Photothermal diffusion in nonsimple semiconductor strips: Impact of moving heat sources and acoustic pressure via memory and nonlocality effects
Nitin Chandel
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorLalsingh Khalsa
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorCorresponding Author
Ahmed Abouelregal
Department of Mathematics, College of Science, Jouf University, Sakaka, Saudi Arabia
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
Correspondence
Ahmed Abouelregal, Department of Mathematics, College of Science, Jouf University, Sakaka-2014, Saudi Arabia.
Email: [email protected] and [email protected]
Search for more papers by this authorVinod Varghese
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorNagesh Dhore
Department of Mathematics, Gramgeeta Mahavidyalaya Chimur, Chandrapur, India
Search for more papers by this authorNitin Chandel
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorLalsingh Khalsa
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorCorresponding Author
Ahmed Abouelregal
Department of Mathematics, College of Science, Jouf University, Sakaka, Saudi Arabia
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
Correspondence
Ahmed Abouelregal, Department of Mathematics, College of Science, Jouf University, Sakaka-2014, Saudi Arabia.
Email: [email protected] and [email protected]
Search for more papers by this authorVinod Varghese
Department of Mathematics, Mahatma Gandhi College, Armori, Gadchiroli, India
Search for more papers by this authorNagesh Dhore
Department of Mathematics, Gramgeeta Mahavidyalaya Chimur, Chandrapur, India
Search for more papers by this authorAbstract
This study introduces a novel dual-phase lag model for semiconductor materials, advancing the field of photothermal diffusion (PTD) by integrating memory effects and spatiotemporal nonlocality. Unlike conventional approaches, it employs a modified nonsimple photoexcitation framework to derive governing equations for heat conduction during optical transport processes, particularly under the influence of internal moving heat sources. One of the study's major contributions is its ability to model the interconnected dynamics of thermal, mechanical-elastic, plasma, and acoustic wave propagation in nonsimple semiconductor thin strips. The research employs an analytical framework, combining the Laplace transform method with an operational methodology, to simplify complex differential equations into solvable algebraic forms, enabling efficient modeling of multi-physics interactions. To achieve precise space-time solutions, the study employs the Gaver–Stehfest inversion formula with Salzer summation for the numerical inversion of the Laplace transform. Key findings include demonstrating the influence of moving heat sources and acoustic pressure on material behavior and highlighting the critical roles of memory effects and nonlocal phenomena. The model further provides insights into how sectional acoustic, plasma, and thermomechanical sources affect a finite-length strip, underscoring its versatility. By using silicon as a representative material, the study graphically illustrates the profound impacts of photoexcitation, heat source dynamics, and wave interactions. This work bridges gaps in existing thermoelastic models, offering a comprehensive framework for studying multi-physical interactions in semiconductors and paving the way for future research and technological advancements.
REFERENCES
- 1Somer, A., Galovic, S., Popovic, M.N., Lenzi, E.K., Novatski, A., Djordjevic, K.: Thermoelastic component of photoacoustic response calculated by the fractional dual-phase-lag heat conduction theory. Int. J. Heat Mass Transf. 223(1), 125233 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125233
10.1016/j.ijheatmasstransfer.2024.125233 Google Scholar
- 2Alshehri, H.M., Lotfy, K., Raddadi, M.H., El-Bary, A.A.: A nonlocal photoacoustic effect with variable thermal conductivity of semiconductor material subjected to laser heat source. Results Phys. 61, 107715 (2024). https://doi.org/10.1016/j.rinp.2024.107715
10.1016/j.rinp.2024.107715 Google Scholar
- 3Cervenka, M., Bednarik, M.: An algebraic correction for the Westervelt equation to account for the local nonlinear effects in parametric acoustic array. J. Acoust. Soc. Am. 151, 4046–4052 (2022). https://doi.org/10.1121/10.0011747
- 4Hang, Y., Gao, J., Qili, Z., Yahui, G., Yunfei, X., Yao, W., Zhou, W.: Acoustic pressure and temperature distribution in a novel continuous ultrasonic tank reactor: a simulation study. IOP Conf. Ser.: Mater. Sci. Eng. 392, 062021 (2018). https://doi.org/10.1088/1757-899X/392/6/062021
10.1088/1757-899X/392/6/062021 Google Scholar
- 5Djordjevic, К.L., Markushev, D.D., Ćojbašić, Ž.М.: Photoacoustic measurements of the thermal and elastic properties of n-type Silicon using neural networks. Silicon 12, 1289–1300 (2020). https://doi.org/10.1007/s12633-019-00213-6
- 6Popovic, A., Soskic, Z., Stojanovic, Z., Cevizovic, D., Galovic, S.: On the applicability of the effective medium approximation to the photoacoustic response of multilayered structures. Phys. Scr. 2012(T149), 014066 (2012). https://doi.org/10.1088/0031-8949/2012/T149/014066
10.1088/0031-8949/2012/T149/014066 Google Scholar
- 7Tzou, D., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sc. 49(7), 1133–1137 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.01.022
- 8Tzou, D.: Macro- to Microscale Heat Transfer: The Lagging Behavior. John Wiley & Sons Ltd, Chichester, UK (2014). https://doi.org/10.1002/9781118818275
10.1002/9781118818275 Google Scholar
- 9Tzou, D.: A unified field approach for heat conduction from macro to microscales. J. Heat Transf. 117(1), 8–16 (1995). https://doi.org/10.1115/1.2822329
- 10Cao, B.Y., Guo, Z.Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102(5), 1–6 (2007). https://doi.org/10.1063/1.2775215
- 11Guo, Z.Y., Hou, Q.W.: Thermal wave based on the thermomass model. J. Heat Transf. 132(7), 072403 (2010).
- 12Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0
- 13Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974). https://doi.org/10.1016/0020-7225(74)90033-0
- 14Eringen, A.C.: Memory dependent nonlocal elastic solids. Lett. Appl. Eng. Sci. 2(3), 145–149 (1974).
- 15Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1974). https://doi.org/10.1016/0020-7225(84)90112-5
10.1016/0020-7225(84)90112-5 Google Scholar
- 16Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A.: Recent developments and future challenges in the application of nonlocal elasticity theory:Nonlocal elasticity approaches. Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham (2019). 261–275. https://doi.org/10.1007/978-3-030-11650-7_12
10.1007/978-3-030-11650-7_12 Google Scholar
- 17Abouelregal, A.E.: A nonlocal fractional two-phase delay thermoelastic model for a solid half-space whose properties change with temperature and affected by hydrostatic pressure. Z. Angew. Math. Mech. 104(8), 827–838, https://doi.org/10.1002/zamm.202400102
10.1002/zamm.202400102 Google Scholar
- 18Shi, X., Ma, Y.: Analysis of the magnetic-thermal response of viscoelastic rotating nanobeams based on nonlocal theory and memory effect. J. Therm' Stresses. 47(10), 1347–1370 (2024). https://doi.org/10.1080/01495739.2024.2395576
- 19Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016). https://doi.org/10.2298/TSCI160111018A
- 20Abouelregal, A.E., Alanazi, R., Sedighi, H.M.: Thermal plane waves in unbounded nonlocal medium exposed to a moving heat source with a nonsingular kernel and higher order time derivatives. Eng. Anal. Bound. Elem. 140, 464–475 (2022). https://doi.org/10.1016/j.enganabound.2022.04.032
- 21Abouelregal, A.E.: Response of thermoelastic cylindrical cavity in a nonlocal infinite medium due to a varying heat source. Waves Random Complex Media 32(4), 1725–1742 (2020). https://doi.org/10.1080/17455030.2020.1834171
10.1080/17455030.2020.1834171 Google Scholar
- 22Narendar, S., Gopalakrishnan, S.: Nonlocal scale effects of ultrasonic wave characteristics of nanorods. Physica E Low Dimens Syst. Nanostruct. 42, 1601–1604 (2010), https://doi.org/10.1016/j.physe.2010.01.002
- 23Kaur, I., Singh, K., Craciun, E.M.: Recent advances in the theory of thermoelasticity and the modified models for the nanobeams: a review. Discov. Mech. Eng. 2(1), 1–19 (2023). https://doi.org/10.1007/s44245-023-00009-4
10.1007/s44245-023-00009-4 Google Scholar
- 24Abouelregal, A.E., Ömer, C., Bekir, A.: A size-dependent non-Fourier heat conduction model for magneto-thermoelastic vibration response of nanosystems. J. Appl. Comput. Mech, 1–14 (2024), https://doi.org/10.22055/jacm.2024.46746.4584
10.22055/jacm.2024.46746.4584 Google Scholar
- 25Abouelregal, A.E., Alsharari, F., Alsaeed, S.S., Aldandani, M., Sedighi, H.M.: A semianalytical approach for thermoelastic wave propagation in infinite solids subject to linear heat supply using two-phase lag theory. Continuum Mech. Thermodyn. 36, 1711–1728 (2024). https://doi.org/10.1007/s00161-024-01324-1
10.1007/s00161-024-01324-1 Google Scholar
- 26Zakria, A., Abouelregal, A.E., Atta, D., Aleselmi, M.: Generalized model of thermoelasticity associated with fractional time-derivative operators and its applications to nonsimple elastic materials. Open Physics. 22(1) (2024), 20240031. https://doi.org/10.1515/phys-2024-0031
10.1515/phys-2024-0031 Google Scholar
- 27Nowacki, W.: Dynamical problems of thermodiffusion in solids. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 55–64 (1974).
- 28Nowacki, W.: Dynamical problems of thermodiffusion in solids II. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 129–135 (1974).
- 29Nowacki, W.: Dynamical problems of thermo diffusion in solid III. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 266–275 (1974).
- 30Abouelregal, A.E.: Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative. Eur. Phys. J. Plus. 135, 1–21 (2020).
- 31Abouelregal, A.E., Elhagary, M.A., Soleiman, A., Khalil, K.M.: Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags. Mech. Based Des. Struct. Mach. 50(3), 1–18 (2020), https://doi.org/10.1080/15397734.2020.1730189
- 32Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 559–577 (1968). https://doi.org/10.1007/BF01594969
10.1007/BF01594969 Google Scholar
- 33Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71(3) (2006), 383–390, https://doi.org/10.1093/imamat/hxh101
- 34Youssef, H.M.: Theory of two-temperature thermoelasticity without energy dissipation. J. Therm. Stresses. 34(2), 138–146 (2011). https://doi.org/10.1080/01495739.2010.511941
- 35Abouelregal, A.E., Moaaz, O., Khalil, K.M., et al. Micropolar thermoelastic plane waves in microscopic materials caused by Hall-current effects in a two-temperature heat conduction model with higher-order time derivatives. Arch. Appl. Mech. 93, 1901-1924 (2023). https://doi.org/10.1007/s00419-023-02362-y
- 36Wang, J.L., Li, H.F.: Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011). https://doi.org/10.1016/j.camwa.2011.04.028
- 37Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.014
- 38Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: A novel magneto-thermoelasticity theory with memory-dependent derivative. J. Electromagn. Waves Appl. 29, 1018–1031 (2015). https://doi.org/10.1080/09205071.2015.1027795
- 39Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Electrothermoelasticity theory with memory-dependent derivative heat transfer. Int. J. Eng. Sci. 99, 22–38 (2016). https://doi.org/10.1016/j.ijengsci.2015.10.011
10.1016/j.ijengsci.2015.10.011 Google Scholar
- 40Said, S.M.: 2D problem of nonlocal rotating thermoelastic half-space with memory-dependent derivative. Multidiscip. Model. Mater. Struct. 18(2), 339–350. https://doi.org/10.1108/MMMS-01-2022-0011
- 41Sur, A.: Elasto-Thermodiffusion in a slim strip revisited with new definition of nonlocal heat conduction. Int. J. Appl. Comput. Math. 10(159) (2024). https://doi.org/10.1007/s40819-024-01775-9
10.1007/s40819?024?01775?9 Google Scholar
- 42Kaur, I., Lata, P., Singh, K.: Study of transversely isotropic nonlocal thermoelastic thin nanobeam resonators with multidual-phase-lag theory. Arch. Appl. Mech. 91, 317–341 (2021). https://doi.org/10.1007/s00419-020-01771-7
- 43Sarkar, N.: Thermoelastic responses of a finite rod due to nonlocal heat conduction. Acta Mech. 231, 947–955 (2020). https://doi.org/10.1007/s00707-019-02583-9
- 44Abouelregal, A.E., Askar, S.S., Marin, M., Badahiould, M.: The theory of thermoelasticity with a memory-dependent dynamic response for a thermopiezoelectric functionally graded rotating rod. Sci. Rep. 13, 9052 (2023). https://doi.org/10.1038/s41598-023-36371-2
- 45Mondal, S.: Memory response in a magneto-thermoelastic rod with moving heat source based on Eringen's nonlocal theory under dual-phase lag heat conduction. Int. J. Comput. Methods. 17(09), 1950072 (2020). https://doi.org/10.1142/S0219876219500725
10.1142/S0219876219500725 Google Scholar
- 46Askar, S.S., Abouelregal, A.E., Marin, M., Foul, A.: Photo-thermoelasticity heat transfer modeling with fractional differential actuators for stimulated nanosemiconductor media. Symmetry 15(656) (2023). https://doi.org/10.3390/sym15030656
- 47El-Dali, A., Othman, M.I.A., Gamal, E.M., Alkhatib, S.: Impact of the eigenvalue approach on the model of Moore-Gibson-Thompson during photoacoustic semiconducting excitation. 1–21 (preprint). https://doi.org/10.21203/rs.3.rs-5300313/v1
10.21203/rs.3.rs?5300313/v1 Google Scholar
- 48Mahdy, A.M.S.: Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo–Fabrizio derivative. Math. Methods Appl. Sci (2023) https://doi.org/10.1002/mma.9038
- 49Nassar, T.E.I., Mahdy, A.M.S., Lotfy, K.: Photoacoustic dynamics in microtemperature semiconductor media with variable thermal conductivity and nonlocal effects. Eur. Phys. J. B. 98, 26 (2025). https://doi.org/10.1140/epjb/s10051-025-00877-7
- 50Raddadi, M.H., Lotfy, Kh, El-Bary, A.A., Mahdy, A.M.S., Elidy, E.S.: A novel model of photoacoustic and thermalelectronic waves in semiconductor material. AIP Advances 15(1) (2025).
- 51Alshehri, H.M., Lotfy, K.: A photo-thermoacoustic-diffusion model for hydro-poroelastic nano-composite semiconductor medium with chemical potential. Physics Fluids, 37(1) (2025). https://doi.org/10.1063/5.0252033
- 52Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956). https://doi.org/10.1063/1.1722351
- 53Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15(5), 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5
- 54Cattaneo, C.: Sur uneForme de I'equation de la Chaleur Eliminant le Paradoxed'une Propagation Instantanee. C. R. Acad. Sci. 247, 431–433 (1958).
- 55Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958).
- 56Alshehri, H.M., Lotfy, K., Raddadi, M.H., El-Bary, A.A.: A nonlocal photoacoustic effect with variable thermal conductivity of semiconductor material subjected to laser heat source. Results Phys. 61(1), 107715 (2024). https://doi.org/10.1016/j.rinp.2024.107715
10.1016/j.rinp.2024.107715 Google Scholar
- 57Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun ACM. 13, 47–49 (1970).
- 58Gaver, D.P.: Observing stochastic processes and approximate transform inversion. Oper Res. 14(3), 444–459 (1966). https://doi.org/10.1287/opre.14.3.444
- 59Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses. 15(2), 253–264 (1992). https://doi.org/10.1080/01495739208946136