Biomarkers for Dysplastic Barrett’s: Ready for Prime Time?
Corresponding Author
Eleanor M. Gregson
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Box 197, CB2 0XZ Cambridge, UK
Search for more papers by this authorCorresponding Author
Rebecca C. Fitzgerald
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Box 197, CB2 0XZ Cambridge, UK
Search for more papers by this authorCorresponding Author
Eleanor M. Gregson
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Box 197, CB2 0XZ Cambridge, UK
Search for more papers by this authorCorresponding Author
Rebecca C. Fitzgerald
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Biomedical Campus, Box 197, CB2 0XZ Cambridge, UK
Search for more papers by this authorAbstract
Background
There is need for the application of biomarkers in a clinical setting in order to improve patient care. Current surveillance methods are costly for health care systems and invasive for patients, and subjective methodology leads to frequent misdiagnosis. This review summarises the most advanced recent and relevant literature in the field of biomarker development in the context of Barrett’s esophagus and comments on their potential application. Studies included roughly correlate with Early Detection Research Network phases three and four.
Recent findings
A number of individual candidate and panels of biomarkers have been investigated recently. These include: gene-specific mutations such as loss of heterozygosity, copy number alterations (in particular aneuploidy) methylation panels, altered gene expression, and glycosylation assayed by lectin binding, as well as genetic and clonal diversity measures. Immunostaining for p53 is the only candidate biomarker deemed “ready for prime time.” This has been recommended for use clinically as an adjunct to histological diagnosis of dysplastic Barrett’s esophagus in the 2014 British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s esophagus.
Conclusions
Progress is being made but in many cases further prospective validation studies are required before clinical application can take place. Limitations to furthering these studies include the large patient cohorts required for prospective validation studies, costs associated with studies, and reproducibility of methods across laboratories. Continued research in this area is strongly recommended as, in the long run, biomarker application has the potential to significantly improve patient care.
References
- 1 Cancer Research UK (CRUK), Oesophageal cancer. http://www.cancerresearchuk.org/cancer-help/type/oesophageal-cancer/. Accessed 31 Jan 2014
- 2ThriftAP, PandeyaN, WhitemanDC Current status and future perspectives on the etiology of esophageal adenocarcinoma. Front Oncol (2012) 2: 1110.3389/fonc.2012.0001122655259
- 3SuZ, GayLJ, StrangeA et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat Genet (2012) 44(10): 1131–113610.1038/ng.240822961001
- 4LevineDM, EkWE, ZhangR et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet (2013) 45(12): 1487–149310.1038/ng.279624121790
- 5FrankelA, ArmourN, NancarrowD et al. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis. Genes Chromosom Cancer (2014) 53(4): 324–33810.1002/gcc.2214324446147
- 6EkWE, LevineDM, D’AmatoM et al. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal reflux. J Natl Cancer Inst (2013) 105(22): 1711–171810.1093/jnci/djt30324168968
- 7SchlemperRJ, RiddellRH, KatoY et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut (2000) 47(2): 251–25510.1136/gut.47.2.25110896917
- 8Hvid-JensenF, PedersenL, DrewesAM et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med (2011) 365(15): 1375–138310.1056/NEJMoa110304221995385
- 9BhatS, ColemanHG, YousefF et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst (2011) 103(13): 1049–105710.1093/jnci/djr20321680910
- 10SikkemaM, de JongePJ, SteyerbergEW et al. Risk of esophageal adenocarcinoma and mortality in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol (2010) 8(3): 235–24410.1016/j.cgh.2009.10.01019850156quiz e32
- 11CurversWL, ten KateFJ, KrishnadathKK et al. Low-grade dysplasia in Barrett’s esophagus: overdiagnosed and underestimated. Am J Gastroenterol (2010) 105(7): 1523–153010.1038/ajg.2010.17120461069
- 12ShaheenNJ, SharmaP, OverholtBF et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med (2009) 360(22): 2277–228810.1056/NEJMoa080814519474425
- 13FitzgeraldRC, di PietroM, RagunathK et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut (2014) 63(1): 7–4210.1136/gutjnl-2013-30537224165758
- 14SpechlerSJ, SharmaP, SouzaRF et al. American gastroenterological association technical review on the management of Barrett’s esophagus. Gastroenterology (2011) 140(3): e18–e5210.1053/j.gastro.2011.01.03121376939quiz e13
- 15FountoulakisA, ZafirellisKD, DolanK et al. Effect of surveillance of Barrett’s oesophagus on the clinical outcome of oesophageal cancer. Br J Surg (2004) 91(8): 997–100310.1002/bjs.459115286961
- 16WongT, TianJ, NagarAB Barrett’s surveillance identifies patients with early esophageal adenocarcinoma. Am J Med (2010) 123(5): 462–46710.1016/j.amjmed.2009.10.01320399324
- 17CorleyDA, MehtaniK, QuesenberryC et al. Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology (2013) 145(2): 312–9.e110.1053/j.gastro.2013.05.00423673354
- 18GuptaM, IyerPG, LutzkeL et al. Recurrence of esophageal intestinal metaplasia after endoscopic mucosal resection and radiofrequency ablation of Barrett’s esophagus: results from a US Multicenter Consortium. Gastroenterology (2013) 145(1): 79–86.e110.1053/j.gastro.2013.03.00823499759
- 19HaidryRJ, DunnJM, ButtMA et al. Radiofrequency ablation and endoscopic mucosal resection for dysplastic Barrett’s esophagus and early esophageal adenocarcinoma: outcomes of the UK National Halo RFA Registry. Gastroenterology (2013) 145(1): 87–9510.1053/j.gastro.2013.03.04523542069
- 20DulakAM, StojanovP, PengS et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet (2013) 45(5): 478–48610.1038/ng.259123525077
- 21AgrawalN, JiaoY, BettegowdaC et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov (2012) 2(10): 899–90510.1158/2159-8290.CD-12-018922877736
- 22PepeMS, EtzioniR, FengZ et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst (2001) 93(14): 1054–106110.1093/jnci/93.14.105411459866
- 23ReidBJ, PrevoLJ, GalipeauPC et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol (2001) 96(10): 2839–284810.1111/j.1572-0241.2001.04236.x11693316
- 24ReidBJ, LevineDS, LongtonG et al. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol (2000) 95(7): 1669–167610925966
- 25GalipeauPC, LiX, BlountPL et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med (2007) 4(2): e6710.1371/journal.pmed.004006717326708
- 26ShariffMK, Di PietroM, BoerwinkelDF et al. Time: a prospective study combining endoscopic trimodal imaging and molecular endpoints to improve risk stratification in Barrett’s esophagus. Digestive Disease Week; May 2012; San Diego. Gastroenterology (2012) 142: S427
- 27Bird-LiebermanEL, DunnJM, ColemanHG et al. Population-based study reveals new risk-stratification biomarker panel for Barrett’s esophagus. Gastroenterology (2012) 143(4): 927–35 e310.1053/j.gastro.2012.06.04122771507
- 28Bird-LiebermanEL, NevesAA, Lao-SirieixP et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med (2012) 18(2): 315–32110.1038/nm.261622245781
- 29SchulmannK, SterianA, BerkiA et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene (2005) 24(25): 4138–414810.1038/sj.onc.120859815824739
- 30JinZ, ChengY, OlaruA et al. Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer (2008) 123(10): 2331–233610.1002/ijc.2380418729198
- 31JinZ, HamiltonJP, YangJ et al. Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiol Biomark Prev (2008) 17(1): 111–11710.1158/1055-9965.EPI-07-0407
- 32JinZ, MoriY, HamiltonJP et al. Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer (2008) 112(1): 43–4910.1002/cncr.2313517999418
- 33JinZ, MoriY, YangJ et al. Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene (2007) 26(43): 6332–634010.1038/sj.onc.121046117452981
- 34JinZ, OlaruA, YangJ et al. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res (2007) 13(21): 6293–630010.1158/1078-0432.CCR-07-081817975140
- 35JinZ, ChengY, GuW et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res (2009) 69(10): 4112–411510.1158/0008-5472.CAN-09-002819435894
- 36AlviMA, LiuX, O’DonovanM et al. DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett’s esophagus. Clin Cancer Res (2013) 19(4): 878–88810.1158/1078-0432.CCR-12-288023243219
- 37MaleyCC, GalipeauPC, FinleyJC et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet (2006) 38(4): 468–47310.1038/ng176816565718
- 38MerloLM, ShahNA, LiX et al. A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev Res (Phila) (2010) 3(11): 1388–139710.1158/1940-6207.CAPR-10-0108
- 39KostadinovRL, KuhnerMK, LiX et al. NSAIDs modulate clonal evolution in Barrett’s esophagus. PLoS Genet (2013) 9(6): e100355310.1371/journal.pgen.100355323785299
- 40LiX, GalipeauPC, PaulsonTG et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila) (2014) 7(1): 114–12710.1158/1940-6207.CAPR-13-0289
- 41Bani-HaniK, MartinIG, HardieLJ et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst (2000) 92(16): 1316–132110.1093/jnci/92.16.131610944553
- 42Lao-SirieixP, LovatL, FitzgeraldRC Cyclin A immunocytology as a risk stratification tool for Barrett’s esophagus surveillance. Clin Cancer Res (2007) 13(2 Pt 1): 659–66510.1158/1078-0432.CCR-06-138517255290
- 43RygielAM, MilanoF, Ten KateFJ et al. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia–dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Cancer Epidemiol Biomark Prev (2008) 17(6): 1380–138510.1158/1055-9965.EPI-07-2734
- 44PatersonAL, O’DonovanM, ProvenzanoE et al. Characterization of the timing and prevalence of receptor tyrosine kinase expression changes in oesophageal carcinogenesis. J Pathol (2013) 230(1): 118–12810.1002/path.404422733579
- 45RygielAM, MilanoF, Ten KateFJ et al. Assessment of chromosomal gains as compared to DNA content changes is more useful to detect dysplasia in Barrett’s esophagus brush cytology specimens. Genes Chromosom Cancer (2008) 47(5): 396–40410.1002/gcc.2054318265409
- 46PachaA, WestraW et al. A diagnostic DNA FISH biomarker assay identifies HGD or EAC in Barrett esophagus. Digestive Disease Week; May 2012; San Diego. Gastroenterology (2012) 142: S445
- 47GreenblattMS, BennettWP, HollsteinM et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res (1994) 54(18): 4855–48788069852
- 48KayePV, HaiderSA, JamesPD et al. Novel staining pattern of p53 in Barrett’s dysplasia-the absent pattern. Histopathology (2010) 57(6): 933–93510.1111/j.1365-2559.2010.03715.x21166706
- 49WestonAP, BanerjeeSK, SharmaP et al. p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol (2001) 96(5): 1355–136210.1111/j.1572-0241.2001.03851.x11374668
- 50MurrayL, SedoA, ScottM et al. TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut (2006) 55(10): 1390–139710.1136/gut.2005.08329516682429
- 51KasteleinF, BiermannK, SteyerbergEW et al. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut (2013) 62(12): 1676–168310.1136/gutjnl-2012-30359423256952
- 52KayePV, HaiderSA, IlyasM et al. Barrett’s dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology (2009) 54(6): 699–71210.1111/j.1365-2559.2009.03288.x19438745
- 53LiM, AnastassiadesCP, JoshiB et al. Affinity peptide for targeted detection of dysplasia in Barrett’s esophagus. Gastroenterology (2010) 139(5): 1472–148010.1053/j.gastro.2010.07.00720637198
- 54KadriSR, Lao-SirieixP, O’DonovanM et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ (2010) 341: c437210.1136/bmj.c437220833740
- 55BenagliaT, SharplesLD, FitzgeraldRC et al. Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus. Gastroenterology (2013) 144(1): 62–73.e610.1053/j.gastro.2012.09.06023041329
- 56AlviMA, LiuXX, O’DonovanM et al. DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett’s esophagus. Clin Cancer Res (2013) 19(4): 878–88810.1158/1078-0432.CCR-12-288023243219