CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA
David S. Radford
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorMargaret A. Kihlken
School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
Search for more papers by this authorGilles P.M. Borrelly
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorColin R. Harwood
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorNick E. Le Brun
School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
Search for more papers by this authorCorresponding Author
Jennifer S. Cavet
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
*Corresponding author. Tel.: +44 (191) 222 5809; Fax: +44 (191) 222 7736, E-mail address: [email protected]Search for more papers by this authorDavid S. Radford
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorMargaret A. Kihlken
School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
Search for more papers by this authorGilles P.M. Borrelly
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorColin R. Harwood
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
Search for more papers by this authorNick E. Le Brun
School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
Search for more papers by this authorCorresponding Author
Jennifer S. Cavet
School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
*Corresponding author. Tel.: +44 (191) 222 5809; Fax: +44 (191) 222 7736, E-mail address: [email protected]Search for more papers by this authorAbstract
The structure of the hypothetical copper-metallochaperone CopZ from Bacillus subtilis and its predicted partner CopA have been studied but their respective contributions to copper export, -import, -sequestration and -supply are unknown. ΔcopA was hypersensitive to copper and contained more copper atoms cell−1 than wild-type. Expression from the copA operator-promoter increased in elevated copper (not other metals), consistent with a role in copper export. A bacterial two-hybrid assay revealed in vivo interaction between CopZ and the N-terminal domain of CopA but not that of a related transporter, YvgW, involved in cadmium-resistance. Activity of copper-requiring cytochrome caa3 oxidase was retained in ΔcopZ and ΔcopA. ΔcopZ was only slightly copper-hypersensitive but ΔcopZ/ΔcopA was more sensitive than ΔcopA, implying some action of CopZ that is independent of CopA. Significantly, ΔcopZ contained fewer copper atoms cell−1 than wild-type under these conditions. CopZ makes a net contribution to copper sequestration and/or recycling exceeding any donation to CopA for export.
References
- [1] Fraústo da Silva, J.J.R. and Williams, R.J.P. (2001) The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd edn. Clarenden Press, Oxford.
- [2] Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., O'Halloran, T.V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808.
- [3] Puig, S., Thiele, D.J. (2002) Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6, 171–180.
- [4] O'Halloran, T.V., Culotta, V.C. (2000) Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060.
- [5] Harrison, M.D., Jones, C.E., Solioz, M., Dameron, C.T. (2000) Intracellular copper routing, the role of copper metallochaperones. Trends Biochem. Sci. 25, 29–32.
- [6] Tottey, S., Rondet, S.A.M., Borrelly, G.P.M., Robinson, P.J., Rich, P.R., Robinson, N.J. (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer and alternative sites for copper acquisition. J. Biol. Chem. 277, 5490–5497.
- [7] Odermatt, A., Solioz, M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. 270, 4339–4354.
- [8] Cobine, P., Wickramasinghe, W.A., Harrison, M.D., Weberb, T., Solioz, M., Dameron, C.T. (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 445, 27–30.
- [9] Odermatt, A., Suter, H., Krapf, R., Solioz, M. (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 12775–12779.
- [10] Multhaup, G., Strausak, D., Bissig, K.-D., Solioz, M. (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem. Biophys. Res. Commun. 288, 172–177.
- [11] Banci, L., Bertini, I., Del Conte, R., Markey, J., Ruiz-Duenas, F.J. (2001) Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40, 15660–15668.
- [12] Wimmer, R., Herrmann, T., Solioz, M., Wuthrich, K. (1999) NMR structure and metal interactions of the CopZ copper chaperone. J. Biol. Chem. 274, 22597–22603.
- [13] Rosenzweig, A.C., Huffman, D.L., Hou, M.Y., Wernimont, A.K., Pufahl, R.A., O'Halloran, T.V. (1995) Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Struct. Fold Des. 7, 605–617.
- [14] Arnesano, F., Banci, L., Bertini, I., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40, 1528–1539.
- [15] Banci, L., Bertini, I., Ciofi-Baffoni, S., Huffman, D.L., O'Halloran, T.V. (2001) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J. Biol. Chem. 276, 8415–8426.
- [16] Arnesano, F., Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Huffman, D.L., O'Halloran, T.V. (2001) Characterization of the binding interface between the copper metallochaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J. Biol. Chem. 276, 41365–41376.
- [17] Banci, L., Bertini, I., Ciofi-Baffoni, S., D'Onofrio, M., Gonnelli, L., Marhuenda-Egea, C.F., Ruiz-Dueñas, F.J. (2002) Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J. Mol. Biol. 317, 415–429.
- [18] Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V. (1998) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.
- [19] Erlendsson, L.S., Hederstedt, L. (2002) Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J. Bacteriol. 84, 1423–1429.
- [20] Silver, S., Phung, L.T. (1996) Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753–789.
- [21] Gatti, D., Mitra, B., Rosen, B.P. (2000) Escherichia coli soft metal ion-translocating ATPases. J. Biol. Chem. 275, 34009–34012.
- [22] Nucifora, G., Chu, L., Misra, T.K., Silver, S. (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86, 3544–3548.
- [23] Beard, S.J., Hashim, R., Membrillo-Hernandez, J., Hughes, M.N., Poole, R.K. (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol. Microbiol. 25, 883–891.
- [24] Rensing, C., Mitra, B., Rosen, B.P. (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94, 14326–14331.
- [25] Thelwell, C., Robinson, N.J., Turner-Cavet, J.S. (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. USA 95, 10728–10733.
- [26] Rutherford, J.C., Cavet, J.S., Robinson, N.J. (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem. 274, 25827–25832.
- [27] Gupta, A., Matsui, K., Lo, J.F., Silver, S. (1999) Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5, 183–188.
- [28] Rensing, C., Fan, B., Sharma, R., Mitra, B., Rosen, B.P. (2000) CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652–656.
- [29] Gaballa, A. and Helmann, J. (2002) Bacillus subtilis CPx-type ATPases: characterisation of Cd, Zn, Co and Cu efflux systems. Biometals, in press.
- [30] Solieva, I.M., Entian, K.-D. (2002) Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd2+ ion resistance. FEMS Microbiol. Lett. 208, 105–109.
- [31] Vagner, V., Dervyn, E., Ehrlich, S.D. (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.
- [32] Fortnagel, P., Freese, E. (1968) Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J. Bacteriol. 95, 1431–1438.
- [33] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Springs Harbor Laboratory, Cold Springs Harbor, NY.
- [34] Bron, S. (1990) Plasmids. In: Molecular Biological Methods for Bacillus (Harwood, C.R. and Cutting, S.M., Eds.), pp. 75–174. John Wiley and Sons Ltd., Chichester.
- [35] Guérout-Fleury, A.-M., Shazand, K., Frandsen, N., Stragier, P. Gene. 167, (1995) 335–336
- [36] Morby, A.P., Turner, J.S., Huckle, J.W., Robinson, N.J. (1993) SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res. 21, 921–925.
- [37] Le Brun, N.E., Bengtsson, J., Hederstedt, L. (2000) Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36, 638–650.
- [38] Hederstedt, L. (1986) Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 126, 399–414.
- [39] van der Oost, J., von Wachenfeldt, C., Hederstedt, L., Saraste, M. (1991) Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol. Microbiol. 5, 2063–2072.
- [40] Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.
- [41] Paulsen, I.T., Saier, M.H. Jr. (1997) A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156, 99–103.
- [42] Solioz, M., Vulpe, C. (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biol. Sci. 21, 237–241.
- [43] Perkins, J.B., Youngman, J.C. (1986) Construction and properties of Tn917-lacZ, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83, 140–144.
- [44] Kihlken, M.A., Leech, A.P., Le Brun, N.E. (2002) Copper-mediated dimerisation of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem. J. 368, 729–739.
- [45] Tottey, S., Rich, P.R., Rondett, S.A.M., Robinson, N.J. (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC 6803. J. Biol. Chem. 276, 19999–20004.
- [46] Glerum, D.M., Shtanko, A., Tzagoloff, A. (1996) SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J. Biol. Chem. 271, 20531–20535.
- [47] Nittis, T., George, G.N., Winge, D.R. (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J. Biol. Chem. 276, 42520–42526.
- [48] Mattatall, N.R., Jazaira, J., Hill, B.C. (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis. J. Biol. Chem. 275, 28802–28809.