Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy
Chad D. Markert PhD
Department of Neurology, School of Medicine, and Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorAnthony Atala MD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorJennifer K. Cann BA
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorGeorge Christ PhD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorMark Furth PhD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorFabrisia Ambrosio PT, PhD
Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
Disclosure: nothing to discloseSearch for more papers by this authorCorresponding Author
Martin K. Childers DO, PhD
Department of Neurology, School of Medicine, and Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1078
Disclosure: nothing to discloseAddress correspondence to: M.K.C.Search for more papers by this authorChad D. Markert PhD
Department of Neurology, School of Medicine, and Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorAnthony Atala MD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorJennifer K. Cann BA
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorGeorge Christ PhD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorMark Furth PhD
Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
Disclosure: nothing to discloseSearch for more papers by this authorFabrisia Ambrosio PT, PhD
Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
Disclosure: nothing to discloseSearch for more papers by this authorCorresponding Author
Martin K. Childers DO, PhD
Department of Neurology, School of Medicine, and Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1078
Disclosure: nothing to discloseAddress correspondence to: M.K.C.Search for more papers by this authorAbstract
Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, and skeletal and cardiac muscle are termed mesenchymal stem cells. These cells were first identified in the bone marrow, distinct from blood-forming stem cells. Based on the embryologic derivation, availability, and various pro-regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this review, the authors explore the potential for mesenchymal stem cell therapy in the emerging field of regenerative medicine with a focus on treatment for Duchenne muscular dystrophy.
References
- 1E.P. Hoffman, R.H. BrownJr, L.M. Kunkel. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987; 51: 919–928.
- 2B.J. Petrof. The molecular basis of activity-induced muscle injury in Duchenne muscular dystrophy. Mol Cell Biochem. 1998; 179: 111–123.
- 3B.J. Petrof. Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am J Phys Med Rehabil. 2002; 81: S162–S174.
- 4A. Mauro. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9: 493–495.
- 5K. Oexle, A. Kohlschutter. Cause of progression in Duchenne muscular dystrophy: impaired differentiation more probable than replicative aging. Neuropediatrics. 2001; 32: 123–129.
- 6M.J. Lysaght, A. Jaklenec, E. Deweerd. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng Part A. 2008; 14: 305–315.
- 7A.S. Daftary, M. Crisanti, M. Kalra, B. Wong, R. Amin. Effect of long-term steroids on cough efficiency and respiratory muscle strength in patients with Duchenne muscular dystrophy. Pediatrics. 2007; 119: e320–e324.
- 8I.A. Williams, D.G. Allen. Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol. 2007; 292: H846–H855.
- 9M. Nakatani, Y. Takehara, H. Sugino, et al. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J. 2008; 22: 477–487.
- 10K.R. Wagner, J.L. Fleckenstein, A.A. Amato, et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 2008; 63: 561–571.
- 11S.A. Hamed. Drug evaluation: PTC-124—a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs. 2006; 9: 783–789.
- 12S. Hirawat, E.M. Welch, G.L. Elfring, et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol. 2007; 47: 430–444.
- 13S. Wilton. PTC124, nonsense mutations and Duchenne muscular dystrophy. Neuromuscul Disord. 2007; 17: 719–720.
- 14M.A. Badalamente, A. Stracher. Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition. Muscle Nerve. 2000; 23: 106–111.
10.1002/(SICI)1097-4598(200001)23:1<106::AID-MUS14>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 15I. Nonaka, S. Ishiura, A. Takagi, H. Sugita. Therapeutic trial with protease inhibitor (leupeptin) in chicken muscular dystrophy. A histologic and histochemical study. Acta Neuropathol. 1982; 58: 279–285.
- 16A. Stracher. Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci. 1999; 884: 52–59.
- 17H. Kajimoto, K. Ishigaki, K. Okumura, et al. Beta-blocker therapy for cardiac dysfunction in patients with muscular dystrophy. Circ J. 2006; 70: 991–994.
- 18J.G. Tidball, M. Wehling-Henricks. The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol. 2007; 102: 1677–1686.
- 19S. Brunelli, C. Sciorati, G. D'Antona, et al. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A. 2007; 104: 264–269.
- 20G.Q. Zhou, H.Q. Xie, S.Z. Zhang, Z.M. Yang. Current understanding of dystrophin-related muscular dystrophy and therapeutic challenges ahead. Chin Med J (Engl). 2006; 119: 1381–1391.
10.1097/00029330-200608020-00011 Google Scholar
- 21M. Sampaolesi, S. Blot, G. D'Antona, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006; 444: 574–579.
- 22D. Duan. Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet. 2006; 15: R253–R261, Spec No 2.
- 23L.R. Rodino-Klapac, P.M. Janssen, C.L. Montgomery, et al. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med. 2007; 5: 45.
- 24J.C. van Deutekom, A.A. Janson, I.B. Ginjaar, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007; 357: 2677–2686.
- 25E. Mattei, N. Corbi, M.G. Di Certo, et al. Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS ONE. 2007; 2: e774.
- 26B. Bostick, Y. Yue, C. Long, D. Duan. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res. 2008; 102: 121–130.
- 27M. Cerletti, T. Negri, F. Cozzi, et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther. 2003; 10: 750–757.
- 28J.M. Gillis. An attempt of gene therapy in Duchenne muscular dystrophy: overexpression of utrophin in transgenic mdx mice. Acta Neurol Belg. 2000; 100: 146–150.
- 29R.C. Hirst, K.J. McCullagh, K.E. Davies. Utrophin upregulation in Duchenne muscular dystrophy. Acta Myol. 2005; 24: 209–216.
- 30G.L. Odom, P. Gregorevic, J.S. Chamberlain. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochim Biophys Acta. 2007; 1772: 243–262.
- 31D.J. Laird, U.H. von Andrian, A.J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008; 132: 612–630.
- 32F.D. Price, K. Kuroda, M.A. Rudnicki. Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta. 2007; 1772: 272–283.
- 33J. Huard, B. Cao, Z. Qu-Petersen. Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res C Embryo Today. 2003; 69: 230–237.
- 34A.G. Borycki, B. Brunk, S. Tajbakhsh, M. Buckingham, C. Chiang, C.P. EmersonJr. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development. 1999; 126: 4053–4063.
- 35G. Cossu. Fusion of bone marrow-derived stem cells with striated muscle may not be sufficient to activate muscle genes. J Clin Invest. 2004; 114: 1540–1543.
- 36C.A. Maltin, M.I. Delday, K.D. Sinclair, J. Steven, A.A. Sneddon. Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle. Reproduction. 2001; 122: 359–374.
- 37B. Christ, B. Brand-Saberi. Limb muscle development. Int J Dev Biol. 2002; 46: 905–914.
- 38F. Relaix. Skeletal muscle progenitor cells: from embryo to adult. Cell Mol Life Sci. 2006; 63: 1221–1225.
- 39M. Haberland, M.A. Arnold, J. McAnally, D. Phan, Y. Kim, E.N. Olson. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol. 2007; 27: 518–525.
- 40M. Buckingham. Muscle differentiation. Which myogenic factors make muscle?. Curr Biol. 1994; 4: 61–63.
- 41M. Buckingham, L. Bajard, T. Chang, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003; 202: 59–68.
- 42X. Shi, D.J. Garry. Muscle stem cells in development, regeneration, and disease. Genes Dev. 2006; 20: 1692–1708.
- 43G. Cossu, U. Borello. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 1999; 18: 6867–6872.
- 44B.L. Yen, H.I. Huang, C.C. Chien, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005; 23: 3–9.
- 45A.J. Wagers, J.L. Christensen, I.L. Weissman. Cell fate determination from stem cells. Gene Ther. 2002; 9: 606–612.
- 46S. Kuang, M.A. Gillespie, M.A. Rudnicki. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008; 2: 22–31.
- 47A.I. Caplan. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007; 213: 341–347.
- 48E.D. Thomas, H.L. LochteJr., W.C. Lu, J.W. Ferrebee. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957; 257: 491–496.
- 49H. Ema, Y. Morita, S. Yamazaki, et al. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc. 2006; 1: 2979–2987.
- 50Y.A. Cao, A.J. Wagers, A. Beilhack, et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A. 2004; 101: 221–226.
- 51D. Bryder, D.J. Rossi, I.L. Weissman. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 2006; 169: 338–346.
- 52H. Schoemans, K. Theunissen, J. Maertens, M. Boogaerts, C. Verfaillie, J. Wagner. Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant. 2006; 38: 83–93.
- 53H.E. Broxmeyer, G.W. Douglas, G. Hangoc, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989; 86: 3828–3832.
- 54C.S. Potten, M. Loeffler. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990; 110: 1001–1020.
- 55M. Giannakis, T.S. Stappenbeck, J.C. Mills, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006; 281: 11292–11300.
- 56C.M. Dekaney, J.M. Rodriguez, M.C. Graul, S.J. Henning. Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology. 2005; 129: 1567–1580.
- 57C. Blanpain, E. Fuchs. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006; 22: 339–373.
- 58I.L. Weissman, D.J. Anderson, F. Gage. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001; 17: 387–403.
- 59D. Metcalf. Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells. 2007; 25: 2390–2395.
- 60Y. Jiang, B. Vaessen, T. Lenvik, M. Blackstad, M. Reyes, C.M. Verfaillie. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002; 30: 896–904.
- 61S.C. Presnell, B. Petersen, M. Heidaran. Stem cells in adult tissues. Semin Cell Dev Biol. 2002; 13: 369–376.
- 62F.H. Gage. Mammalian neural stem cells. Science. 2000; 287: 1433–1438.
- 63P. Anversa, J. Kajstura, A. Leri, R. Bolli. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006; 113: 1451–1463.
- 64M. Crisan, S. Yap, L. Casteilla, et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell. 2008; 3: 301–313.
- 65J. Gimble, F. Guilak. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003; 5: 362–369.
- 66A.I. Caplan. Mesenchymal stem cells. J Orthop Res. 1991; 9: 641–650.
- 67A.I. Caplan. The mesengenic process. Clin Plast Surg. 1994; 21: 429–435.
- 68D.J. Prockop. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276: 71–74.
- 69A.J. Friedenstein, J.F. Gorskaja, N.N. Kulagina. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976; 4: 267–274.
- 70M.F. Pittenger, A.M. Mackay, S.C. Beck, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–147.
- 71M. Pittenger, P. Vanguri, D. Simonetti, R. Young. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact. 2002; 2: 309–320.
- 72S. Aggarwal, M.F. Pittenger. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105: 1815–1822.
- 73F. Alviano, V. Fossati, C. Marchionni, et al. Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007; 7: 11.
- 74J.M. Fox, G. Chamberlain, B.A. Ashton, J. Middleton. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol. 2007; 137: 491–502.
- 75B. Gawronska-Kozak, J.A. Manuel, V. Prpic. Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem. 2007; 102: 122–135.
- 76L. Jackson, D.R. Jones, P. Scotting, V. Sottile. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007; 53: 121–127.
- 77A.M. Rodriguez, D. Pisani, C.A. Dechesne, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med. 2005; 201: 1397–1405.
- 78S. Schrepfer, T. Deuse, C. Lange, et al. Simplified protocol to isolate, purify, and culture expand mesenchymal stem cells. Stem Cells Dev. 2007; 16: 105–107.
- 79M. Soncini, E. Vertua, L. Gibelli, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007; 1: 296–305.
- 80M. Tavian, B. Peault. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005; 49: 243–250.
- 81O. Parolini, F. Alviano, G.P. Bagnara, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008; 26: 300–311.
- 82B. Peault, M. Rudnicki, Y. Torrente, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007; 15: 867–877.
- 83S.M. Hughes, H.M. Blau. Migration of myoblasts across basal lamina during skeletal muscle development. Nature. 1990; 345: 350–353.
- 84T. Yokota, Q.L. Lu, J.E. Morgan, et al. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci. 2006; 119: 2679–2687.
- 85C. Christov, F. Chretien, R. bou-Khalil, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007; 18: 1397–1409.
- 86L. De Angelis, L. Berghella, M. Coletta, et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol. 1999; 147: 869–878.
- 87A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 2007; 9: 255–267.
- 88M. Ramirez, A. Lucia, F. Gomez-Gallego, et al. Mobilisation of mesenchymal cells into blood in response to skeletal muscle injury. Br J Sports Med. 2006; 40: 719–722.
- 89M. Sampaolesi, Y. Torrente, A. Innocenzi, et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science. 2003; 301: 487–492.
- 90D.O. Traktuev, S. Merfeld-Clauss, J. Li, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008; 102: 77–85.
- 91G. Kardon, J.K. Campbell, C.J. Tabin. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell. 2002; 3: 533–545.
- 92G. Chamberlain, J. Fox, B. Ashton, J. Middleton. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007; 25: 2739–2749.
- 93D. Montarras, J. Morgan, C. Collins, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005; 309: 2064–2067.
- 94N.L. Parenteau, C.M. Nolte, P. Bilbo, et al. Epidermis generated in vitro: practical considerations and applications. J Cell Biochem. 1991; 45: 245–251.
- 95F. Oberpenning, J. Meng, J.J. Yoo, A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999; 17: 149–155.
- 96N. Uchida, D.W. Buck, D. He, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000; 97: 14720–14725.
- 97F.H. Gage. Mammalian neural stem cells. Science. 2000; 287: 1433–1438.
- 98S. Weiss, B.A. Reynolds, A.L. Vescovi, C. Morshead, C.G. Craig, D. van der Kooy. Is there a neural stem cell in the mammalian forebrain?. Trends Neurosci. 1996; 19: 387–393.
- 99E. Schmelzer, L. Zhang, A. Bruce, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 2007; 204: 1973–1987.
- 100E. Wauthier, E. Schmelzer, W. Turner, et al. Hepatic stem cells and hepatoblasts: identification, isolation, and ex vivo maintenance. Methods Cell Biol. 2008; 86: 137–225.
- 101W.S. Turner, C. Seagle, J.A. Galanko, et al. Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells. 2008; 26: 1547–1555.
- 102H. Kubota, M.R. Avarbock, R.L. Brinster. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004; 101: 16489–16494.
- 103M. Pittenger, P. Vanguri, D. Simonetti, R. Young. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact. 2002; 2: 309–320.
- 104D.J. Prockop. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 276: 71–74.
- 105C. Toma, M.F. Pittenger, K.S. Cahill, B.J. Byrne, P.D. Kessler. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002; 105: 93–98.
- 106M. Sampaolesi, S. Blot, G. D'Antona, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006; 444: 574–579.
- 107L. Jackson, D.R. Jones, P. Scotting, V. Sottile. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007; 53: 121–127.
- 108H. Mizuno, H. Hyakusoku. Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med Sch. 2003; 70: 300–306.
- 109T. Barberi, L.M. Willis, N.D. Socci, L. Studer. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005; 2: e161.
- 110C.J. Wise, D.J. Watt, G.E. Jones. Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. J Cell Biochem. 1996; 61: 363–374.
10.1002/(SICI)1097-4644(19960601)61:3<363::AID-JCB4>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 111J. Chan, K. O'Donoghue, J. de la Fuente, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells. 2005; 23: 93–102.
- 112H. Mizuno, H. Hyakusoku. Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med Sch. 2003; 70: 300–306.
- 113Y. Li, C. Zhang, F. Xiong, et al. Comparative study of mesenchymal stem cells from C57BL/10 and mdx mice. BMC Cell Biol. 2008; 9: 24.
- 114T. Barberi, M. Bradbury, Z. Dincer, G. Panagiotakos, N.D. Socci, L. Studer. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med. 2007; 13: 642–648.
- 115J. Chan, K. O'Donoghue, M. Gavina, et al. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells. 2006; 24: 1879–1891.
- 116G. Di Rocco, M.G. Iachininoto, A. Tritarelli, et al. Myogenic potential of adipose-tissue-derived cells. J Cell Sci. 2006; 119: 2945–2952.
- 117E.J. Gang, J.A. Jeong, S.H. Hong, et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells. 2004; 22: 617–624.
- 118P.A. Zuk, M. Zhu, H. Mizuno, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211–228.
- 119G. Invernici, C. Emanueli, P. Madeddu, et al. Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am J Pathol. 2007; 170: 1879–1892.
- 120Y.C. Shang, S.H. Wang, F. Xiong, et al. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin. 2007; 28: 1761–1774.
- 121R. Singh, J.N. Artaza, W.E. Taylor, N.F. Gonzalez-Cadavid, S. Bhasin. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology. 2003; 144: 5081–5088.
- 122G. Shefer, M. Wleklinski-Lee, Z. Yablonka-Reuveni. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci. 2004; 117: 5393–5404.
- 123A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126: 677–689.
- 124A.J. Engler, H.L. Sweeney, D.E. Discher, J.E. Schwarzbauer. Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact. 2007; 7: 335.
- 125Y. Liu, X. Yan, Z. Sun, et al. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 2007; 16: 695–706.
- 126P. Bossolasco, S. Corti, S. Strazzer, et al. Skeletal muscle differentiation potential of human adult bone marrow cells. Exp Cell Res. 2004; 295: 66–78.
- 127M. Dezawa, H. Ishikawa, Y. Itokazu, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005; 309: 314–317.
- 128G. Ferrari, G. Cusella-De Angelis, M. Coletta, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279: 1528–1530.
- 129S. Wakitani, T. Saito, A.I. Caplan. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995; 18: 1417–1426.
- 130P.A. Zuk, M. Zhu, H. Mizuno, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211–228.
- 131Y. Liu, X. Yan, Z. Sun, et al. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 2007; 16: 695–706.
- 132P. De Coppi, G. BartschJr., M.M. Siddiqui, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007; 25: 100–106.
- 133P.S. In't Anker, S.A. Scherjon, C. Kleijburg-van der Keur, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102: 1548–1549.
- 134A. Kaviani, T.E. Perry, A. Dzakovic, R.W. Jennings, M.M. Ziegler, D.O. Fauza. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001; 36: 1662–1665.
- 135S.M. Kunisaki, M. Armant, G.S. Kao, K. Stevenson, H. Kim, D.O. Fauza. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007; 42: 974–979.
- 136J.D. Trelford, M. Trelford-Sauder. The amnion in surgery, past and present. Am J Obstet Gynecol. 1979; 134: 833–845.
- 137C. Bili, A. Divane, A. Apessos, et al. Prenatal diagnosis of common aneuploidies using quantitative fluorescent PCR. Prenat Diagn. 2002; 22: 360–365.
- 138F. Torricelli, L. Brizzi, P.A. Bernabei, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol. 1993; 98: 119–126.
- 139S. Wakitani, T. Saito, A.I. Caplan. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995; 18: 1417–1426.
- 140Y. Muguruma, M. Reyes, Y. Nakamura, et al. In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells. Exp Hematol. 2003; 31: 1323–1330.
- 141P. Bianco, R.P. Gehron. Marrow stromal stem cells. J Clin Invest. 2000; 105: 1663–1668.
- 142P. Bianco, P.G. Robey, P.J. Simmons. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008; 2: 313–319.
- 143B. Gawronska-Kozak, J.A. Manuel, V. Prpic. Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem. 2007; 102: 122–135.
- 144J. Chan, S.N. Waddington, K. O'Donoghue, et al. Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells. 2007; 25: 875–884.
- 145C. De Bari, F. Dell'Accio, P. Tylzanowski, F.P. Luyten. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44: 1928–1942.
- 146A.I. Caplan. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007; 213: 341–347.
- 147G. Chamberlain, J. Fox, B. Ashton, J. Middleton. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007; 25: 2739–2749.
- 148C.J. Chang, M.L. Yen, Y.C. Chen, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 2006; 24: 2466–2477.
- 149A.J. Nauta, W.E. Fibbe. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007; 110: 3499–3506.
- 150S. Wolbank, A. Peterbauer, M. Fahrner, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007; 13: 1173–1183.
- 151D. Wolf, A.M. Wolf. Mesenchymal stem cells as cellular immunosuppressants. Lancet. 2008; 371: 1553–1554.
- 152K. Le Blanc, C. Tammik, K. Rosendahl, E. Zetterberg, O. Ringden. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003; 31: 890–896.
- 153J.Y. Niederkorn. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006; 7: 354–359.
- 154A. Mahmood, D. Lu, M. Lu, M. Chopp. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003; 53: 697–702.
- 155J. Chen, Y. Li, L. Wang, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001; 32: 1005–1011.
- 156M.F. Berry, A.J. Engler, Y.J. Woo, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol. 2006; 290: H2196–H2203.
- 157S.S. Iyer, M. Rojas. Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther. 2008; 8: 569–581.
- 158A. Uccelli, V. Pistoia, L. Moretta. Mesenchymal stem cells: a new strategy for immunosuppression?. Trends Immunol. 2007; 28: 219–226.
- 159G. Ferrari, A.G. Cusella-De, M. Coletta, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279: 1528–1530.
- 160B. Gawronska-Kozak, J.A. Manuel, V. Prpic. Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem. 2007; 102: 122–135.
- 161S. Ilancheran, A. Michalska, G. Peh, E.M. Wallace, M. Pera, U. Manuelpillai. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007; 77: 577–588.
- 162L. Jackson, D.R. Jones, P. Scotting, V. Sottile. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med. 2007; 53: 121–127.
- 163S.M. Kunisaki, M. Armant, G.S. Kao, K. Stevenson, H. Kim, D.O. Fauza. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007; 42: 974–979.
- 164Y. Liu, X. Yan, Z. Sun, et al. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev. 2007; 16: 695–706.
- 165Z. Qu-Petersen, B. Deasy, R. Jankowski, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002; 157: 851–864.
- 166T. Tamagawa, S. Oi, I. Ishiwata, H. Ishikawa, Y. Nakamura. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. 2007; 20: 77–84.
- 167P. Zhao, H. Ise, M. Hongo, M. Ota, I. Konishi, T. Nikaido. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005; 79: 528–535.
- 168M.A. Goncalves, J. Swildens, M. Holkers, et al. Genetic complementation of human muscle cells via directed stem cell fusion. Mol Ther. 2008; 16: 741–748.
- 169D.J. Laird, U.H. von Andrian, A.J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008; 132: 612–630.
- 170G.P. Kobinger, J.P. Louboutin, E.R. Barton, H.L. Sweeney, J.M. Wilson. Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum Gene Ther. 2003; 14: 1441–1449.
- 171C. Bertoni, T.A. Rando. Dystrophin gene repair in mdx muscle precursor cells in vitro and in vivo mediated by RNA-DNA chimeric oligonucleotides. Hum Gene Ther. 2002; 13: 707–718.
- 172M. Bujold, N. Caron, G. Camiran, et al. Autotransplantation in mdx mice of mdx myoblasts genetically corrected by an HSV-1 amplicon vector. Cell Transplant. 2002; 11: 759–767.
10.3727/000000002783985297 Google Scholar
- 173S. Li, E. Kimura, B.M. Fall, et al. Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Ther. 2005; 12: 1099–1108.
- 174S.P. Quenneville, P. Chapdelaine, D. Skuk, et al. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models. Mol Ther. 2007; 15: 431–438.
- 175F. Xiong, S. Xiao, F. Peng, et al. Herpes simplex virus VP22 enhances adenovirus-mediated microdystrophin gene transfer to skeletal muscles in dystrophin-deficient (mdx) mice. Hum Gene Ther. 2007; 18: 490–501.
10.1089/hum.2006.155 Google Scholar
- 176M. Bailo, M. Soncini, E. Vertua, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004; 78: 1439–1448.
- 177O.N. Koc, S.L. Gerson, B.W. Cooper, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18: 307–316.
- 178S. Schenk, N. Mal, A. Finan, et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells. 2007; 25: 245–251.
- 179F.H. Seeger, A.M. Zeiher, S. Dimmeler. Cell-enhancement strategies for the treatment of ischemic heart disease. Nat Clin Pract Cardiovasc Med. 2007; 4: S110–S113.
- 180W.C. Shyu, Y.J. Lee, D.D. Liu, S.Z. Lin, H. Li. Homing genes, cell therapy and stroke. Front Biosci. 2006; 11: 899–907.
- 181C. Voermans, P.B. van Hennik, C.E. van der Schoot. Homing of human hematopoietic stem and progenitor cells: new insights, new challenges?. J Hematother Stem Cell Res. 2001; 10: 725–738.
- 182E. Bachrach, A.L. Perez, Y.H. Choi, et al. Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle Nerve. 2006; 34: 44–52.
- 183M. Sampaolesi, Y. Torrente, A. Innocenzi, et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science. 2003; 301: 487–492.
- 184M. Sampaolesi, S. Blot, G. D'Antona, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006; 444: 574–579.
- 185Y. Torrente, J.P. Tremblay, F. Pisati, et al. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol. 2001; 152: 335–348.
- 186Y. Torrente, G. Camirand, F. Pisati, et al. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol. 2003; 162: 511–520.
- 187C. Urbich, S. Dimmeler. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004; 95: 343–353.
- 188C.M. Hogaboam, K.J. Carpenter, J.M. Schuh, A.A. Proudfoot, G. Bridger, K.F. Buckland. The therapeutic potential in targeting CCR5 and CXCR4 receptors in infectious and allergic pulmonary disease. Pharmacol Ther. 2005; 107: 314–328.
- 189D.J. Laird, U.H. von Andrian, A.J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008; 132: 612–630.
- 190M. Bailo, M. Soncini, E. Vertua, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004; 78: 1439–1448.
- 191M. Ueta, M.N. Kweon, Y. Sano, et al. Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol. 2002; 129: 464–470.
- 192J.C. Kim, S.C. Tseng. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995; 14: 473–484.
- 193J.D. Trelford, M. Trelford-Sauder. The amnion in surgery, past and present. Am J Obstet Gynecol. 1979; 134: 833–845.
- 194R. Meisel, A. Zibert, M. Laryea, U. Gobel, W. Daubener, D. Dilloo. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103: 4619–4621.
- 195D.H. Munn, M. Zhou, J.T. Attwood, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998; 281: 1191–1193.
- 196B.G. Galvez, M. Sampaolesi, S. Brunelli, et al. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol. 2006; 174: 231–243.
- 197R. Meisel, A. Zibert, M. Laryea, U. Gobel, W. Daubener, D. Dilloo. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103: 4619–4621.
- 198S. Straino, A. Germani, A. Di Carlo, et al. Enhanced arteriogenesis and wound repair in dystrophin-deficient mdx mice. Circulation. 2004; 110: 3341–3348.
- 199S. Brunelli, C. Sciorati, G. D'Antona, et al. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A. 2007; 104: 264–269.
- 200A.T. Palermo, M.A. LaBarge, R. Doyonnas, J. Pomerantz, H.M. Blau. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol. 2005; 279: 336–344.
- 201F. Ambrosio, R.J. Ferrari, G.K. Fitzgerald, G.E. Carvell, M.L. Boninger, J. Huard. Functional overloading of dystrophic mice enhances muscle-derived stem cell contribution to muscle contractile capacity. Arch Phys Med Rehab. 2009; 90: 66–73.