493
- 21 Cavaliere A., Menci N., Tozzi P., 1999, MNRAS, 308, 599DOI: 10.1046/j.1365-8711.1999.02511.x
- 22 Cen R., Ostriker J. P., 1999, ApJ, 514, 1
- 23 Cen R., Kang H., Ostriker J. P., Ryu D., 1995, ApJ, 451, 436
- 24 Clarke D. A., Harris D. E., Carilli C. L., 1997, MNRAS, 284, 981
- 25 Clarke T. E., Kronberg P. P., Bohringer H., 2001, ApJ, 547, L111
- 26 Da Silva A. C. et al., 2001, ApJ, 561, 15
- 27 Davé R. et al., 2001, ApJ, 552, 473
- 28 David L. P., Slyz A., Jones C., Forman W., Vrtilek S. D., Arnaud K. A., 1993, ApJ, 412, 479
- 29 David L. P., Jones C., Forman W., 1995, ApJ, 445, 578
- 30 David L. P., Nulsen P. E. J., McNamara B. R., Forman W., Jones C., Ponman T., Robertson B., Wise M., 2001, ApJ, 557, 546
- 31 Edge A. C., Stewart G. C., 1991, MNRAS, 252, 414
- 32
Eke V. R.,
Cole S.,
Frenk C. S., 1996, MNRAS, 282, 263
10.1093/mnras/282.1.263 Google Scholar
- 33 Ensslin T. A., Kaiser C. R., 2000, A&A, 360, 417
- 34 Ensslin T. A., Biermann P. L., Kronberg P. P., Wu X.-P., 1997, ApJ, 477, 560
- 35 Ettori S., Fabian A. C., 1999, MNRAS, 305, 834
- 36 Evrard A. E., Henry J. P., 1991, ApJ, 383, 95
- 37 Fabian A. C., 1999, MNRAS, 308, L39
- 38 Fabian A. C., Crawford C. S., Edge A. C., Mushotzky R. F., 1994, MNRAS, 267, 779
- 39 Feretti L., Dallacasa D., Giovannini G., Tagliani A., 1995, A&A, 302, 680
- 40 Feretti L., Dallacasa D., Govoni F., Giovannini G., Taylor G. B., Klein U., 1999, A&A, 344, 472
- 41 Fujita Y., Takahara F., 1999, ApJ, 519, L51
- 42 Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ, 503, 518
- 43 Gioia I. M., Henry J. P., Maccacaro T., Morris S. L., Stocke J. T., Wolter A., 1990, ApJ, 356, L35
- 44 Governato F., Babul A., Quinn T., Tozzi P., Baugh C. M., Katz N., Lake G., 1999, MNRAS, 307, 949DOI: 10.1046/j.1365-8711.1999.02706.x
- 45 Heckman T. M., 2001, in J. E. Hibbard, M. Rupen, J. H. Van Gorkom, eds, ASP Conf. Ser. Vol. 240, Gas and Galaxy Evolution. Astron. Soc. Pac., San Francisco, p. 345
- 46 Helsdon S. F., Ponman T. J., 2000, MNRAS, 315, 356DOI: 10.1046/j.1365-8711.2000.03396.x
- 47 Henry J. P., 2000, ApJ, 534, 565
- 48 Henry J. P., Gioia I. M., Maccacaro T., Morris S. L., Stocke J. T., Wolter A., 1992, ApJ, 386, 408
- 49 Jenkins A. et al., 2001, MNRAS, 321, 372DOI: 10.1046/j.1365-8711.2001.04029.x
- 50
Kaiser C. R.,
Alexander P., 1999, MNRAS, 305, 707
10.1046/j.1365-8711.1999.02498.x Google Scholar
- 51 Kaiser N., 1991, ApJ, 383, 104
- 52 Klypin A. A., Göttlober S., Kravstov A. V., Khokholov A. M., 1999, ApJ, 516, 530
- 53 Kormendy J., Richstone D. O., 1995, ARA&A, 33, 581
- 54 Lacey C., Cole S., 1993, MNRAS, 262, 627
- 55 Lacey C., Cole S., 1994, MNRAS, 271, 676
- 56 Lewis G. F., Babul A., Katz N., Quinn T., Hernquist L., Weinberg D., 2000, ApJ, 536, 623
- 57 Lloyd-Davies E. J., Ponman T. J., Cannon D. B., 2000, MNRAS, 315, 689DOI: 10.1046/j.1365-8711.2000.03380.x
- 58 Lokas E. L., Mamon G. A., 2001, MNRAS, 321, 155
- 59 Lowenstein M., 2000, ApJ, 532, 17
- 60 Magorrian J. et al., 1998, AJ, 115, 2285
- 61 Mahdavi A., Geller M. J., 2001, ApJ, 554, L129
- 62 Markevitch M., 1998, ApJ, 504, 27
- 63 Markevitch M., Forman W. R., Sarazin C. L., Vikhlinin A., 1998, ApJ, 503, 72
- 64 McNamara B. R. et al., 2000, ApJ, 534, L135
- 65
Moore B.,
Governato F.,
Quinn T.,
Stadel J.,
Lake G., 1998, ApJ, 499, L5
10.1086/311333 Google Scholar
- 66 Mohr J. J., Mathiesen B., Evrard A. E., 1999, ApJ, 517, 627
- 67 Muanwong O., Thomas P. A., Kay S. T., Pearce F. R., Couchman H. M. P., 2001, ApJ, 552, 27
- 68 Mulchaey J. S., 2000, ARA&A, 38, 289
- 69 Mulchaey J. S., Zabludoff A. I., 1998, ApJ, 496, 73
- 70 Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 720
- 71 Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
- 72 Nevalainen J., Markevitch M., Forman W., 2000, ApJ, 532, 694
- 73 Pearce F. R., Thomas P. A., Couchman H. M. P., Edge A. C., 2000, MNRAS, 317, 1029
- 74 Ponman T. J., Bourner P. D. J., Ebeling H., Bohringer H., 1996, MNRAS, 283, 690
- 75 Ponman T. J., Cannon D. B., Navarro J. F., 1999, Nat, 397, 135
- 76 Raymond J. C., Smith B. W., 1977, ApJS, 35, 419
- 77 Raymond J. C., Cox D. P., Smith B. W., 1976, ApJ, 204, 290
- 78 Rephaeli Y., 1995, ARA&A, 33, 541
- 79 Rizza E., Loken C., Bliton M., Roettiger K., Burns J. O., Owen F. N., 2000, AJ, 119, 21
- 80 Rosati P., Della Ceca R., Norman C., Giacconi R., 1998, ApJ, 492, L21
- 81 Roussel H., Sadat R., Blanchard A., 2000, A&A, 361, 429
- 82 Silk J., Rees M. J., 1998, A&A, 331, L4
- 83 Sunyaev R. A., Zeldovich Y. B., 1972, A&A, 20, 189
- 84 Sunyaev R. A., Zeldovich I. B., 1980, ARA&A, 18, 537
- 85 Tozzi P., Norman C., 2001, ApJ, 546, 63
- 86 Valageas P., Silk J., 1999, A&A, 350, 725
- 87 Voit G. M., Bryan G. L., 2001, ApJ, 551, 139
- 88 Wu K. K. S., Fabian A. C., Nulsen P. E. J., 2000, MNRAS, 318, 889
- 89 Wu X-P., Xue Y-J., Fang L-Z., 1999, ApJ, 524, 22
- 90 Wyse R. F. G., 1997, ApJ, 490, L69
- 91 Xu H., Jin G., Wu X.-P., 2001, ApJ, 553, 78
- 92 Xue Y., Wu X-P., 2000, ApJ, 538, 65
First and foremost, we thank Dr J. Raymond for providing us with the latest version of his plasma routines. We are indebted to John Mulchaey, Richard Bower, Trevor Ponman, Neal Katz, Tom Quinn, David Spergel, Ed Turner, Ian McCarthy and Gil Holder for many useful and relevant discussions during the course of this work. MLB is supported by a PPARC rolling grant for extragalactic astronomy and cosmology at Durham. GBP gratefully acknowledges fellowship support from the University of Victoria. AB gratefully acknowledges the kind hospitality shown to him by the Institute for Theoretical Physics (ITP) during the course of the Galaxy Formation workshop (January–April 2000) where some of the work described in this paper was carried out. AB also acknowledges the hospitality of the University of Washington, and especially T. Quinn, during his tenure there as Visiting Professor from May to August 2000. This research has been partly supported by the National Science Foundation Grant No. PHYS94-07194 to ITP, NASA Astrophysics Theory Grant NAG5-4242 to T. Quinn, as well as by an operating grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Acknowledgments
This paper has been typeset from a tex/latex file prepared by the author.