Error estimates of VBDF2 numerical scheme for Cahn–Hilliard–Navier–Stokes model based on IEQ method
Wenzhuo Chen
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Search for more papers by this authorCorresponding Author
Danxia Wang
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Correspondence
Danxia Wang, School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
Email: [email protected]
Search for more papers by this authorHongen Jia
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Search for more papers by this authorJun Zhang
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou, China
Search for more papers by this authorWenzhuo Chen
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Search for more papers by this authorCorresponding Author
Danxia Wang
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Correspondence
Danxia Wang, School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
Email: [email protected]
Search for more papers by this authorHongen Jia
School of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, China
Search for more papers by this authorJun Zhang
School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou, China
Search for more papers by this authorAbstract
In this paper, we successfully propose a highly efficient linear, decoupled, fully discrete, variable time step second-order backward difference formula (VBDF2) finite element numerical scheme for the Cahn–Hilliard–Navier–Stokes (CHNS) model. First, by utilizing the invariant energy quadratization (IEQ) method, we derive the equivalent CHNS model, which is crucial for handling the nonlinear terms. Second, by employing the finite element method for spatial discretization and the VBDF2 approach for time discretization, we obtain the fully discrete numerical scheme. Then, we also demonstrate the unique solvability, mass conservation property, and stability of the IEQ-VBDF2 scheme. Subsequently, we present the error estimates accompanied by rigorous theoretical derivations. Finally, we creatively design an adaptive variable-time-step strategy and conduct several numerical simulations to verify the theoretical results. This strategy boasts excellent performance. It can maintain a high level of computational accuracy while significantly enhancing computational efficiency, offering a more efficient and reliable solution for the relevant numerical computing field.
REFERENCES
- 1Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)
10.1142/S0218202596000341 Google Scholar
- 2Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435 (1977)
- 3Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)
- 4Navier, C.: Sur les Lois des Mouvement des Fluides, en Ayant Egard a L'adhesion des Molecules. in: Annales de Chimie et de Physique Vol.19, p. 1821. Lavoisier, Paris, France 1821
- 5Stokes, G.G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. In: Mathmatical and Physical Papers, pp. 75–129. Cambridge University Press, Cambridge, U.K. (2007)
- 6Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31(3), 688–699 (1959)
- 7Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73(4), 344–361 (2013)
- 8Eckert, S., Nikrityuk, P.A., Willers, B., Räbiger, D., Shevchenko, N., Neumann-Heyme, H., Travnikov, V., Odenbach, S., Voigt, A., Eckert, K.: Electromagnetic melt flow control during solidification of metallic alloys. Euro. Phys. J. Special Top. 220, 123–137 (2013)
- 9Jasnow, D., Vinals, J.: Coarse-grained description of thermo-capillary flow. Phys. Fluids 8(3), 660–669 (1996)
- 10Aland, S., Lowengrub, J., Voigt, A.: Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86(4), 046321 (2012)
- 11Praetorius, S., Voigt, A.: A Navier-Stokes phase-field crystal model for colloidal suspensions. J. Chem. Phys. 142(15) (2015)
- 12Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)
- 13Kim, J., Lowengrub, J.: Interfaces and multicomponent fluids. Encyclo. Math. Phys. 3, 135–144 (2004)
- 14Li, X., Shen, J.: On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case. Math. Models Methods Appl. Sci. 30(12), 2263–2297 (2020)
- 15Chen, C., Yang, X.: Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn–Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity. Esaim Math. Model. Numer. Anal. 55(5), 2323–2347 (2021)
- 16Chen, C., Yang, X.: Highly efficient and unconditionally energy stable semi-discrete time-marching numerical scheme for the two-phase incompressible flow phase-field system with variable-density and viscosity. Sci. China Math. 65(12), 2631–2656 (2022)
- 17Chen, Y., Huang, Y., Yi, N.: Error analysis of a decoupled, linear and stable finite element method for Cahn–Hilliard–Navier–Stokes equations. Appl. Math. Comput. 421, 126928 (2022)
- 18Chen, Y., Li, D., Yang, Y., Yin, P.: Unconditional energy stable IEQ-FEMs for the Cahn-Hilliard-Navier-Stokes equations. arXiv preprint arXiv:2409.14551 (2024)
- 19Cherfils, L., Petcu, M.: Energy stable numerical scheme for the viscous Cahn–Hilliard–Navier–Stokes equations with moving contact line. Numer. Methods. Partial. Differ. Equ. 35(3), 1113–1133 (2019)
- 20Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)
- 21Wen, J., He, Y., He, Y.L.: Semi-implicit, unconditionally energy stable, stabilized finite element method based on multiscale enrichment for the Cahn-Hilliard-Navier-Stokes phase-field model. Comput. Math. Appl. 126, 172–181 (2022)
- 22Dehghan, M., Gharibi, Z.: Numerical analysis of fully discrete energy stable weak Galerkin finite element Schem for a coupled Cahn-Hilliard-Navier-Stokes phase-field model. Appl. Math. Comput. 410, 126487 (2021)
10.1016/j.amc.2021.126487 Google Scholar
- 23Chen, L., Zhao, J.: A novel second-order linear scheme for the Cahn-Hilliard-Navier-Stokes equations. J. Comput. Phys. 423, 109782 (2020)
- 24Yang, J., Yi, N., Chen, Y.: Optimal error estimates of a SAV–FEM for the Cahn–Hilliard–Navier–Stokes model. J. Comput. Appl. Math. 438, 115577 (2024)
- 25Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)
- 26DeCaria, V., Schneier, M.: An embedded variable step IMEX scheme for the incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng. 376, 113661 (2021)
- 27García-Archilla, B., Novo, J.: Robust error bounds for the Navier–Stokes equations using implicit-explicit second-order BDF method with variable steps. IMA J. Numer. Anal. 43(5), 2892–2933 (2023)
- 28Becker, J.: A second order backward difference method with variable steps for a parabolic problem, BIT Numer. Math. 38, 644–662 (1998)
- 29Hou, D., Qiao, Z.: An implicit–explicit second-order BDF numerical scheme with variable steps for gradient flows. J. Sci. Comput. 94(2), 39 (2023)
- 30Chu, T., Wang, J., Wang, N., Zhang, Z.: Optimal-order convergence of a two-step BDF method for the Navier–Stokes equations with initial data. J. Sci. Comput. 96(2), 62 (2023)
10.1007/s10915-023-02270-x Google Scholar
- 31Guzel, A., Layton, W.: Time filters increase accuracy of the fully implicit method, BIT Numer. Math. 58, 301–315 (2018)
- 32Liao, H.l., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414, 109473 (2020)
- 33Guillén-González, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68(8), 821–846 (2014)
- 34Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)
- 35Bu, L., Wu, J., Mei, L., Wang, Y.: Second-order linear adaptive time-stepping schemes for the fractional Allen–Cahn equation. Comput. Math. Appl. 145, 260–274 (2023)
- 36Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)
- 37Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)
- 38Wang, D., Wang, Z., Zhang, C., Jia, H., Zhang, J.: Error analysis of fully decoupled SAV scheme for two phase magnetohydrodynamic diffuse interface model. Comput. Appl. Math. 43(6), 374 (2024)
- 39Zhang, X., Wang, D., Zhang, J., Jia, H.: Fully decoupled linear BDF2 scheme for the penalty incompressible Ericksen–Leslie equations. Math. Comput. Simul 212, 249–266 (2023)
- 40Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)
- 41Yang, X., Zhang, G.D.: Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn–Hilliard and Allen–Cahn equations with general nonlinear potential. J. Sci. Comput. 82, 1–28 (2020)
- 42Zhang, G.D., Yang, X.: Error estimates with low-order polynomial dependence for the fully-discrete finite element invariant energy quadratization scheme of the Allen–Cahn equation. Math. Models Methods Appl. Sci. 33(12), 2463–2505 (2023)
- 43Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Online Proc. Lib. 529, 39 (1998)
- 44Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations. Disc. Contin. Dyn. Syst 28(4), 1669–1691 (2010)
- 45Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)
- 46Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin 2008
10.1007/978-0-387-75934-0 Google Scholar
- 47Wang, C., Wang, J., Wise, S.M., Xia, Z., Xu, L.: Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn–Hilliard-Magnetohydrodynamics system of equations. J. Comput. Appl. Math. 436, 115409 (2024)
- 48Cabrales, R.C., Guillén-González, F., Gutiérrez-Santacreu, J.V.: A Time-Splitting Finite-Element Stable Approximation for the Ericksen–Leslie Equations. SIAM J. Sci. Comput. 37(2), B261–B282 (2015)
- 49Qin, Y., Wang, Y., Li, J.: A variable time step time filter algorithm for the geothermal system. SIAM J. Numer. Anal. 60(5), 2781–2806 (2022)
- 50DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Model. 17(2), 254–280 (2020)
- 51Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005)
10.1007/BF02935787 Google Scholar