Estimates of regional surface carbon dioxide exchange and carbon and oxygen isotope discrimination during photosynthesis from concentration profiles in the atmospheric boundary layer
Corresponding Author
JULIE M. STYLES
CRC for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, Canberra ACT 0200, Australia
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
*Corresponding author. e-mail: [email protected]
Current address: Department of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, Oregon 97331-5752, USA.
Search for more papers by this authorJON LLOYD
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorDANIIL ZOLOTUKHIN
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorKIERAN A. LAWTON
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorNADJA TCHEBAKOVA
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorROGER J. FRANCEY
CSIRO Division of Atmospheric Research, Private Bag No.1, Aspendale, VIC 3195 Australia
Search for more papers by this authorALMUT ARNETH
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Landcare Research, Manaaki Whenua, PO Box 69, Lincoln, New Zealand
Search for more papers by this authorDIMA SALAMAKHO
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorOLAF KOLLE
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorE.-DETLEF SCHULZE
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorCorresponding Author
JULIE M. STYLES
CRC for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Institute of Advanced Studies, Australian National University, Canberra ACT 0200, Australia
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
*Corresponding author. e-mail: [email protected]
Current address: Department of Forest Science, Oregon State University, 321 Richardson Hall, Corvallis, Oregon 97331-5752, USA.
Search for more papers by this authorJON LLOYD
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorDANIIL ZOLOTUKHIN
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorKIERAN A. LAWTON
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorNADJA TCHEBAKOVA
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorROGER J. FRANCEY
CSIRO Division of Atmospheric Research, Private Bag No.1, Aspendale, VIC 3195 Australia
Search for more papers by this authorALMUT ARNETH
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Landcare Research, Manaaki Whenua, PO Box 69, Lincoln, New Zealand
Search for more papers by this authorDIMA SALAMAKHO
V.N. Sukachev Forest Institute, Siberian Division, Russian Academy of Science, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Search for more papers by this authorOLAF KOLLE
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorE.-DETLEF SCHULZE
Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany
Search for more papers by this authorabstract
The integrating properties of the atmospheric boundary layer allow the influence of surface exchange processes on the atmosphere to be quantified and estimates of large-scale fluxes of trace gases and plant isotopic discrimination to be made. Five flights were undertaken over two days in and above the convective boundary layer (CBL) in a vegetated region in central Siberia. Vertical profiles of CO2 and H2O concentrations, temperature and pressure were obtained during each flight. Air flask samples were taken at various heights for carbon and oxygen isotopic analysis of CO2. Two CBL budget methods were compared to estimate regional surface fluxes of CO2 and plant isotopic discrimination against 13CO2 and C18O16O. Flux estimates were compared to ground-based eddy covariance measurements. The fluxes obtained for CO2 using the first method agreed to within 10% of fluxes measured in the forest at the study site by eddy covariance. Those obtained from the second method agreed to within 35% when a correction was applied for air loss out of the integrating column and for subsidence. The values for 13C discrimination were within the range expected from knowledge of C3 plant discriminations during photosynthesis, while the inferred 18O discrimination varied considerably over the two-day period. This variation may in part be explained by the enrichment of chloroplast water during the day due to evaporation from an initial signature in the morning close to source water. Additional potential complications arising from the heterogeneous nature of the landscape are discussed.
references
- Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O. B., Lloyd, J., Vygodskaya, N. N. and Schulze, E.-D. 2002. Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, this issue.
- Bakwin, P. S., Tans, P. P., White, J. W. C. and Andres, R. J. 1998. Determination of the isotopic (13C/12C) discrimination by terrestrial biology from a global network of observations. Global Biogeochem. Cycl. 12, 555–562.
- Brutsaert, W. and Mawdsley, J. A. 1976. The applicability of planetary boundary layer theory to calculate regional evapotranspiration. Water Resour. Res. 12, 852–857.
-
Cernusak, L. A.,
Pate, J. S. and
Farquhar, G. D.
2002. Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus augustifolius under field conditions.
Plant, Cell and Environ. (in press).
10.1046/j.1365-3040.2002.00875.x Google Scholar
- Cleugh, H. A. and Grimmond, C. S. B. 2001. Modelling regional scale surface energy exchanges and CBL growth in a heterogeneous, urban-rural landscape. Boundary Layer Meteorol. 98, 1–31.
- Craig, H. and Gordon, L. I. 1965. Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures (ed. T. Tongiorgi). Laboratory of Geology and Nuclear Science , Spoleto , Italy , 9–130.
- Denmead, O. T., Raupach, M. R., Dunin, F. X., Cleugh, H. A. and Leuning, R. 1996. Boundary layer budgets for regional estimates of scalar fluxes. Global Change Biol. 2, 255–264.
- Evans, J. R. and Von Caemmerer, S. 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110, 339–346.
-
Farquhar, G. D. and
Lloyd, J.
1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Stable isotopes and plant carbon-water relations (ed. J. R. Ehleringer,
A. E. Hall and
G. D. Farquhar). Academic Press,
San Diego
, 47–70.
10.1016/B978-0-08-091801-3.50011-8 Google Scholar
- Farquhar, G. D., O'Leary, M. H. and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137.
-
Farquhar, G. D.,
Hubick, K. T.,
Condon, A. G. and
Richards, R. A.
1989. Carbon isotope fractionation and plant water-use efficiency. In:, Stable isotopes in ecological research (ed. P. W. Rundel,
J. R. Ehleringer and
K. A. Nagy). Springer-Verlag,
New York
, 21–40.
10.1007/978-1-4612-3498-2_2 Google Scholar
- Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P., Hubick, K. T., Wong, S. C. and Ehleringer, J. R. 1993. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363, 439–443.
-
Flanagan, L. B.
1993. Environmental and biological influences on the stable oxygen and hydrogen isotopic composition of leaf water. In: Stable isotopes and plant carbon-water relations (ed. J. R. Ehleringer,
A. E. Hall and
G. D. Farquhar). Academic Press,
San Diego
, 71–90.
10.1016/B978-0-08-091801-3.50012-X Google Scholar
- Flanagan, L. B., Brooks, J. R., Varney, G. T., Berry, S. C. and Ehleringer, J. R. 1996. Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem. Cycles 10, 629–640.
- Flanagan, L. B., Brooks, J. R., Varney, G. T. and Ehleringer, J. R. 1997. Discrimination against C18O16O during photosynthesis and the oxygen isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem. Cycles 11, 83–98.
- Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T., Malmström, C. M., Vitousek, P. M., Collatz, G. J., Sellers, P. J., Randall, D. A., Denning, A. S., Badeck, F. and John, J. 1997. Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochem. Cycles 11, 507–533.
- Keeling, C. D. 1958. The concentrations and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta 13, 322–334.
- Keeling, C. D. 1961. The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 24, 277–298.
- Kurbatova, J., Arneth, A., Vygodskaya, N. N., Kolle, O., Varlagin, A. B., Milyukova, I. M., Tchebakova, N. M., Schulze, E.-D. and Lloyd, J. 2002. Comparative ecosystem-atmosphere exchange of energy and mass in a Europan Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snow-free period. Tellus 54B, this issue
- Lloyd, J. and Farquhar, G. D. 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201–215.
- Lloyd, J., Kruijt, B., Hollinger, D. Y., Grace, J., Francey, R. J., Wong, S.-C., Kelliher, F. M., Miranda, A. C., Farquhar, G. D., Gash, J. H. C., Vygodskaya, N. N., Wright, I. R., Miranda, H. S. and Schulze, E.-D. 1996. Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 23, 371–399.
- Lloyd, J., Francey, R. J., Sogachev, A., Byers, J. N., Kelliher, F. M., Mollicone, D., Raupach, M. R., Wong, S.-C., Arneth, A., Rebmann, C., Valentini, R. and Schulze, E.-D. 2001. Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapour above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles 15, 267–284.
- Lloyd, J., Shibistova, O., Tchebakova, N., Kolle, O., Arneth, A., Zolotoukhine, D., Styles, J. M. and Schulze, E.-D. 2002a. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B, this issue
- Lloyd, J., Langenfelds, R. L., Francey, R. J., Gloor, M., Tchebakova, N. M., Zolotukhine, D., Brand, W. A., Werner, R. A., Jordan, A., Allison, C. A., Zrazhewske, V., Shibistova, O. and Schulze, E.-D. 2002b. A first trace gas climatology above Zotino, central Siberia. Tellus 54B, this issue
- McNaughton, K. G. and Spriggs, T. W. 1986. A mixed-layer model for regional evaporation. Boundary Layer Meteorol. 34, 243–262.
- Miller, J. B., Yakir, D., White, J. W. C. and Tans, P. P. 1999. Measurement of 18O/16O in the soil-atmosphere CO2 flux. Global Biogeochem. Cycles 13, 761–774.
- Munley, W. G. and Hipps, L. E. 1990. Estimation of regional evaporation for a tall grass prairie from measurements of properties of the atmospheric boundary layer. Water Resour. Res. 27, 225–230.
- O'Neill, J. R., Adami, L. H. and Epstein, S. 1975. Revised value for the O18 fractionation between CO2 and H2O at 25 °C. J. Res. US Geol. Surv. 3, 623–624.
- Raupach, M. R. 2000. Equilibrium evaporation and the convective boundary layer. Boundary Layer Meteorol. 96, 107–141.
- Raupach, M. R., Denmead, O. T. and Dunin, F. X. 1992. Challenges in linking atmospheric CO2 concentrations to fluxes at local and regional scales. Aust. J. Bot. 40, 697–716.
- Shibistova, O., Lloyd, J., Evgrafova, S., Savushkina, N., Zrazhewskaya, G., Arneth, A., Knohl, A., Kolle, O. and Schulze, E.-D. 2002. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B, this issue
-
Stull, R. B.
1988. An introduction to boundary layer meteorology. Kluwer Academic Press,
Norwell
, 666
pp.
10.1007/978-94-009-3027-8 Google Scholar
- Tchebakova, N. M., Kolle, O., Zolotoukhine, D., Arneth, A., Styles, J. M., Vygodskaya, N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B, this issue
- Wang, X.-F., Yakir, D. and Avishai, M. 1998. Non-climatic variations in the oxygen isotopic compositions of plants. Global Change Biol. 4, 835–849.
- Wofsy, S. C., Harriss, R. C. and Kaplan, W. A. 1988. Carbon dioxide in the atmosphere over the Amazon basin. J. Geophys. Res. 93, 1377–1387.
- Yakir, D. 1998. Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In Stable isotopes: integration of biological, ecological and geochemical processes (ed. H. Griffiths). BIOS Scientific Publishers, Oxford , 147–168.
- Yakir, D., De Niro, M. J. and Rundel, P. W. 1989. Isotopic inhomogeneity of leaf water: evidence and implications for the use of isotopic signals transduced by plants. Geochim. Cosmochim. Acta 53, 2769–2773.