Participation of the recA determinant in the transposition of class II transposon mini-TnMERI1
Corresponding Author
Kazuaki Matsui
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
*Corresponding authors. Tel.: +81 022 368 7493; fax: +81 022 368 7070., E-mail address: [email protected]Search for more papers by this authorMasaru Narita
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
Tohoku Afforestation and Environmental Protection Co. Ltd., Sendai, Miyagi 980-0014, Japan
Search for more papers by this authorHidenori Ishii
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
Search for more papers by this authorCorresponding Author
Ginro Endo
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
*Corresponding authors. Tel.: +81 022 368 7493; fax: +81 022 368 7070., E-mail address: [email protected]Search for more papers by this authorCorresponding Author
Kazuaki Matsui
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
*Corresponding authors. Tel.: +81 022 368 7493; fax: +81 022 368 7070., E-mail address: [email protected]Search for more papers by this authorMasaru Narita
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
Tohoku Afforestation and Environmental Protection Co. Ltd., Sendai, Miyagi 980-0014, Japan
Search for more papers by this authorHidenori Ishii
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
Search for more papers by this authorCorresponding Author
Ginro Endo
Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan
*Corresponding authors. Tel.: +81 022 368 7493; fax: +81 022 368 7070., E-mail address: [email protected]Search for more papers by this authorEdited by W. Schumann
Abstract
As an initial step to understand the mobile nature of class II mercury resistance transposon TnMERI1, the effect of the recA gene on translocation of mini-TnMERI1 was evaluated. A higher transposition frequency in the LE392 strain (2.4 ± 1.2 × 10−5) than in the recA-deficient DH1 strain (1.2 ± 0.8 × 10−6) indicated participation of the recA gene in mini-TnMERI1 transposition. Introduction of the recA gene into the DH1 strain complemented the transposition frequency at the same level as in LE392 and confirmed participation of the recA gene in transposition. However, treatment of cells by stress agents, including irradiation of up to 3000 J m−2 UV doses, did not alter the transposition frequency and suggested independence of RecA from the SOS stress response. Further analysis of transconjugants indicated participation of RecA in the resolution of the cointegrate structure of the transposon. These results suggested that RecA is a constitutive cellular factor that increases translocation of mini-TnMERI1 and may participate in dissemination of TnMERI1-like transposons.
References
- [1] Huang, C.C., Narita, M., Yamagata, T., Itoh, Y., Endo, G. (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234, 361–369.
- [2] Osborn, A.M., Bruce, K.D., Strike, P., Ritchie, D.A. (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol. Rev. 19, 239–262.
- [3] Liebert, C.A., Hall, R.M., Summers, A.O. (1999) Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507–522.
- [4] Bogdanova, E.S., Bass, I.A., Minakhin, L.S., Petrova, M.A., Mindlin, S.Z., Volodin, A.A., Kalyaeva, E.S., Tiedje, J.M., Hobman, J.L., Brown, N.L., Nikiforov, V.G. (1998) Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144, 609–620.
- [5] Narita, M., Matsui, K., Huang, C.C., Kawabata, Z., Endo, G. (2004) Dissemination of TnMERI1-like mercury resistance transposons among Bacillus isolated from worldwide environmental samples. FEMS Microbiol. Ecol. 48, 47–55.
- [6] Huang, C.C., Narita, M., Yamagata, T., Endo, G. (1999) Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene 239, 361–366.
- [7] Wang, Y., Moore, M., Levinson, H.S., Silver, S., Walsh, C., Mahler, I. (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. J. Bacteriol. 171, 83–92.
- [8] Endo, G., Narita, M., Huang, C.C., Silver, S. (2002) Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. J. Environ. Biotechnol. 2, 71–82.
- [9] Capy, P., Gasperi, G., Biemont, C., Bazin, C. (2000) Stress and transposable elements: co-evolution or useful parasites. Heredity 85, 101–106.
- [10] Kidwell, M.G., Lisch, D.R. (2002) Transposable elements as sources of genomic variation. In: Mobile DNA II (Craig, N.L., Craigie, R., Gellert, M., Lambowitz, A.M., Eds.), pp.59–90 ASM Press, Washington, DC.
- [11] Eichenbaum, Z., Livneh, Z. (1998) UV light induces IS10 transposition in Escherichia coli. Genetics 149, 1173–1181.
- [12] Kretschmer, P.J., Cohen, S.N. (1979) Effect of temperature on translocation frequency of the Tn3 element. J. Bacteriol. 139, 515–519.
- [13] Ilves, H., Horak, R., Kivisaar, M. (2001) Involvement of sigma [S] in starvation-induced transposition of Pseudomonas putida transposon Tn4652. J. Bacteriol. 183, 5445–5448.
- [14] Del Re, B., Garoia, F., Mesirca, P., Agostini, C., Bersani, F., Giorgi, G. (2003) Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42, 113–118.
- [15] Lewin, B. (1999) Gene VII. Oxford University Press, New York.
- [16] Walker, G.C. (1985) Inducible DNA repair systems. Annu. Rev. Biochem. 54, 425–457.
- [17] Berg, D.E. (1989) Transposon Tn5. In: Mobile DNA (Berg, D.E., Howe, M.M., Eds.), pp.185–210 American Society for Microbiology, Washington, DC.
- [18] Kuan, C.T., Liu, S.K., Tessman, I. (1991) Excision and transposition of Tn5 as an SOS activity in Escherichia coli. Genetics 128, 45–57.
- [19] Weinreich, M.D., Makris, J.C., Reznikoff, W.S. (1991) Induction of the SOS response in Escherichia coli inhibits Tn5 and IS50 transposition. J. Bacteriol. 173, 6910–6918.
- [20] Kuan, C.T., Tessman, I. (1992) Further evidence that transposition of Tn5 in Escherichia coli is strongly enhanced by constitutively activated RecA proteins. J. Bacteriol. 174, 6972–6977.
- [21] Sambrook, J., Russell, D.W. Molecular Cloning: A Laboratory Manual. 3rd edn. (2000) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- [22] Taylor, L.A., Rose, R.E. A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K Nucleic Acids Res. 16 (1988) 358.
- [23] Chang, A.C.Y., Cohen, S.N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156.
- [24] Tsuda, M., Iino, T. (1987) Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol. Gen. Genet. 210, 270–276.
- [25] Sota, M., Endo, M., Nitta, K., Kawasaki, H., Tsuda, M. (2002) Characterization of a class II defective transposon carrying two haloacetate dehalogenase genes from Delftia acidovorans plasmid pUO1. Appl. Environ. Microbiol. 68, 2307–2315.
- [26] Ward, J.M., Grinsted, J. (1982) Physical and genetic analysis of the Inc-W group plasmids R388, Sa, and R7K. Plasmid 7, 239–250.
- [27] Grindley, N.D.F. (2002) The movement of Tn3-like elements: transposition and cointegrate resolution. In: Mobile DNA II (Craig, N.L., Craigie, R., Gellert, M., Lambowitz, A.M., Eds.), pp.272–302 ASM Press, Washington, DC.
- [28] Hallet, B., Vanhooff, V., Cornet, F. (2004) DNA site-specific resolution systems. In: Plasmid Biology (Funnell, B.E., Phillips, G.J., Eds.), pp.145–180 ASM Press, Washington, DC.
- [29] de la Cruz, F., Grinsted, J. (1982) Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J. Bacteriol. 151, 222–228.
- [30] Bogdanova, E., Minakhin, L., Bass, I., Volodin, A., Hobman, J.L., Nikiforov, V. (2001) Class II broad-spectrum mercury resistance transposon in Gram-positive bacteria from natural environments. Res. Microbiol. 152, 503–514.