Development of human white matter fiber pathways: From newborn to adult ages
Andrew H. Cohen
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorRongpin Wang
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Department of Radiology, Guizhou Provincial People's Hospital, 83 Zhong Shan Dong Lu, Guiyang, Guizhou Province, 550002 China
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129 USA
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorMolly Wilkinson
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorPatrick MacDonald
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorAshley R. Lim
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorCorresponding Author
Emi Takahashi
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129 USA
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Corresponding author at: Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn St. #456, Boston, MA 02115, USA.
E-mail address: [email protected] (E. Takahashi).
Search for more papers by this authorAndrew H. Cohen
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorRongpin Wang
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Department of Radiology, Guizhou Provincial People's Hospital, 83 Zhong Shan Dong Lu, Guiyang, Guizhou Province, 550002 China
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129 USA
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorMolly Wilkinson
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorPatrick MacDonald
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorAshley R. Lim
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Search for more papers by this authorCorresponding Author
Emi Takahashi
Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129 USA
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115 USA
Corresponding author at: Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn St. #456, Boston, MA 02115, USA.
E-mail address: [email protected] (E. Takahashi).
Search for more papers by this authorAbstract
Major long-range white matter pathways (cingulum, fornix, uncinate fasciculus [UF], inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus [ILF], thalamocortical [TC], and corpus callosal [CC] pathways) were identified in eighty-three healthy humans ranging from newborn to adult ages. We tracked developmental changes using high-angular resolution diffusion MR tractography. Fractional anisotropy (FA), apparent diffusion coefficient, number, length, and volume were measured in pathways in each subject. Newborns had fewer, and more sparse, pathways than those of the older subjects. FA, number, length, and volume of pathways gradually increased with age and reached a plateau between 3 and 5 years of age. Data were further analyzed by normalizing with mean adult values as well as with each subject's whole brain values. Comparing subjects of 3 years old and under to those over 3 years old, the studied pathways showed differential growth patterns. The CC, bilateral cingulum, bilateral TC, and the left IFOF pathways showed significant growth both in volume and length, while the bilateral fornix, bilateral ILF and bilateral UF showed significant growth only in volume. The TC and CC took similar growth patterns with the whole brain. FA values of the cingulum and IFOF, and the length of ILF showed leftward asymmetry. The fornix, ILF and UF occupied decreased space compared to the whole brain during development with higher FA values, likely corresponding to extensive maturation of the pathways compared to the mean whole brain maturation. We believe that the outcome of this study will provide an important database for future reference.
Supporting Information
Filename | Description |
---|---|
jdnjijdevneu201602002-sup-0001.pdfPDF document, 16.6 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0002.pdfPDF document, 16 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0003.pdfPDF document, 27 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0004.pdfPDF document, 16.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0005.pdfPDF document, 16.6 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0006.pdfPDF document, 20.7 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0007.pdfPDF document, 17.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0008.pdfPDF document, 2.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0009.pdfPDF document, 2.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0010.pdfPDF document, 1.2 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0011.pdfPDF document, 942.1 KB | Supplementary Material |
jdnjijdevneu201602002-sup-0012.pdfPDF document, 2.5 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0013.pdfPDF document, 2.3 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0014.pdfPDF document, 2.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0015.pdfPDF document, 2.9 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0016.pdfPDF document, 3 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0017.pdfPDF document, 1.4 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0018.pdfPDF document, 2.8 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0019.pdfPDF document, 2.8 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0020.pdfPDF document, 2.9 MB | Supplementary Material |
jdnjijdevneu201602002-sup-0021.pdfPDF document, 2.8 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- A. Abdel Razek, J. Mazroa, H. Baz. Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev. 36: 2014; 28–34
- American Academy of Pediatrics. Caring for Your Baby and Young Child: Birth to Age 5. S. Shelov, T.R. Altmann fifth ed.. 2009; Bantam Books: New York, NY
- N.C. Andreasen, J.W. Dennert, S.A. Olsen, A.R. Damasio. Hemispheric asymmetries and schizophrenia. Am. J. Psychiatry. 139: 1982; 427–430
- G. Ball, J.P. Boardman, T. Arichi, N. Merchant, D. Rueckert, A.D. Edwards, S.J. Counsell. Testing the sensitivity of tract-based spatial statistics to simulated treatment effects in preterm neonates. PLoS One. 8: 2013; e6770
- D. Barazany, P.J. Basser, Y. Assaf. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain. 132: 2009; 1210–1220
- M. Berchicci, T. Zhang, L. Romero, A. Peters, R. Annett, U. Teuscher, M. Bertollo, Y. Okada, J. Stephen, S. Comani. Development of mu rhythm in infants and preschool children. Dev. Neurosci. 33: 2011; 130–143
- N.E. Berthier, S. DeBlois, C.R. Poirier, M.A. Novak, R.K. Clifton. Where's the Ball? Two- and three-year-olds reason about unseen events. Dev. Psychol. 36: 2000; 394–401
- M. Brant-Zawadzki, D.R. Enzmann. Using computed tomography of the brain to correlate low white-matter attenuation with early gestational age in neonates. Radiology. 139: 1981; 105–108
- G.E. Bruder, J.W. Stewart, D. Hellerstein, J.E. Alvarenga, D. Alschuler, P.J. McGrath. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia. Psychiatry Res. 196: 2012; 250–254
- A. Cancelliere, F.T. Mangano, E.L. Air, B.V. Jones, M. Altaye, A. Rajagopal, S.K. Holland, D.A. Hertzler II, W. Yuan. DTI values in key white matter tracts from infancy through adolescence. AJNR. 34: 2013; 1443–1449
- S.M. Carlson. Developmentally sensitive measures of executive function in preschool children. Dev. Neuropsychol. 28: 2005; 595–616
- M. Catani, M. Thiebaut de Schotten. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 44: 2008; 1105–1132
- V.S. Caviness Jr., D.N. Kennedy, C. Richelme, J. Rademacher, P.A. Filipek. The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cereb. Cortex. 6: 1996; 726–736
- M. Cercignani, K. Embleton, G.J. Parker, M. Bozzali. Group-averaged anatomical connectivity mapping for improved human white matter pathways visualization. NBM. 25: 2012; 1224–1233
- Y.P. Chao, K.H. Cho, C.H. Yeh, K.H. Chou, J.H. Chen, C.P. Lin. Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum. Brain Mapp. 30: 2009; 3172–3287
- M.C. Chavarria, F.J. Sánchez, Y. Chou, P.M. Thompson, E. Luders. Puberty in the corpus callosum. Neuroscience. 18: 2014; 1–8
- J.G. Chi, E.C. Dooling, F.H. Gilles. Left-right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34: 1977; 346–348
- C. Chiron, M. Leboyer, F. Leon, L. Jambaque, C. Nuttin, A. Syrota. SPECT of the brain in childhood autism: evidence for a lack of normal hemispheric asymmetry. Dev. Med. Child. Neurol. 37: 1995; 849–860
- K. Clark, K.L. Narr, J. ONeill, J. Levitt, P. Siddarth, O. Phillips, A. Toga, R. Caplan. White matter integrity, language, and childhood onset schizophrenia. Schizophr. Res. 138: 2012; 150–156
- F. Dell'Acqua, A. Simmons, S.C. Williams, M. Catani. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum. Brain Mapp. 34: 2013; 2464–2483
- J. Dobbing, J. Sands. Quantitative growth and development of human brain. Arch. Dis. Child. 48: 1973; 757–767
- C.O. Eckerman, S.M. Didow. Toddlers social coordinations: changing responses to another's invitation to play. Dev. Psychol. 25: 1989; 794
- B.L. Edlow, E. Takahashi, O. Wu, T. Benner, G. Dai, L. Bu, P.E. Grant, D.M. Greer, S.M. Greenberg, H.C. Kinney, R.D. Folkerth. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J. Neuropathol. Exp. Neurol. 71: 2012; 531–546
- T.J. Eluvathingal, K.M. Hasan, L. Kramer, J.M. Fletcher, L. Ewing-Cobbs. Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cereb. Cortex. 17: 2007; 2760–2768
- V. Fontes. Estudos De Anatomia Macroscópica Do Sistema Nervoso Central Nas Crianças Portuguesas. 1944; Instituto de Antonio Aurelio de Costa Ferreira: Lisbon, Portugal
- L.R. Frank. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47: 2002; 1083–1099
- W. Gao, W. Lin, Y. Chen, G. Gerig, J.K. Smith, V. Jewells, J.H. Gilmore. Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR. 30: 2009; 290–296
- M.S. Gazzaniga. Principles of human brain organization derived from split-brain studies. Neuron. 14: 1995; 217–228
- X. Geng, S. Gouttard, A. Sharma, H. Gu, M. Styner, W. Lin, G. Gerig, J.H. Gilmore. Quantitative tract-based white matter development from birth to age 2 years. Neuroimage. 2: 2012; 542–557
- J.H. Gilmore, W. Lin, I. Corouge, Y.S. Vetsa, J.K. Smith, C. Kang, H. Gu, R.M. Hamer, J.A. Lieberman, G. Gerig. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR. 28: 2007; 1789–1795
- A. Giorgio, K.E. Watkins, M. Chadwick, S. James, L. Winmill, G. Douaud, N. De Stefano, P.M. Matthews, S.M. Smith, H. Johansen-Berg, A.C. James. Longitudinal changes in grey and white matter during adolescence. Neuroimage. 49: 2010; 94–103
- G. Gong, T. Jiang, C. Zhu, Y. Zang, F. Wang, S. Xie, J. Xiao, X. Guo. Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Hum. Brain Mapp. 24: 2005; 92–98
- S.J. Gotts, H.J. Jo, G.L. Wallace, Z.S. Saad, R.W. Cox, A. Martin. Two distinct forms of functional lateralization in the human brain. Proc. Natl. Acad. Sci. U. S. A. 110: 2013; 3435–3444
- G. Gredebäck, O. Kochukhova. Goal anticipating during action observation is influenced by synonymous action capabilities, a puzzling development study. Exp. Brain Res. 202: 2010; 493–497
- K.M. Hasan, A. Kamali, A. Iftikhar, L.A. Kramer, A.C. Papanicolaou, J.M. Fletcher, L. Ewing-Cobbs. Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res. 1249: 2009; 91–100
- P.L. Heilbroner, R.L. Holloway. Anatomical brain asymmetries in new world and old world monkeys: stages of temporal lobe development in primate evolution. Am. J. Phys. Anthropol. 76: 1988; 39–48
- J. Hill, D. Dierker, J. Neil, T. Inder, A. Knutsen, J. Harwell, T. Coalson, D. van Essen. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J. Neurosci. 30: 2010; 2268–2276
- F. Hochestetter. Beitrage zur Entwicklungsgeschichte des Menschlichen Gehirns. 1929; Deuticke: Leipzig Wien
- B.A. Holland, D.K. Haas, D. Norman, M. rant-Zawadzki, T.H. Newton. MRI of normal brain maturation. Am. J. Neuroradiol. 7: 1986; 201–208
- B. Hood, S. Carey, S. Prasada. Predicting the outcomes of physical events: two-year-olds fail to reveal knowledge of solidity and support. Child Dev. 71: 2000; 1540–1554
- C. Howes. Patterns of friendship. Child Dev. 54: 1983; 1041–1053
- H. Huang, J. Zhang, S. Wakana, W. Zhang, T. Ren, L.J. Richards, P. Yarowsky, P. Donohue, E. Graham, P.C.M. zan Zijl, S. Mori. White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage. 33: 2006; 27–38
- S. Jbabdi, S.N. Sotiropoulos, A.M. Savio, M. Graña, T.E.J. Behrens. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn. Reson. Med. 68: 2012; 1846–1855
- Y. Jin, Y. Shi, S.H. Joshi, N. Jahanshad, L. Zhan, G.I. de Zubicaray, K.L. McMahon, N.G. Martin, M.J. Wright, A.W. Toga, P.M. Thompson. Heritability of white matter fiber tract shapes: a HARDI study of 198 twins. Multimodal Brain Image Anal. 2011; 35–43
- Y. Jin, Y. Shi, L. Zhan, B.A. Gutman, G.I. de Zubicaray, K.L. McMahon, M.J. Wright, A.W. Toga, P.M. Thompson. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. Neuroimage. 100: 2014; 75–90
- A. Kamali, A.E. Flanders, J. Brody, J.V. Hunter, K.M. Hasan. Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct. Funct. 219: 2014; 269–281
- G. Kasprian, G. Langs, P.C. Brugger, M. Bittner, M. Weber, M. Arantes, D. Prayer. The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb. Cortex. 21: 2011; 1076–1083
- R. Keen, K. Shutts. Object and event representation in toddlers. Prog. Brain Res. 164: 2007; 227–235
- A. Keitel, W. Prinz, A.D. Friederici, C. von Hofsten, M.M. Daum. Perception of conversations: the importance of semantics and intonation in children's development. J. Exp. Child Psychol. 116: 2013; 264–277
- H.C. Kinney, B.A. Brody, A.S. Kloman, F.H. Gilles. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47: 1988; 217–234
- C. Lebel, C. Beaulieu. Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum. Brain Mapp. 30: 2009; 3563–3573
- W. Li, B. Wu, A. Batrachenko, V. Bancroft-Wu, R.A. Morey, V. Shashi, C. Langkammer, M.D. De Bellis, S. Ropele, A.W. Song, C. Liu. Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum. Brain Mapp. 35: 2014; 2698–2713
- S. Lippé, E. Martinez-Montes, C. Arcand, M. Lassonde. Electrophysiological study of auditory development. Neuroscience. 164: 2009; 1108–1118
- M.M. Mesulam. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28: 1990; 597–613
- S. Mori, J.D. Tournier. Introduction to Diffusion Tensor Imaging. 1st ed.. 2013; Academic Press: California, 140 p
- P. Mukherjee, J.H. Miller, J.S. Shimony, J.V. Phillip, D. Nehra, A.Z. Snyder, T.E. Conturo, J.J. Neil, R.C. McKinstry. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR. 23: 2002; 1445–1456
- J. Neil, J. Miller, P. Mukherjee, S. Hüppi. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NBM. 15: 2002; 543–552
- I. Neuner, Y. Kupriyanova, T. Stöcker, R. Huang, O. Posnansky, F. Schneider, M. Tittgemeyer, N.J. Shah. White-matter abnormalities in Tourette syndrome extend beyond motor pathways. Neuroimage. 51: 2010; 1184–1193
- M.A. Nowell, R.I. Grossman, D.B. Hackney, R.A. Zimmerman, H.I. Goldberg, L.T. Bilaniuk. MR imaging of white matter disease in children. AJR. 151: 1988; 359–365
- J. O'Muircheartaigh, D.C. Dean III, C.E. Ginestet, L. Walker, N. Waskiewicz, K. Lehman, H. Dirks, I. Piryatinsky, S.C.L. Deoni. White matter development and early cognition in babies and toddlers. Hum. Brain Mapp. 35: 2014; 4475–4487
- J.P. Owen, E.J. Marco, S. Desai, E. Fourie, J. Harris, S.S. Hill, A.B. Arnett, P. Mukherjee. Abnormal white matter microstructure in children with sensory processing disorders. Neuroimage Clin. 2: 2013; 844–853
- H. Peng, A. Orlichenko, R.J. Dawe, G. Agam, S. Zhang, A. Konstantinos. Development of a human brain diffusion tensor template. Neuroimage. 46: 2009; 967–980
- R.D. Penn, B. Trenko, L. Baldwin. Brain maturation followed by computed tomography. J. Comput. Assist. Tomogr. 4: 1980; 614–616
- B.D. Peters, P.R. Szeszko, J. Radua, T. Ikuta, P. Gruner, P. DeRosse, J.P. Zhang, A. Giorgio, D. Qiu, S.F. Tapert, J. Brauer, M.R. Asato, P.L. Khong, A.C. James, J.A. Gallego, A.K. Malhotra. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophr. Bull. 38: 2012; 1308–1317
- J.M. Provenzale, L. Liang, D. DeLong, L.E. White. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR. 189: 2007; 476–486
- J.A. Pyles, T.D. Verstynen, W. Schneider, M.J. Tarr. Explication the face perception network with white matter connectivity. PLoS One. 8: 2013; e61611
- A.M. Racine, N. Adluru, A.L. Alexander, B.T. Christian, O.C. Okonkwo, J. Oh, C.A. Cleary, A. Birdsill, A.T. Hillmer, D. Murali, T.E. Barnhart, C.L. Gallagher, C.M. Carlsson, H.A. Rowley, N.M. Dowling, S. Asthana, M. Sager, B.B. Bendlin, S.C. Johnson. Associations between white matter microstrucutre and amyloid burden in preclinical Alzheimer's disease: a multimodal imaging investigation. Neuroimage Clin. 4: 2014; 604–614
- J.L. Rapoport, F.X. Castellanos, N. Gogate, K. Janson, S. Kohler, P. Nelson. Imaging normal and abnormal brain development: new perspectives for child psychiatry. Aust. N. Z. J. Psychiatry. 35: 2001; 272–281
- U. Roine, T. Roine, J. Salmi, T. Nieminen-Von Wendt, S. Leppämäki, P. Rintahaka, P. Tani, A. Leemans, M. Sams. Increased coherence of white matter fiber tract organization in adults with Asperger syndrome: a diffusion tensor imaging study. Autism Res. 6: 2013; 642–650
- H.J. Schimdt, G.K. Beauchamp. Adult-like odor preferences and aversions in three-year-old children. Child Dev. 59: 1988; 1136–1143
- J.D. Schmahmann, D.N. Pandya, R. Wang, G. Dai, H.E. DArceuil, A.J. de Crespigny, V.J. Wedeen. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 130: 2007; 630–653
- J.P. Smith, D.J. Glass, G. Fireman. The understanding and experience of mixed motions in 3–5-year-old children. J. Genet. Psychol. 176: 2015; 65–81
- J.W. Song, P.D. Mitchell, J. Kolasinski, P. Ellen Grant, A.M. Galaburda, E. Takahashi. Asymmetry of white matter pathways in developing human brains. Cereb. Cortex. 25: 2015; 2883–2893
- E. Takahashi, G. Dai, R. Wang, K. Ohki, G.D. Rosen, A.M. Galaburda, P.E. Grant, V.J. Wedeen. Development of cerebral fiber pathways in cats revealed by diffusion spectrum imaging. Neuroimage. 49: 2010; 1231–1240
- E. Takahashi, G. Dai, G.D. Rosen, R. Wang, K. Ohki, R.D. Folkerth, A.M. Galaburda, V.J. Wedeen, P. Ellen Grant. Developing neocortex organization and connectivity in cats revealed by direct correlation of diffusion tractography and histology. Cereb. Cortex. 21: 2011; 200–211
- E. Takahashi, R.D. Folkerth, A.M. Galaburda, P.E. Grant. Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb. Cortex. 22: 2012; 455–464
- E. Takahashi, J.W. Song, R.D. Folkerth, P.E. Grant, J.D. Schmahmann. Detection of cerebellar cortex and white matter pathways using high angular resolution diffusion tractography. Neuroimage. 68: 2013; 105–111
- E. Takahashi, E. Hayashi, J.D. Schmahmann, P.E. Grant. Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. Neuroimage. 96: 2014; 326–333
- T. Taoka, M. Fujioka, M. Sakamoto, T. Miyasaka, T. Akashi, T. Ochi, S. Hori, M. Uchikoshi, J. Xu, K. Kichikawa. Time course of axial and radial diffusion kurtosis of white matter infarctions: period of pseudonormalization. AJNR. 35: 2014; 1509–1514
- M. Thiebaut de Schotten, D.H. Ffytche, A. Bizzi, F. Dell'Acqua, M. Allin, M. Walshe, R. Murray, S.C. Williams, D.G.M. Murphy, M. Catani. Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage. 54: 2011; 49–59
- R.A. Thompson. Development in the first years of life. Future Child. 11: 2001; 20–33
- J.Y. Thong, J. Du, N. Ratnarajah, Y. Dong, H.W. Soon, M. Saini, M.Z. Tan, A.T. Ta, C. Chen, A. Qiu. Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment. Hum. Brain Mapp. 35: 2014; 2320–2332
- J.D. Tournier, F. Calamante, D.G. Gadian, A. Connelly. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 23: 2004; 1176–1185
- J.D. Tournier, F. Calamante, A. Connelly. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 35: 2007; 1459–1472
- F. Trojsi, D. Corbo, G. Caiazzo, G. Piccirillo, M.R. Monsurrò, S. Cirillo, F. Esposito, G. Tedeschi. Motor and extramotor neurodegeneration in amyotrophic lateral sclerosis: a 3T high angular resolution diffusion imaging (HARDI) study. Amyotroph. Lateral Scler. Frontotemporal. Degener. 14: 2013; 553–561
- D.S. Tuch, T.G. Reese, M.R. Wiegall, V.J. Wedeen. Diffusion MRI of complex neural architecture. Neuron. 40: 2003; 885–895
- S. Uda, M. Matsui, C. Tanaka, A. Uematsu, K. Miura, I. Kawana, K. Noguchi. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study. Dev. Neurosci. 37(2): 2015; 182–194, 10.1159/000373885 (Epub 2015 Mar. 17)
- A. Varentsova, S. Zhang, K. Arfanakis. Development of a high angular resolution diffusion imaging human brain template. Neuroimage. 91: 2014; 177–186
- V.J. Wedeen, R.P. Wang, J.D. Schmahmann, T. Benner, W.Y. Tseng, G. Dai, D.N. Pandya, P. Hagmann, H. DArceuil, A.J. de Crespigny. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41: 2008; 1267–1277
- A. Whiten, E. Flynn, K. Brown, T. Lee. Imitation of hierarchical action structure by young children. Dev. Sci. 9: 2006; 574–582
- E. Widjaja, D. Nilsson, S. Blaser, C. Raybaud. White matter abnormalities in children with idiopathic developmental delay. Acta Radiol. 49: 2008; 589–595
- R.A. Williamson, A.N. Meltzoff. Own and others prior experiences influence children's imitation of causal acts. Cogn. Dev. 26: 2011; 260–268
- G. Xu, E. Takahashi, R.D. Folkerth, R.L. Haynes, J.J. Volpe, P.E. Grant, H.C. Kinney. Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: neuroanatomic insights. Cereb. Cortex. 24: 2014; 579–592