Do Benign Thyroid Nodules Have Malignant Potential? An Evidence-Based Review
Nimmi Arora
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
Search for more papers by this authorTheresa Scognamiglio
Department of Pathology, New York Presbyterian Hospital-Cornell University, 10065 New York, NY, USA
Search for more papers by this authorBaixin Zhu
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
Search for more papers by this authorCorresponding Author
Thomas J. Fahey III
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
New York Presbyterian Hospital-Cornell University, 525 East 68th Street, Room F-2024, 10065 New York, NY, USA
[email protected]Search for more papers by this authorNimmi Arora
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
Search for more papers by this authorTheresa Scognamiglio
Department of Pathology, New York Presbyterian Hospital-Cornell University, 10065 New York, NY, USA
Search for more papers by this authorBaixin Zhu
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
Search for more papers by this authorCorresponding Author
Thomas J. Fahey III
Department of Surgery, New York Presbyterian Hospital-Cornell University, 1300 York Avenue, 10065 New York, NY, USA
New York Presbyterian Hospital-Cornell University, 525 East 68th Street, Room F-2024, 10065 New York, NY, USA
[email protected]Search for more papers by this authorAbstract
Background
Benign thyroid tumors account for most nodular thyroid disease. Determination of whether a thyroid nodule is benign or malignant is a major clinical dilemma and underlies the decision to proceed to surgery in many patients. Although the accuracy of thyroid nodule fine-needle aspiration (FNA) has reduced the need for surgery over the years, questions regarding how to follow FNA-designated benign nodules remain unresolved. This is true at least in part because of uncertainty over whether some benign nodules harbor malignant potential.
Methods
An evidence-based review of recent clinical, pathologic, and molecular data is presented. A summary of data and observations from our own experience is also provided.
Results
Review of our recent 10-year experience indicates that 2% of thyroid malignancies arise within a preexisting benign thyroid nodule. In addition, both cytologic and molecular tumor markers, including Gal-3, CITED1, HBME-1, Ras, RET/PTC, and PAX8/PPARγ, have been identified in some histopathologically classified benign nodules. Gene expression profiling suggests that follicular adenomas and Hürthle cell adenomas have similarities to both benign and malignant tumors, suggesting that some of these tumors are premalignant. In addition, 10% of surgically excised follicular tumors are encapsulated follicular lesions with nuclear atypia, which have been termed “well-differentiated tumors of uncertain malignant potential.” The data available suggest that these tumors could be precursors to carcinoma.
Conclusion
Some benign thyroid nodules have malignant potential. Further molecular testing of these tumors can shed light on the pathogenesis of early malignant transformation.
References
- 1MazzaferriEL Solitary thyroid nodule. 2. Selective approach to management. Postgrad Med (1981) 70: 107–1097243694112, 116
- 2MortensenJD, WoolnerLB, BennettWA Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab (1955) 15: 1270–128013263417
- 3LangW, BorruschH, BauerL Occult carcinomas of the thyroid: evaluation of 1,020 sequential autopsies. Am J Clin Pathol (1988) 90: 72–763389346
- 4RosaiJ, CarcangiuML, DeLellisRA Atlas of Tumor Pathology (1992) 3Washington, DCArmed Forces Institute of Pathology
- 5SackettDL Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest (1989) 95: 2S–4S291451610.1378/chest.95.2.2S
- 6BardenCB, ShisterKW, ZhuB et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res (2003) 9: 1792–180012738736
- 7FinleyDJ, AroraN, ZhuB et al. Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endocrinol Metab (2004) 89: 3214–32231524059510.1210/jc.2003-031811
- 8NikiforovaMN, KimuraET, GandhiM et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab (2003) 88: 5399–54041460278010.1210/jc.2003-030838
- 9AlexanderEK, HurwitzS, HeeringJP et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med (2003) 138: 315–31812585829
- 10KumaK, MatsuzukaF, YokozawaT et al. Fate of untreated benign thyroid nodules: results of long-term follow-up. World J Surg (1994) 18: 495–498772573410.1007/BF00353745
- 11EvansHL, Vassilopoulou-SellinR Follicular and Hurthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol (1998) 22: 1512–1520985017710.1097/00000478-199812000-00008
- 12ParkSH, SuhEH, ChiJG A histopathologic study on 1,095 surgically resected thyroid specimens. Jpn J Clin Oncol (1988) 18: 297–3023204680
- 13PennelliN, PennelliG, Merante BoschinI et al. Thyroid intrafollicular neoplasia (TIN) as a precursor of papillary microcarcinoma. Ann Ital Chir (2005) 76: 219–22416355851
- 14HazardJB, KenyonR Atypical adenoma of the thyroid. AMA Arch Pathol (1954) 58: 554–56313217570
- 15VickeryALJr Thyroid papillary carcinoma: pathological and philosophical controversies. Am J Surg Pathol (1983) 7: 797–807666035210.1097/00000478-198307080-00009
- 16ChanJK Strict criteria should be applied in the diagnosis of encapsulated follicular variant of papillary thyroid carcinoma. Am J Clin Pathol (2002) 117: 16–181179159110.1309/P7QL-16KQ-QLF4-XW0M
- 17FrancB, de la SalmoniereP, LangeF et al. Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum Pathol (2003) 34: 1092–11001465280910.1016/S0046-8177(03)00403-9
- 18LloydRV, EricksonLA, CaseyMB et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol (2004) 28: 1336–13401537194910.1097/01.pas.0000135519.34847.f6
- 19SaxenE, FranssilaK, BjarnasonO et al. Observer variation in histologic classification of thyroid cancer. Acta Pathol Microbiol Scand [A] (1978) 86A: 483–486
- 20HirokawaM, CarneyJA, GoellnerJR et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol (2002) 26: 1508–15141240972810.1097/00000478-200211000-00014
- 21WilliamsED Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol (2000) 8: 181–1831149398710.1177/106689690000800304
- 22MaiKT, LandryDC, ThomasJ et al. Follicular adenoma with papillary architecture: a lesion mimicking papillary thyroid carcinoma. Histopathology (2001) 39: 25–321145404110.1046/j.1365-2559.2001.01148.x
- 23LiuJ, SinghB, TalliniG et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer (2006) 107: 1255–12641690051910.1002/cncr.22138
- 24BartolazziA, GasbarriA, PapottiM et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet (2001) 357: 1644–16501142536710.1016/S0140-6736(00)04817-0
- 25PrasadML, PellegataNS, HuangY et al. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol (2005) 18: 48–571527227910.1038/modpathol.3800235
- 26ScognamiglioT, HyjekE, KaoJ et al. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol (2006) 126: 700–7081705006710.1309/044V86JN2W3CN5YB
- 27ParkYJ, KwakSH, KimDC et al. Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci (2007) 22: 621–62817728499
- 28BeesleyMF, McLarenKM Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology (2002) 41: 236–2431220778510.1046/j.1365-2559.2002.01442.x
- 29de MatosPS, FerreiraAP, de Oliveira FacuriF et al. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology (2005) 47: 391–4011617889410.1111/j.1365-2559.2005.02221.x
- 30CheungCC, EzzatS, FreemanJL et al. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol (2001) 14: 338–3421130135010.1038/modpathol.3880312
- 31ErkilicS, AydinA, KocerNE Diagnostic utility of cytokeratin 19 expression in multinodular goiter with papillary areas and papillary carcinoma of thyroid. Endocr Pathol (2002) 13: 207–2111244691910.1385/EP:13:3:207
- 32LamKY, LuiMC, LoCY Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol (2001) 27: 631–6351166959010.1053/ejso.2001.1203
- 33NasrMR, MukhopadhyayS, ZhangS et al. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: utility of HBME1 combined with CK19 immunostaining. Mod Pathol (2006) 19: 1631–16371699846110.1038/modpathol.3800705
- 34SahooS, HodaSA, RosaiJ et al. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol (2001) 116: 696–7021171068610.1309/6D9D-7JCM-X4T5-NNJY
- 35AronM, KapilaK, VermaK Utility of galectin 3 expression in thyroid aspirates as a diagnostic marker in differentiating benign from malignant thyroid neoplasms. Indian J Pathol Microbiol (2006) 49: 376–38017001889
- 36MehrotraP, OkpokamA, BouhaidarR et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology (2004) 45: 493–5001550065310.1111/j.1365-2559.2004.01978.x
- 37PapottiM, RodriguezJ, De PompaR et al. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol (2005) 18: 541–5461552918610.1038/modpathol.3800321
- 38FukushimaT, SuzukiS, MashikoM et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene (2003) 22: 6455–64571450852510.1038/sj.onc.1206739
- 39KimuraET, NikiforovaMN, ZhuZ et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res (2003) 63: 1454–145712670889
- 40XuX, QuirosRM, GattusoP et al. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res (2003) 63: 4561–456712907632
- 41KebebewE, WengJ, BauerJ et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg (2007) 246: 466–4701771745010.1097/SLA.0b013e318148563d
- 42LeeJH, LeeES, KimYS Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer (2007) 110: 38–461752070410.1002/cncr.22754
- 43IshizakaY, KobayashiS, UshijimaT et al. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene (1991) 6: 1667–16721717926
- 44ChuaEL, WuWM, TranKT et al. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab (2000) 85: 2733–27391094687310.1210/jc.85.8.2733
- 45LearoydDL, MessinaM, ZedeniusJ et al. RET/PTC and RET tyrosine kinase expression in adult papillary thyroid carcinomas. J Clin Endocrinol Metab (1998) 83: 3631–3635976867610.1210/jc.83.10.3631
- 46SantoroM, PapottiM, ChiappettaG et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab (2002) 87: 370–3791178867810.1210/jc.87.1.370
- 47TalliniG, SantoroM, HelieM et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res (1998) 4: 287–2949516913
- 48CapellaG, Matias-GuiuX, AmpudiaX et al. Ras oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagn Mol Pathol (1996) 5: 45–52891954510.1097/00019606-199603000-00008
- 49Garcia-RostanG, ZhaoH, CampRL et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol (2003) 21: 3226–32351294705610.1200/JCO.2003.10.130
- 50KargaH, LeeJK, VickeryALJr et al. Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab (1991) 73: 832–836189015410.1210/jcem-73-4-832
- 51LemoineNR, MayallES, WyllieFS et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene (1989) 4: 159–1642648253
- 52LiuRT, HouCY, YouHL et al. Selective occurrence of ras mutations in benign and malignant thyroid follicular neoplasms in Taiwan. Thyroid (2004) 14: 616–6211532097510.1089/1050725041692882
- 53NambaH, RubinSA, FaginJA Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol (1990) 4: 1474–14792283998
- 54VaskoV, FerrandM, Di CristofaroJ et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab (2003) 88: 2745–27521278888310.1210/jc.2002-021186
- 55KrollTG, SarrafP, PecciariniL et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science (2000) 289: 1357–13601095878410.1126/science.289.5483.1357
- 56DwightT, ThoppeSR, FoukakisT et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab (2003) 88: 4440–44451297032210.1210/jc.2002-021690
- 57LacroixL, LazarV, MichielsS et al. Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol (2005) 167: 223–23115972966
- 58MarquesAR, EspadinhaC, CatarinoAL et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab (2002) 87: 3947–39521216153810.1210/jc.87.8.3947
- 59NikiforovaMN, BiddingerPW, CaudillCM et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol (2002) 26: 1016–10231217008810.1097/00000478-200208000-00006
- 60Castro PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab (2006) 91: 213–2201621971510.1210/jc.2005-1336
- 61EliseiR, RomeiC, VorontsovaT et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab (2001) 86: 3211–32161144319110.1210/jc.86.7.3211
- 62CerilliLA, MillsSE, RumpelCA et al. Interpretation of RET immunostaining in follicular lesions of the thyroid. Am J Clin Pathol (2002) 118: 186–1931216267610.1309/53UC-4U88-RRTN-H33G
- 63FuscoA, ChiappettaG, HuiP et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol (2002) 160: 2157–216712057919
- 64OyamaT, SuzukiT, HaraF et al. N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int (1995) 45: 45–507704243
- 65EsapaCT, JohnsonSJ, Kendall-TaylorP et al. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) (1999) 50: 529–53510.1046/j.1365-2265.1999.00704.x
- 66NikiforovaMN, LynchRA, BiddingerPW et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab (2003) 88: 2318–23261272799110.1210/jc.2002-021907
- 67CheungL, MessinaM, GillA et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab (2003) 88: 354–3571251987610.1210/jc.2002-021020
- 68HuangY, PrasadM, LemonWJ et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A (2001) 98: 15044–150491175245310.1073/pnas.251547398
- 69LubitzCC, GallagherLA, FinleyDJ et al. Molecular analysis of minimally invasive follicular carcinomas by gene profiling. Surgery (2005) 138: 1042–10481636038910.1016/j.surg.2005.09.009
- 70LubitzCC, UgrasSK, KazamJJ et al. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagn (2006) 8: 490–4981693159010.2353/jmoldx.2006.060080
- 71StuderH, DerwahlM Mechanisms of nonneoplastic endocrine hyperplasia-a changing concept: a review focused on the thyroid gland. Endocr Rev (1995) 16: 411–426852178710.1210/er.16.4.411
- 72CerciC, CerciSS, ErogluE et al. Thyroid cancer in toxic and non-toxic multinodular goiter. J Postgrad Med (2007) 53: 157–16017699987
- 73SantoroM, CarlomagnoF, HayID et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest (1992) 89: 1517–1522156918910.1172/JCI115743
- 74FinleyDJ, ZhuB, BardenCB et al. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg (2004) 240: 425–4361531971410.1097/01.sla.0000137128.64978.bc
- 75FinleyDJ, LubitzCC, WeiC et al. Advancing the molecular diagnosis of thyroid nodules: defining benign lesions by molecular profiling. Thyroid (2005) 15: 562–5681602912210.1089/thy.2005.15.562
- 76McHenryCR, SandovalBA Management of follicular and Hurthle cell neoplasms of the thyroid gland. Surg Oncol Clin N Am (1998) 7: 893–9109735140
- 77PisaniT, PantelliniF, CentanniM et al. Immunocytochemical expression of Ki67 and laminin in Hurthle cell adenomas and carcinomas. Anticancer Res (2003) 23: 3323–332612926070
- 78ChenH, NicolTL, ZeigerMA et al. Hurthle cell neoplasms of the thyroid: are there factors predictive of malignancy?. Ann Surg (1998) 227: 542–546956354310.1097/00000658-199804000-00015
- 79Lopez-PenabadL, ChiuAC, HoffAO et al. Prognostic factors in patients with Hurthle cell neoplasms of the thyroid. Cancer (2003) 97: 1186–11941259922410.1002/cncr.11176
- 80NascimentoMC, BisiH, AlvesVA et al. Differential reactivity for galectin-3 in Hurthle cell adenomas and carcinomas. Endocr Pathol (2001) 12: 275–2791174004810.1385/EP:12:3:275
- 81CheungCC, EzzatS, RamyarL et al. Molecular basis of Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab (2000) 85: 878–8821069090510.1210/jc.85.2.878
- 82GaluscaB, DumollardJM, ChambonniereML et al. Peroxisome proliferator activated receptor gamma immunohistochemical expression in human papillary thyroid carcinoma tissues: possible relationship to lymph node metastasis. Anticancer Res (2004) 24: 1993–199715274390
- 83MusholtPB, ImkampF, von WasielewskiR et al. RET rearrangements in archival oxyphilic thyroid tumors: new insights in tumorigenesis and classification of Hurthle cell carcinomas?. Surgery (2003) 134: 881–8891466871910.1016/j.surg.2003.08.003
- 84FinleyDJ, ZhuB, FaheyTJ3rd Molecular analysis of Hurthle cell neoplasms by gene profiling. Surgery (2004) 136: 1160–11681565757110.1016/j.surg.2004.05.061
- 85AshcraftMW, Van HerleAJ Management of thyroid nodules. I. History and physical examination, blood tests, x-ray tests, and ultrasonography. Head Neck Surg (1981) 3: 216–230700728610.1002/hed.2890030309
- 86de los SantosET, Keyhani-RofaghaS, CunninghamJJ et al. Cystic thyroid nodules: the dilemma of malignant lesions. Arch Intern Med (1990) 150: 1422–142710.1001/archinte.150.7.1422
- 87LinJD, HsuenC, ChenJY et al. Cystic change in thyroid cancer. ANZ J Surg (2007) 77: 450–4541750188510.1111/j.1445-2197.2007.04093.x
- 88RehakNN, OertelYC, HerpA et al. Biochemical analysis of thyroid cyst fluid obtained by fine-needle aspiration. Arch Pathol Lab Med (1993) 117: 625–6308503736
- 89GasbarriA, SciacchitanoS, MarascoA et al. Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto’s thyroiditis. Br J Cancer (2004) 91: 1096–110415292926
- 90OkayasuI, FujiwaraM, HaraY et al. Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma: a study of surgical cases among Japanese, and white and African Americans. Cancer (1995) 76: 2312–2318863503710.1002/1097-0142(19951201)76:11<2312::AID-CNCR2820761120>3.0.CO;2-H
10.1002/1097-0142(19951201)76:11<2312::AID-CNCR2820761120>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 91RhodenKJ, UngerK, SalvatoreG et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab (2006) 91: 2414–24231659559210.1210/jc.2006-0240
- 92SargentR, LiVolsiV, MurphyJ et al. BRAF mutation is unusual in chronic lymphocytic thyroiditis-associated papillary thyroid carcinomas and absent in non-neoplastic nuclear atypia of thyroiditis. Endocr Pathol (2006) 17: 235–2411730836010.1385/EP:17:3:235
- 93SheilsOM, O’EaryJ, UhlmannV et al. ret/PTC-1 Activation in Hashimoto thyroiditis. Int J Surg Pathol (2000) 8: 185–1891149398810.1177/106689690000800305