Memory trace in prefrontal cortex: theory for the cognitive switch
SATORU OTANI
Neurobiologie des Processus Adaptatifs UMR7102, UniversiteU de Paris VI, Case 8, Building B, 6th floor, 7, quai St Bernard, 75005 Paris, France (e-mail: [email protected] )
Search for more papers by this authorSATORU OTANI
Neurobiologie des Processus Adaptatifs UMR7102, UniversiteU de Paris VI, Case 8, Building B, 6th floor, 7, quai St Bernard, 75005 Paris, France (e-mail: [email protected] )
Search for more papers by this authorABSTRACT
The dorsolateral prefrontal cortex in human and non-human primates functions as the highest-order executor for the perception-action cycle. According to this view, when perceptual stimuli from the environment are novel or complex, the dorsolateral prefrontal cortex serves to set consciously a goal-directed scheme which broadly determines an action repertory to meet the particular demand from the environment. In this respect, the dorsolateral prefrontal cortex is a short-term activation device with the properties of a ‘cognitive switch’, because it couples a particular set of perceptual stimuli to a particular set of actions. Here, I suggest that, in order for the organism to react systematically to the environment, neural traces for the switch function must be stored in the brain. Thus, the highest-order, perception-action interface function of the dorsolateral prefrontal cortex per se depends on permanently stored neural traces in the dorsolateral prefrontal cortex and related structures. Such a memory system may be located functionally between two of the well-documented memory systems in the brain: the declarative memory system and the procedural memory system. Finally, based on available neurophysiological data, the possible mechanisms underlying the formation of cognitive switch traces are proposed.
VIII. REFERENCES
- Assad, W. F., Rainer, G. & Miller, E. K. (1998). Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407.
- Assad, W. F., Rainer, G. & Miller, E. K. (2000). Taskspecific neural activity in the primate prefrontal cortex. Journal of Neurophysiology 84, 451–459.
- Bannerman, D. M., Good, M. A., Butcher, S. P., Ramsay, M. & Morris, R. G. M. (1995). Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186.
- Bear, M. F. & Abraham, W. C. (1996). Long-term depression in hippocampus. Annual Review of Neuroscience 19, 437–462.
- Bergson, C., Mrzljak, L., Smiley, J. F., Pappy, M., Levenson, R. & Goldman-Rakic, P. S. (1995). Regional, cellular, and subcellular variations in the distributions of D' and D & dopamine receptors in primate brain. Journal of Neuroscience 15, 7821–7836.
- Birrell, J. M. & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience 20, 4320–4324.
- Bliss, T. V. P. & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.
- Bliss, T. V. P. & Gardner-Medwin, A. R. (1973). Longlasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232, 357–374.
- Bliss, T. V. P. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232, 331–356.
- Blond, O., Crepel, F. & Otani, S. (2002). Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. European Journal of Pharmacology 438, 115–116.
- Carpenter, M. B. (1991). Core Text of Neuroanatomy. Williams & Wilkins, MD .
-
Carr, D. &
Sesack, S. R. (1996). Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals.
Journal of Comparative Neurology
369, 1–15.
10.1002/(SICI)1096-9861(19960520)369:1<1::AID-CNE1>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- Chang, J.-Y., Zhang, L., Janak, P. H. & Woodward, D. J. (1997). Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Research 754, 12–20.
- Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J. & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608.
- Cohen, J. D., Botvinick, M. & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: who's in control Nature Neuroscience 3, 421–423.
- Constantinidis, C., Williams, G. V. & Goldman-Rakic, P. S. (2002). A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nature Neuroscience 5, 175–180.
- Courtney, S. M., Ungerieider, L. G., Keil, K. & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611.
- De Bruin, J. P. C., Feenstra, M. G. P., Broersen, L. M., Van Leeuwen, M., Arens, C., De Vries, S. & Joosten, R. N. J. M. A. (2000). Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. In Progress in Brain Research, vol. 126 (eds. H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra and C. M. A. Pennartz), 103–113.
- Dehaene, S. & Changeux, J. P. (1991). The Wisconsin card sorting test: theoretical analysis and modeling in a neuronal network. Cerebral Cortex 1, 62–79.
- Dehaene, S., Kerszberg, M. & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of National Academy of Science, U.S.A. 95, 14529–14534.
- Douglas, R. J. & Martin, K. A. C. (1990). In The Synaptic Organization of the Brain (ed. G. M. Shepherd), Chapter 12. Oxford University Press, New York .
- Dudek, S. M. & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of Nmethyl- d-aspartate receptor blockade. Proceedings of National Academy of Science, U.S.A. 89, 4363–4367.
- Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews 2, 820–829.
- Duncan, J. & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences 23, 475–483.
- Eichenbaum, H. & Cohen, N. J. (2001). From Conditioning to Conscious Recollection. Oxford University Press, New York .
- Floresco, S. B., Seamans, J. K. & Phillips, A. G. (1997). Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. Journal of Neuroscience 17, 1880–1890.
- Frankland, P. W., O'Brien, C., Ohno, M., Kirkwood, A. & Silva, A. J. (2001). a-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411, 309–313.
- Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316.
- Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. Journal of Neurophysiology 36, 61–78.
- Fuster, J. M. (1995). Memory in the Cerebral Cortex. A Bradford Book, The MIT Press, Cambridge , Massachusetts .
- Fuster, J. M. & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science 173, 652–654.
- Fuster, J. M., Bodner, M. & Kroger, J. K. (2000). Crossmodal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351.
- Garcia, R., Vouimba, R. M., Baudry, M. & Thompson, R. F. (1999). The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402, 294–296.
- Garcia, R., Paquereau, J., Vouimba, R. M. & Jaffard, R. (1998). Footshock stress but not contexual fear conditioning induces long-term enhancement of auditory-evoked potentials in the basolateral amygdala of the freely behaving rat. European Journal of Neuroscience 10, 457–463.
- Gehring, W. J. & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience 3, 516–520.
- Glowinski, J., Tassin, J. P. & Thierry, A. M. (1984). The mesocortico-prefrontal dopaminergic neurons. Trends in Neuroscience 7, 415–418.
- Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron 14, 477–485.
- Goto, Y. & O'Donnell, P. (2002). Hippocampal regulation of prefrontal cortex-nucleus accumbens information processing: the role of dopamine. In Basal Ganglia VII (ed. L. F. B. Nicholson), Kluwer AcademicPlenum Publishers, New York .
- Gulledge, A. T. & Jaffe, D. B. (1998). Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. Journal of Neuroscience 18, 9139–9151.
- Gurden, H., Takita, M. & Jay, T. M. (2000). Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. Journal of Neuroscience 20, RC106, 1–5.
- Gurden, H., Tassin, J.-P. & Jay, T. M. (1999). Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 94, 1019–1027.
- Hebb, D. O. (1949). The Organization of Behavior. John Wiley and Sons, New York .
- Herry, C. & Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J. Neurosci. 22, 577–583.
- Herry, C., Vouimba, R.-M. & Garcia, R. (1999). Plasticity in the mediodorsal thalamo-prefrontal cortical transmission in behaving mice. Journal of Neurophysiology 82, 2827–2832.
- Hirsch, J. C. & Crepel, F. (1990). Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. Journal of Physiology (London) 427, 31–49.
- Hochberg, J. E. (1964). Perception. Prentice-Hall Inc., Englewood Cliffs , NJ .
- Jay, T. M. & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 313, 574–586.
- Jay, T. M., Burette, F. & Laroche, S. (1995). NMDA receptor-dependent LTP in the hippocampal afferent fibre system to the prefrontal cortex in the rat. European Journal of Neuroscience 7, 247–250.
- Jung, M. W., Qin, Y., McNaughton, B. L. & Barnes, C. A. (1998). Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cerebral Cortex 8, 437–450.
- Keil, A., Müller, M. M., Ray, W. J., Gruber, T. & Elbert, T. (1999). Human gamma band activity and perception of a Gestalt. Journal of Neuroscience 15, 7152–7161.
- Kirkwood, A., Rioult, M. G. & Bear, M. F. (1996). Experience- dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528.
- Kojima, S. & Goldman-Rakic, P. S. (1982). Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response tasks. Brain Research 248, 43–49.
- Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research Reviews 8, 65–98.
- Kolb, B. & Whishaw, I. Q. (1990). Fundamentals of human neuropsychology ( 3rd edn). Freeman and Co., New York .
- Kosobud, A. E., Glenda, C. H. & Chapin, J. K. (1994). Behavioral associations of neuronal activity in the ventral tegmental area of the rat. Journal of Neuroscience 14, 7117–7129.
- Kubota, K. & Niki, H. (1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology 34, 337–347.
- Kuroda, M., Murakami, K., Igarashi, H. & Okada, A. (1996). The convergence of axon terminals from the mediodorsal thalamic nucleus and ventral tegmental area on pyramidal cells in layer V of the rat prelimbic cortex. European Journal of Neuroscience 8, 1340–1349.
- Laroche, S., Jay, T. M. & Thierry, A.-M. (1990). Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1subicular region. Neuroscience Letters 114, 184–190.
- Law-Tho, D., Desce, J. M. & Crepel, F. (1995). Dopamine favours the emergence of long-term depression versus longterm potentiation in slices of rat prefrontal cortex. Neuroscience Letters 188, 125–128.
- Law-Tho, D., Hirsch, J. C. & Crepel, F. (1994). Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neuroscience Research 21, 151–160.
- Leopold, D. A. & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553.
- Lewis, B. L. & O'Donnel, P. (2000). Ventral tegmental area afferents to the prefrontal cortex maintain membrane potenital ‘up' states in pyramidal neurons via D' dopamine receptors. Cerebral Cortex 10, 1168–1175.
- Linden, D. J. & Connor, J. A. (1995). Long-term synaptic depression. Annual Review of Neuroscience 18, 319–357.
- Ljungberg, T., Apicella, P. & Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology 67, 145–163.
- MacDonald III, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838.
- Malenka, R. C. & Nicoll, R. A. (1999). Long-term potentiation - a decade of progress Science 285, 1870–1874.
- Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202.
- Mirenowicz, J. & Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451.
- Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D.-H. & Tabira, T. (2000). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. Journal of Neuroscience 15, 1568–1574.
- Morris, R. G. M., Bannerman, D. M. & Good, M. A. (1996). NMDA receptors and spatial learning: differential pretraining dissociates the behavioral effects of the receptor antagonist AP5 and selective hippocampal lesions. In The Hippocampus: Functions and Clinical Relevance (ed. N. Kato), Elsevier Science B.V.
- Mulder, A. B., Nordquist, R., O rgüt, O. & Pennartz, C. M. A. (2000). Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. In Progress in Brain Research, vol. 126 (eds. H. B. M. Uylings, C. G. Van Eden, J. P. C. De Bruin, M. G. P. Feenstra and C. M. A. Pennartz), 287–301.
- Mulkey, R. M. & Malenka, R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975.
- Otani, S. (2000). Michikusa Seibutsu-Tetsugaku (Essays on Biological Philosophy, written in Japanese), Kaimeisya, Tokyo .
- Otani, S. (2001). Cooperativity between glutamate and dopamine receptors for plasticity induction in rat prelimbic neurons. Proceedings of the International Australasian Winter Conference on Brain Research, 19, p. 39 [www.awcbr.org' abstracts“2001”download PDF].
- Otani, S. & Ben-Ari, Y. (1993). Biochemical correlates of longterm potentiation in hippocampal synapses. International Reviews of Neurobiology 35, 1–41.
- Otani, S., Auclair, N., Desce, J.-M., Roisin, M.-P. & Crepel, F. (1999). Dopamine receptors and groups I & II mGluRs cooperate for LTD induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. Journal of Neuroscience 19, 9788–9802.
- Otani, S., Blond, O., Desce, J.-M. & Crepel, F. (1998). Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 85, 669–676.
- Otani, S., Daniel, H., Takita, M. & Crepel, F. (2002). Longterm depression induced by postsynaptic group II mGluRs linked to phospholipase C and intracellular calcium rises in rat prefrontal cortex. Journal of Neuroscience 22, 3434–3444.
- Penit-Soria, J., Audinat, E. & Crepel, F. (1987). Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Research 42, 263–274.
- Preuss, T. M. (1995). Do rats have prefronral cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience 7, 1–24.
- Reynolds, J. J., Hyland, B. L. & Wickens, J. R. (2001). A cellular mechanisms of reward-related learning. Nature 413, 67–70.
- Rainer, G., Assad, W. F. & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579.
- Rogan, M. T., Stäubli, U. V. & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607.
- Rolls, E. T. (2000). Memory systems in the brain. Annual Review of Psychology 51, 599–630.
- Rossi, S., Cappa, S. F., Babiloni, C., Pasqualetti, P., Miniussi, C., Carducci, F., Babiloni, F. & Rossini, P. M. (2001). Prefrontal cortex in long-term memory: an ‘interference ‘approach using magnetic stimulation. Nature Neuroscience 4, 948–952.
- Salmon, D. P. & Butters, N. (1995). Neurobiology of skill and habit learning. Current Opinions of Neurobiology 5, 184–190.
- Sawaguchi, T. & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–950.
- Sawaguchi, T. & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology 71, 515–528.
- Schultz, W., Apicella, P. & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience 13, 900–913.
- Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F. & Sejnowski, T. J. (2001). Dopamine D1 D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of National Academy of Science, U.S.A. 98, 301–306.
- Shepherd, G. M. (1990). The synaptic organization of the brain. ( 3rd edn) Oxford University Press, New York .
- Smiley, J. F., Levey, A. L., Ciliax, B. J. & Goldman-Rakic, P. S. (1994). D ‘dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proceedings of National Academy of Science, U.S.A. 91, 5720–5724.
- Smith, E. E. & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science 283, 1657–1661.
- Tallon-Baudry, C., Bertrand, O., Peronnet, F. & Pernier, J. (1998). Induced c-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience 18, 4244–4254.
- Takita, M., Izaki, Y., Jay, T. M., Kaneko, H. & Suzuki, S. S. (1999). Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway. European Journal of Neuroscience 11, 4145–4148.
- Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587.
- Vickery, R. M., Morris, S. H. & Bindman, L. J. (1997). Metabotropic glutamate receptors are involved in long-term potentiation in isolated slices of rat medial frontal cortex. Journal of Neurophysiology 78, 3039–3046.
- Wallis, J. D., Anderson, K. C. & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956.
- Winocur, G. & Moscovitch, M. (1990). Hippocampal and prefrontal cortex contributions to learning and memory: analysis of lesion and aging effects on maze learning in rats. Behavioral Neuroscience 104, 544–551.
- Wise, S. P., Murray, E. A. & Gerfen, C. R. (1996). The frontal cortex-basal ganglia system in primates. Critical Reviews in Neurobiology 10, 317–356.
- Yang, C. R., Seamans, J. K. & Gorelova, N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21, 161–194.
- Zahrt, J., Taylor, J. R., Mathew, R. G. & Arnsten, A. F. T. (1997). Supranormal stimulation of D' dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience 17, 8528–8535.