Quiescent CD34+ early erythroid progenitors are resistant to several erythropoietic ‘inhibitory’ cytokines; role of FLIP
Janina Ratajczak
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorMagdalena Kucia
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorRyan Reca
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorJin Zhang
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorBogdan Machalinski
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorMariusz Z. Ratajczak
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorJanina Ratajczak
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorMagdalena Kucia
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorRyan Reca
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorJin Zhang
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorBogdan Machalinski
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorMariusz Z. Ratajczak
Stem Cell Biology Program at James Graham Brown Cancer Center, University of Louisville, KY, USA
Search for more papers by this authorAbstract
Summary. In this study, quiescent bone marrow-derived CD34+ erythroid burst-forming units (BFU-E) were found to be resistant to the inhibitory effects of tumour necrosis factor (TNF)-α and -β as well as interferon (IFN)-α, -β and -γ, in contrast to those stimulated by a combination of erytrhropoietin (Epo) plus kit ligand (KL). Unexpectedly, we found that TNF-α also inhibited the apoptosis of quiescent normal human CD34+ BFU-E cells. Accordingly, TNF-α added to CD34+ cells cultured for 2 d in serum-free medium protected clonogeneic BFU-E from undergoing serum deprivation-mediated apoptosis. Furthermore, the prosurvival effect of TNF-α in quiescent CD34+ cells was consistent with its ability to induce phosphorylation of mitogen-activated protein kinase (MAPK) p42/44. However, when added to CD34+ cells that were stimulated by Epo + KL, TNF-α induced apoptosis and inhibited proliferation of BFU-E. To explain this intriguing differential sensitivity between unstimulated CD34+ cells versus those stimulated by Epo + KL, we examined the expression of apoptosis-regulating genes (FLIP, BCL-2, BCL-XL, BAD and BAX) in these cells. Of all the genes tested, FLIP became rapidly downregulated in CD34+ cells 24 h after stimulation with Epo + KL, suggesting that it may protect quiescent CD34+ BFU-E progenitors residing in the bone marrow from the inhibitory effects of inflammatory cytokines. Thus, we hypothesize that cycling cells may become more sensitive to proapoptotic stimuli (e.g. chemotherapy, inhibitory cytokines) than quiescent ones because of the downregulation of protective FLIP.
References
- Bouscary, D., Pene, F., Claessens, Y.E., Muller, O., Chretien, S., Fontenay-Roupie, M., Gisselbrecht, S., Mayeux, P. & Lacombe, C. (2003) Critical role for PI-3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood, 101, 3436 – 3443.
- Budd, R.C. (2002) Death receptors couple to both proliferation and apoptosis. Journal of Clinical Investigation, 109, 437 – 442.
- Chung, I.J., Dai, C. & Krantz, S.B. (2003) Stem cell factor increases the expression of FLIP that inhibits IFNγ-induced apoptosis in human erythroid progenitor cells. Blood, 101, 1324 – 1328.
- Gewirtz, A.M., Sokol, D.L. & Ratajczak, M.Z. (1998) Nucleic acid therapeutics: state of the art and future prospects. Blood, 92, 712 – 736.
- Giron-Michel, J., Weill, D., Bailly, G., Legras, S., Nardeux, P.C., Azzarone, B., Tovey, M.G. & Eid, P. (2002) Direct signal transduction via functional interferon-αβ receptors in CD34+ hematopoietic stem cells. Leukemia, 16, 1135 – 1142.
- Golstein, P. & Wyllie, A.H. (2001) T cell death and transforming growth factor β1. Experimental Medicine, 194, F19 – F21.
- Haseyama, Y., Sawada, K., Oda, A., Koizumi, K., Takano, H., Tarumi, T., Nishio, M., Handa, M., Ikeda, Y. & Koike, T. (1999) Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood, 94, 1568 – 1577.
- Hietakangas, V., Poukkula, M., Heiskanen, K.M., Karvinen, J.T., Sistonen, L. & Eriksson, J.E. (2003) Erythroid differentiation sensitizes K562 leukemia cells to TRAIL-induced apoptosis by downregulation of c-FLIP. Molecular and Cellular Biology, 23, 1278 – 1291.
- Janowska-Wieczorek, A., Majka, M., Ratajczak, J. & Ratajczak, M.Z. (2001) Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cells, 19, 99 – 107.
- Jelinek, D.F. & Lipsky, P.E. (1987) Enhancement of human B cell proliferation and differentiation by tumor necrosis factor-alpha and interleukin 1. Journal of Immunology, 139, 2970 – 2976.
- Kashii, Y., Uchida, M., Kirito, K., Tanaka, M., Nishijmak, K., Toshima, M., Ando, T., Koizumi, K., Endoh, T., Sawada, K., Momoi, M., Miura, Y., Ozawa, Y. & Komatsu, N. (2000) A member of forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood, 96, 941 – 949.
- Khwaja, A. (1999) Akt is more than just Bad kinase. Science, 401, 33 – 34.
- Kim, H., Whartenby, K.A., Georgantas, III, R.W., Wingard, J. & Civin, C.I. (2002) Human CD34+ hematopoietic stem/progenitor cells express high levels of FLIP and are resistant to Fas-mediated apoptosis. Stem Cells, 20, 174 – 182.
- Krause, D.S., Fackler, M.J., Civin, C.I. & May, W.S. (1996) CD34: structure, biology and clinical utility. Blood, 87, 1 – 13.
- Larsen, C.P., Steinman, R.M., Witmer-Pack, M., Hankins, D.F., Morris, P.J. & Austyn, J.M. (1990) Migration and maturation of Langerhans cells in skin transplant and explants. Journal of Experimental Medicine, 172, 1483 – 1493.
- Majka, M., Ratajczak, J., Lee, B., Honczarenko, M., Douglas, R., Kowalska, M.A., Silberstein, L., Gewirtz, A.M. & Ratajczak, M.Z. (2000a) The role of HIV related chemokine receptors and chemokines in human erythropoiesis in vitro. Stem Cells, 18, 128 – 138.
- Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Kowalska, M.A., Vilaire, G., Pan, Z.K., Honczarenko, M., Marquez, L.A., Poncz, M. & Ratajczak, M.Z. (2000b) Stromal derived factor-1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood, 96, 4142 – 4151.
- Majka, M., Janowska-Wieczorek, A., Ratajczak, J., Ehrenman, K., Kowalska, M.A., Emerson, S.G. & Ratajczak, M.Z. (2001) Numerous growth factors, cytokines and chemokines are secreted by normal human CD34+ cells, myeloblasts, erythroblasts and megakaryoblasts and regulate hematopoiesis in an autocrine/paracrine manner. Blood, 97, 3075 – 3085.
- Majka, M., Ratajczak, J., Villaire, G., Kubiczek, K., Marquez, L.A., Janowska-Wieczorek, A. & Ratajczak, M.Z. (2002) Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT and STAT proteins in normal human CD34+ cells, megakaryocytes and platelets. Experimental Hematology, 30, 751 – 760.
- Martinez, M.A., Clotet, B. & Este, J.A. (2003) RNA interference of HIV replication. Trends in Immunology, 23, 559 – 561.
- Means, Jr, R.T. & Krantz, S.B. (1992) Progress in understanding the pathogenesis of the anemia of chronic disease. Blood, 80, 1639 – 1647.
- Myklebust, J.H., Blomhoff, H.K., Rusten, L.S., Stokke, T. & Smeland, E.B. (2002) Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34+ hematopoietic progenitor cells. Experimental Hematology, 30, 990 – 1000.
- Oda, A., Sawada, K., Druker, B.J., Ozaki, K., Tanako, H., Koizumi, K., Fukada, Y., Handa, M., Koike, T. & Ikeda, Y. (1998) Erythropoietin induces tyrosine phosphorylation of Jak2, STAT5A, and STAT5B in primary cultured human erythroid precursors. Blood, 92, 443 – 451.
- Rane, S.G. & Reddy, E.P. (2002) JAKs, STATs and Src kinases in hematopoiesis. Oncogene, 21, 3334 – 3358.
- Ratajczak, M.Z., Luger, S.M., DeRiel, K., Abraham, J., Calabretta, B. & Gewirtz, A.M. (1992) Role of the KIT protoncogene in normal and malignant human hematopoiesis. Proceedings of National Academy of Sciences of the USA, 89, 1710 – 1714.
- Ratajczak, M.Z., Kuczynski, W.I., Onodera, K., Moore, J., Ratajczak, J., Kregenov, A.A., DeRiel, K. & Gewirtz, A.M. (1994) A reappraisal of the function of the insulin like growth factor-I (IGF-I) in the regulation of the human hematopoiesis. Journal of Clinical Investigation, 94, 320 – 327.
- Ratajczak, M.Z., Ratajczak, J., Marlicz, W., Pletcher, Ch.H., Moore, J., Hung, H. & Gewirtz, A.M. (1997) Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. British Journal of Haematology, 98, 8 – 17.
- Ratajczak, J., Marlicz, W., Machalinski, B., Perusini, E., Czajka, R. & Ratajczak, M.Z. (1998a) An improved serum free system for cloning human ‘pure’ erythroid colonies. The role of the different growth factors and cytokines on BFU-E formation by the bone marrow and cord blood CD34+ cells. Folia Histochemica et Cytobiologica, 36, 55 – 60.
- Ratajczak, J., Zhang, Q., Pertusini, E., Wojczyk, B., Wasik, M. & Ratajczak, M.Z. (1998b) The role of insulin (INS) and insulin like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum free conditions – comparison to other cytokines and growth factors. Leukemia, 12, 371 – 381.
- Ratajczak, J., Majka, M., Kijowski, J., Baj, M., Pan, Z.K., Marquez, L.A., Janowska-Wieczorek, A. & Ratajczak, M.Z. (2001) Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. British Journal of Haematology, 115, 195 – 205.
- Ratajczak, J., Kijowski, J., Majka, M., Jankowski, K., Reca, R. & Ratajczak, M.Z. (2003) Biological significance of the different erythropoietic factors secreted by normal human early erythroid cells. Leukemia and Lymphoma, 44, 767 – 774.
- Socolovsky, M., Nam, H., Fleming, M.D., Haase, V.H., Brugnara, C. & Lodish, H.F. (2001) Ineffective erythropoiesis in Stat5a–/–5b–/– mice due to decreased survival of early erythroblasts. Blood, 98, 3261 – 3273.
- Sui, X., Krantz, S.B., You, M. & Zhao, Z. (1998) Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood, 92, 42 – 1149.
- Teglund, S., McKay, C., Schuetz, E., Van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G. & Ihle, I.N. (1998) Stat5a and Stat5b protein have essential and nonessential, or redundant, roles in cytokine responses. Cell, 93, 841 – 850.
- Verma, A., Deb, D.K., Sassano, A., Uddin, S., Varga, J., Wickrema, A. & Platanias, L.C. (2002) Activation of p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-β on normal hematopoiesis. Journal of Biological Chemistry, 10, 7726 – 7735.
- Ward, A.C., Touw, I. & Yoshimura, A. (1999) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood, 95, 19 – 29.
- Weiss, G. (2002) Pathogenesis and treatment of anaemia of chronic disease. Blood Reviews, 16, 87 – 96.
- Yokota, S., Geppert, T.D. & Lipsky, P.E. (1988) Enhancement of antigen- and mitogen-induced human T lymphocyte proliferation by tumor necrosis factor-alpha. Journal of Immunology, 140, 531 – 536.
- Zermanti, Y., Garrido, C., Amsellem, S., Fishelson, S., Bouscary, D., Valensi, F., Varet, B., Solary, E. & Hermine, O. (2001) Caspase activation is required for terminal erythroid differentiation. Journal of Experimental Medicine, 193, 247 – 254.
- Zhou, H., Li, X.M., Meinkoth, J. & Pittman, R.N. (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. Journal of Cell Biology, 151, 483 – 494.