Intracerebroventricular d-galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat
André Felipe Rodrigues
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorHelena Biasibetti
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorBruna Stela Zanotto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorEduardo Farias Sanches
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorPaula Pierozan
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFelipe Schmitz
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorMariana Migliorini Parisi
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFlorencia Barbé-Tuana
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCarlos Alexandre Netto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCorresponding Author
Angela T.S. Wyse
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Corresponding author at: Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
E-mail address: [email protected] (A.T.S. Wyse).
Search for more papers by this authorAndré Felipe Rodrigues
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorHelena Biasibetti
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorBruna Stela Zanotto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorEduardo Farias Sanches
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorPaula Pierozan
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFelipe Schmitz
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorMariana Migliorini Parisi
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorFlorencia Barbé-Tuana
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCarlos Alexandre Netto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Search for more papers by this authorCorresponding Author
Angela T.S. Wyse
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil
Corresponding author at: Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003 Porto Alegre, RS, Brazil.
E-mail address: [email protected] (A.T.S. Wyse).
Search for more papers by this authorAbstract
Tissue accumulation of galactose is a hallmark in classical galactosemia. Cognitive deficit is a symptom of this disease which is poorly understood. The aim of this study was to investigate the effects of intracerebroventricular administration of galactose on memory (inhibitory avoidance and novel object recognition tasks) of adult rats. We also investigated the effects of galactose on acetylcholinesterase (AChE) activity, immunocontent and gene expression in hippocampus and cerebral cortex. Wistar rats received a single injection of galactose (4 mM) or saline (control). For behavioral parameters, galactose was injected 1 h or 24 h previously to the testing. For biochemical assessment, animals were decapitated 1 h, 3 h or 24 h after galactose or saline injection; hippocampus and cerebral cortex were dissected. Results showed that galactose impairs the memory formation process in aversive memory (inhibitory avoidance task) and recognition memory (novel object recognition task) in rats. The activity of AChE was increased, whereas the gene expression of this enzyme was decreased in hippocampus, but not in cerebral cortex. These findings suggest that these changes in AChE may, at least in part, to lead to memory impairment caused by galactose. Taken together, our results can help understand the etiopathology of classical galactosemia.
Conflict of interest
The authors declare to have no conflict of interest.
References
- C.S. Bavaresco, J. Ben, F. Chiarani, C.A. Netto, A.T.S. Wyse. Intrastriatal injection of hypoxanthine impairs memory formation of step-down inhibitory avoidance task in rats. Pharmacol. Biochem. Behav. 90: 2008; 594–597, 10.1016/j.pbb.2008.05.001
- G.T. Berry, I. Nissim, Z. Lin, A.T. Mazur, J.B. Gibson, S. Segal. Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet. 346: 1995; 1073–1074
- G.T. Berry. Is prenatal myo-inositol deficiency a mechanism of CNS injury in galactosemia? J. Inherit. Metab. Dis. 34: 2011; 345–355, 10.1007/s10545-010-9260-x
- M.M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 1976; 248–254, 10.1016/0003-2697(76) 90527-3
- F.R.O. Calderon, A.R. Phansalkar, D.K. Crockett, M. Miller, R. Mao. Mutation database for the galactose-1-phosphate uridyltransferase (GALT) gene. Hum. Mutat. 28: 2007; 939–943, 10.1002/humu.20544
- D. Delwing, F. Chiarani, D. Delwing, C.S. Bavaresco, C.M.D. Wannmacher, M. Wajner, A.T.S. Wyse. Proline reduces acetylcholinesterase activity in cerebral cortex of rats. Metab. Brain Dis. 18: 2003; 79–86
- G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 1961; 88–95, 10.1016/0006-2952(61) 90145-9
- A.G.K. Ferreira, E.B. Scherer, M.J. da Cunha, F.R. Machado, A.A. da Cunha, J.S. Graeff, C.A. Netto, A.T.S. Wyse. Physical exercise reverses cognitive impairment in rats subjected to experimental hyperprolinemia. Neurochem. Res. 36: 2011; 2306–2315, 10.1007/s11064-011-0555-6
10.1007/s11064-011-0555-6 Google Scholar
- J.L. Fridovich-Keil, J. Walter. Galactosemia. D. Valle, A. Beaudet, B. Vogelstein, K. Kinzler, S. Antonarakis, A. Ballabio. The Online Metabolic & Molecular Bases of Inherited Disease. 2008; McGrawHill. 1–74
- J.L. Fridovich-Keil, C.S. Gubbels, J.B. Spencer, R.D. Sanders, J.A. Land, E. Rubio-Gozalbo. Ovarian function in girls and women with GALT-deficiency galactosemia. J. Inherit. Metab. Dis. 34: 2011; 357–366, 10.1007/s10545-010-9221-4
- J.L. Fridovich-Keil. Galactosemia: the good, the bad, and the unknown. J. Cell. Physiol. 209: 2006; 701–705, 10.1002/jcp.20820
- M.G. Giovannini, D. Lana, G. Pepeu. The integrated role of ACh ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory. Neurobiol. Learn. Mem. 119: 2015; 18–33, 10.1016/j.nlm.2014.12.014
- S. Graef, P. Schönknecht, O. Sabri, U. Hegerl. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Pyschopharmacology. 215: 2011; 205–229, 10.1007/s00213-010-2153-8
- J.B. Holton. Galactosaemia: pathogenesis and treatment. J. Inherit. Metab. Dis. 19: 1996; 3–7, 10.1007/BF01799341
- I. Izquierdo, J.H. Medina. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68: 1997; 285–316, 10.1006/nlme.1997.3799
- P.P. Jumbo-Lucioni, M.L. Hopson, D. Hang, Y. Liang, D.P. Jones, J.L. Fridovich-Keil. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech. 6: 2013; 84–94, 10.1242/dmm.010207
- F.R. Kaufman, C. McBride-Chang, F.R. Manis, J.A. Wolff, M.D. Nelson. Cognitive functioning: neurologic status and brain imaging in classical galactosemia. Eur. J. Pediatr. 154: 1995; S2–5
- J. Kukolja, C.M. Thiel, G.R. Fink. Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. J. Neurosci. 29: 2009; 8119–8128, 10.1523/JNEUROSCI.0203-09.2009
- N.D. Leslie, K.L. Yager, P.D. McNamara, S. Segal. A mouse model of galactose-1-phosphate uridyl transferase deficiency. Biochem. Mol. Med. 59: 1996; 7–12, 10.1006/bmme.1996.0057
- K.J. Livak, T.D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 2001; 402–408, 10.1006/meth.2001.1262
- J. Lu, D.M. Wu, B. Hu, W. Cheng, Y.L. Zheng, Z.F. Zhang, Q. Ye, S.H. Fan, Q. Shan, Y.J. Wang. Chronic administration of troxerutin protects mouse brain against D-galactose-induced impairment of cholinergic system. Neurobiol. Learn. Mem. 93: 2010; 157–164, 10.1016/j.nlm.2009.09.006
- U. Mahmood, M. Imran, S.I. Naik, H.A. Cheema, A. Saeed, M. Arshad, S. Mahmood. Detection of common mutations in the GALT gene through ARMS. Gene. 509: 2012; 291–294, 10.1016/j.gene.2012.08.010
10.1016/j.gene.2012.08.010 Google Scholar
- K. Marinou, S. Tsakiris, C. Tsopanakis, K.H. Schulpis, P. Behrakis. Suckling rat brain regional distribution of acetylcholinesterase activity in galactosaemia in vitro. Metab. Brain Dis. 20: 2005; 227–236, 10.1007/s11011-005-7210-3
10.1007/s11011-005-7210-3 Google Scholar
- T.J. McCorvie, D.J. Timson. Structural and molecular biology of type I galactosemia: disease-associated mutations. IUBMB Life. 63: 2011; 949–954, 10.1002/iub.510
- J.B. Melo, P. Agostinho, C.R. Oliveira. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci. Res. 45: 2003; 117–127, 10.1016/S0168-0102(02) 00201-8
- E. Meshorer, H. Soreq. Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci. 29: 2006; 216–224, 10.1016/j.tins.2006.02.005
- E. Meshorer, C. Erb, R. Gazit, L. Pavlovsky, D. Kaufer, A. Friedman, D. Glick, N. Ben-Arie, H. Soreq. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science. 295: 2002; 508–512, 10.1126/science.1066752
- G. Mushtaq, N.H. Greig, J.A. Khan, M.A. Kamal. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets. 13: 2014; 1432–14329
- V.A. Pavlov, W.R. Parrish, M. Rosas-Ballina, M. Ochani, M. Puerta, K. Ochani, S. Chavan, Y. Al-Abed, K.J. Tracey. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain. Behav. Immun. 23: 2009; 41–45, 10.1016/j.bbi.2008.06.011
- G. Paxinos, C. Watson, M. Pennisi, A. Topple. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods. 13: 1985; 139–143
- L.O. Pereira, A.C.P. Strapasson, P.M. Nabinger, M. Achaval, C.A. Netto. Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia-ischemia. Brain Res. 1218: 2008; 257–266, 10.1016/j.brainres.2008.04.010
- H. Plamondon, A. Morin, C. Charron. Chronic 17beta-estradiol pretreatment and ischemia-induced hippocampal degeneration and memory impairments: a 6-month survival study. Horm. Behav. 50: 2006; 361–369, 10.1016/j.yhbeh.2006.04.006
- M. Pohanka. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. 155: 2011; 219–230, 10.5507/bp.2011.036
- N.L. Potter, Y. Nievergelt, L.D. Shriberg. Motor and speech disorders in classic galactosemia. JIMD Rep. 11: 2013; 31–41, 10.1007/8904_2013_219
- K.R. Ridel, N.D. Leslie, D.L. Gilbert. An updated review of the long-term neurological effects of galactosemia. Pediatr. Neurol. 33: 2005; 153–161, 10.1016/j.pediatrneurol.2005.02.015
- J.J. Rojas, B.F. Deniz, P.M. Miguel, R. Diaz, E.E.S. Hermel, M. Achaval, C.A. Netto, L.O. Pereira. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia–ischemia in the rat. Exp. Neurol. 241: 2013; 25–33, 10.1016/j.expneurol.2012.11.026
- E.B.S. Scherer, M.J. da Cunha, C. Matté, F. Schmitz, C.A. Netto, A.T.S. Wyse. Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol. Learn. Mem. 94: 2010; 247–253, 10.1016/j.nlm.2010.06.002
- E.B.S. Scherer, S.O. Loureiro, F.C. Vuaden, A.A. da Cunha, F. Schmitz, J. Kolling, L.E.B. Savio, M.R. Bogo, C.D. Bonan, C.A. Netto, A.T.S. Wyse. Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol. Neurobiol. 50: 2014; 589–596, 10.1007/s12035-014-8660-6
- B.M. Schweinberger, L. Schwieder, E. Scherer, A. Sitta, C.R. Vargas, A.T.S. Wyse. Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+ K+, -ATPase/Mg2+, -ATPase activity and oxidative status of the offspring. Metab. Brain Dis. 29: 2014; 153–160, 10.1007/s11011-013-9451-x
- F.M. Stefanello, A.G.K. Ferreira, T.C.B. Pereira, M.J. da Cunha, C.D. Bonan, M.R. Bogo, A.T.S. Wyse. Acute and chronic hypermethioninemia alter Na+ K+-ATPase activity in rat hippocampus: prevention by antioxidants. Int. J. Dev. Neurosci. 29: 2011; 483–488, 10.1016/j.ijdevneu.2011.02.001
- E.L. Streck, C. Matte, P.S. Vieira, F. Rombaldi, C.M.D. Wannmacher, M. Wajner, A.T.S. Wyse. Reduction of Na(+), K(+)-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem. Res. 27: 2002; 1593–1598
- S. Tsakiris, K.H. Schulpis. The effect of galactose metabolic disorders on rat brain acetylcholinesterase activity. Zeitschrift Fur Naturforsch C. 55: 2000; 852–855
- S. Tsakiris, K. Marinou, K.H. Schulpis. The in vitro effects of galactose and its derivatives on rat brain Mg2+-ATPase activity. Pharmacol. Toxicol. 91: 2002; 254–257, 10.1034/j.1600-0773.2002.910506.x
- S. Tsakiris, H. Carageorgiou, K.H. Schulpis. The protective effect of L-cysteine and glutathione on the adult and aged rat brain (Na+ K +)-ATPase and Mg2+-ATPase activities in galactosemia in vitro. Metab. Brain Dis. 20: 2005; 87–95, 10.1007/s11011-005-2480-3
10.1007/s11011-005-2480-3 Google Scholar
- S.C. Van Calcar, L.E. Bernstein, F.J. Rohr, C.H. Scaman, S. Yannicelli, G.T. Berry. A re-evaluation of life-long severe galactose restriction for the nutrition management of classic galactosemia. Mol. Genet. Metab. 112: 2014; 191–197, 10.1016/j.ymgme.2014.04.004
- F.C. Vuaden, L.E.B. Savio, E.P. Rico, B.H.M. Mussulini, D.B. Rosemberg, D.L. de Oliveira, M.R. Bogo, C.D. Bonan, A.T.S. Wyse. Methionine exposure alters glutamate uptake and adenine nucleotide hydrolysis in the zebrafish brain. Mol. Neurobiol. 53: 2016; 200–209, 10.1007/s12035-014-8983-3
10.1007/s12035-014-8983-3 Google Scholar
- D. Waggoner, N. Buist, G. Donnell. Long-term prognosis in galactosemia: results of a survey of 350 cases. J. Inherit. Metab. Dis. 13: 1990; 802–818
- A.T. Wyse, J.J. Sarkis, J.S. Cunha-Filho, M.V. Teixeira, M.R. Schetinger, M. Wajner, C.M. Wannmacher. ATP diphosphohydrolase activity in synaptosomes from cerebral cortex of rats subjected to chemically induced phenylketonuria. Braz. J. Med. Biol. Res. 28: 1995; 643–649
- A.T.S. Wyse, C.S. Bavaresco, E.A. Reis, A.I. Zugno, B. Tagliari, T. Calcagnotto, C.A. Netto. Training in inhibitory avoidance causes a reduction of Na+ K+-ATPase activity in rat hippocampus. Physiol. Behav. 80: 2004; 475–479, 10.1016/j.physbeh.2003.10.002