Peristaltic rotating motion of couple stress nanofluid affected by Soret and Dufour effects: An application to nanotechnology
Corresponding Author
Anum Tanveer
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, AJK, Pakistan
Correspondence
Anum Tanveer, Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan.
Email: [email protected]
Nayara Radwan, Industrial Management Department, Business Faculty, Abu Dhabi 41009, UAE.
Email: [email protected]
Search for more papers by this authorIram
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, AJK, Pakistan
Search for more papers by this authorSalman Saleem
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
Center for Artificial Intelligence (CAI), King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorCorresponding Author
Nayara Radwan
Industrial Management Department, Faculty of Bussiness, Liwa College, Abu Dhabi, UAE
Mechanical Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
Correspondence
Anum Tanveer, Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan.
Email: [email protected]
Nayara Radwan, Industrial Management Department, Business Faculty, Abu Dhabi 41009, UAE.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Anum Tanveer
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, AJK, Pakistan
Correspondence
Anum Tanveer, Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan.
Email: [email protected]
Nayara Radwan, Industrial Management Department, Business Faculty, Abu Dhabi 41009, UAE.
Email: [email protected]
Search for more papers by this authorIram
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur, AJK, Pakistan
Search for more papers by this authorSalman Saleem
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
Center for Artificial Intelligence (CAI), King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorCorresponding Author
Nayara Radwan
Industrial Management Department, Faculty of Bussiness, Liwa College, Abu Dhabi, UAE
Mechanical Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
Correspondence
Anum Tanveer, Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan.
Email: [email protected]
Nayara Radwan, Industrial Management Department, Business Faculty, Abu Dhabi 41009, UAE.
Email: [email protected]
Search for more papers by this authorAbstract
This study analyzes the effects of thermal radiation in a rotating frame with the peristaltic motion of couple stress nanofluids. The channel rotates at a constant angular speed around the z-axis and is filled with a couple stress fluid. Heat and mass transfer effects, including thermo-diffusion (Dufour) and thermal-diffusion (Soret) effects, are considered along with convective boundary conditions and viscous dissipation. The study aims to understand the behavior of nanofluids under rotation, influenced by thermophoresis and Brownian motion. The governing nonlinear equations are transformed into a dimensionless form under the assumptions of long wavelength and low Reynolds number and are solved numerically using the MATHEMATICA NDSolve function. The results reveal that rotation enhances the primary velocity while reducing the secondary velocity. The Soret and Dufour effects significantly influence concentration distribution, while thermophoresis and Brownian motion exhibit opposite impacts on temperature and concentration. The analysis of isotherms and concentration contours highlights variations in temperature and nanoparticle distribution. These findings provide valuable insights into the interplay of rotation, peristalsis, and nanofluid transport, with applications in biomedical engineering, microfluidic systems, and industrial heat exchangers.
REFERENCES
- 1Zhao, T.H., Khan, M.I., Chu, Y.M.: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Meth. Appl. Sci. 46, 3012–3030 (2023). https://doi.org/10.1002/mma.7310
- 2Asjad, M.I., Sarwar, N., Hafeez, M.B., Sumelka, W., Muhammad, T.: Advancement of non-Newtonian fluid with hybrid nanoparticles in a convective channel and Prabhakar's fractional derivative—analytical solution. Fracta. Fracti. 5, 99 (2021). https://doi.org/10.3390/fractalfract5030099
- 3Arafa, A.A., Rashed, Z.Z., Ahmed, S.E.: Radiative flow of non-Newtonian nanofluids within inclined porous enclosures with time fractional derivative. Scien. Rep. 11, 5338 (2021). https://doi.org/10.1038/s41598-021-84848-9
- 4Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A., Ganji, D.D.: Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels. Procee. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. 236, 1604–1615 (2022). https://doi.org/10.1177/09544089211069211
- 5Xiong, P.Y., Nazeer, M., Hussain, F., Khan, M.I., Saleem, A., Qayyum, S., Chu, Y.M.: Two-phase flow of couple stress fluid thermally effected slip boundary conditions: Numerical analysis with variable liquids properties. Alex. Eng. J. 61, 3821–3830 (2022). https://doi.org/10.1016/j.aej.2021.09.012
- 6Gangadhar, K., Manasa Seshakumari, P., Venkata Subba Rao, M., Chamkha, A.J.: Biconvective transport of magnetized couple stress fluid over a radiative paraboloid of revolution. Procee. Inst. Mech. Eng. Part E: J. Proc. Mech. Eng. 236, 1661–1670 (2022). https://doi.org/10.1177/09544089211072715
- 7Kardoudi, M., Nabhani, M., El Khlifi, M.: Non-Newtonian couple stress lubrication of MHD elastic journal bearings. Indus. Lubri. Trib. 74, 753–762 (2022). https://doi.org/10.1108/ILT-11-2021-0456
- 8Shehzad, N., Zeeshan, A., Shakeel, M., Ellahi, R., Sait, S.M.: Effects of magnetohydrodynamics flow on multilayer coatings of Newtonian and non-Newtonian fluids through porous inclined rotating channel. Coating 12, 430 (2022). https://doi.org/10.3390/coatings12040430
- 9Al Qahtani, S.A., Ahmad, L., Khan, I.U., Pathak, P.: Local non-similar solution of radiative and magnetized flow of non-Newtonian liquid over a gravitationally affected porous surface with Newtonian heating effect. J. Eng Resea. 11, 18–27 (2023). https://doi.org/10.1016/j.jer.2023.100090
- 10Riaz, A., Alolaiyan, H., Razaq, A.: Convective heat transfer and magnetohydrodynamics across a peristaltic channel coated with nonlinear nanofluid. Coating 9, 816 (2019). https://doi.org/10.3390/coatings9120816
- 11Alolaiyan, H., Riaz, A., Razaq, A., Saleem, N., Zeeshan, A., Bhatti, M.M.: Effects of double diffusion convection on third grade nanofluid through a curved compliant peristaltic channel. Coating 10, 154 (2020). https://doi.org/10.3390/coatings10020154
- 12Nisar, Z., Hayat, T., Alsaedi, A., Ahmad, B.: Mathematical modeling for peristalsis of couple stress nanofluid. Math. Meth. Appl. Sci. 46, 11683–11701 (2023). https://doi.org/10.1002/mma.8641
- 13Mahendra, D.L., Viharika, J.U., Ramanjini, V., Makinde, O.D., Vishwanatha, U.B.: Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring-Powell nanofluid through an asymmetric channel. J. Ind. Chem. Soci. 100, 100935 (2023). https://doi.org/10.1016/j.jics.2023.100935
- 14Nisar, Z., Hayat, T., Alsaedi, A., Ahmad, B.: Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid. Int. Comm. Heat Mass Trans. 16, 104655 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104655
10.1016/j.icheatmasstransfer.2020.104655 Google Scholar
- 15Akbar, Y., Abbasi, F.M.: Irreversibility analysis of nanofluid flow induced by peristaltic waves in the presence of concentration-dependent viscosity. Heat Trans. 50, 5467–5484 (2021). https://doi.org/10.1002/htj.22168
10.1002/htj.22133 Google Scholar
- 16Hayat, T., Ahmed, B., Abbasi, F.M., Alsaedi, A.: Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J. Ther. Anal. Calori. 137, 1359–1367 (2019). https://doi.org/10.1007/s10973-018-7949-x
- 17Saleem, A., Akhtar, S., Alharbi, F.M., Nadeem, S., Ghalambaz, M., Issakhov, A.: Physical aspects of peristaltic flow of hybrid nanofluid inside a curved tube having ciliated wall. Resul. Phys. 19, 103431 (2020). https://doi.org/10.1016/j.rinp.2020.103431
- 18Mahmood, Z., Khan, U., Saleem, S., Rafique, K., Eldin, S.M.: Numerical analysis of ternary hybrid nanofluid flow over a stagnation region of stretching/shrinking curved surface with suction and Lorentz force. J. Mag. Magn. Mat. 573, 170490 (2023). https://doi.org/10.1016/j.jmmm.2023.170490
- 19Sardar, H., Ahmad, L., Khan, M.: Scrutinization of 2D and mixed convection flow of generalized Newtonian fluid with nanoparticles and magnetic field. Canad. J. Phys. 98(1), 65–75 (2020). https://doi.org/10.1139/cjp-2019-0114
- 20Ahmad, L., Khan, M.: Rebuttal to comments on Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluid over a porous moving curved surface. Int. J. Hydrogen Ener. 45(51), 28021–28022 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.138
- 21Das, S., Barman, B., Jana, R.N., Makinde, O.D.: Hall and ion slip currents’ impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves. BioNanoSci. 11(3), 770–792 (2021). https://doi.org/10.1007/s12668-021-00846-z
- 22Al-Khaled, K., Khan, M.I., Khan, S.U., Malik, M.Y., Qayyum, S.: Non-uniform heat source/sink applications for the radiative flow of Brinkman micropolar nanofluid with microorganisms. Comput. Theor. Chem. 1203, 113330 (2021). https://doi.org/10.1016/j.comptc.2021.113330
- 23Zhou, S.S., Ramzan, M., Howari, F., Kadry, S., Chu, Y.M., Malik, M.Y.: 3D Bio-convective nanofluid Bödewadt slip flow comprising gyrotactic microorganisms over a stretched stationary disk with modified Fourier law. Physica Scrip. 96(7), 075702 (2021). https://doi.org/10.1088/1402-4896/ac029c
- 24Ahmed, B., Hayat, T., Alsaedi, A.: Mixed convection peristalsis of hybrid nanomaterial flow in thermally active symmetric channel. Case Stud. Ther. Eng. 27, 101272 (2021). https://doi.org/10.1016/j.csite.2021.101272
- 25Ullah, I., Ullah, R., Alqarni, M.S., Xia, W.F., Muhammad, T.: Combined heat source and zero mass flux features on magnetized nanofluid flow by radial disk with the applications of Coriolis force and activation energy. Inter. Comm. Heat Mass Trans. 126, 105416 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105416
- 26Ullah, I., Alghamdi, M., Xia, W.F., Shah, S.I., Khan, H.: Activation energy effect on the magnetized-nanofluid flow in a rotating system considering the exponential heat source. Inter. Comm. Heat Mass Trans. 128, 105578 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105578
- 27Abdal, S., Siddique, I., Afzal, S., Chu, Y.M., Ahmadian, A., Salahshour, S.: On development of heat transportation through bioconvection of Maxwell nanofluid flow due to an extendable sheet with radiative heat flux and prescribed surface temperature and prescribed heat flux conditions. Math. Meth. Appl. Sci. 46(10), 11355–11372 (2023). https://doi.org/10.1002/mma.8815
- 28Song, Y.Q., Shah, F., Khan, S.A., Khan, M.I., Malik, M.Y., Sun, T.C.: Irreversibility analysis for axisymmetric nanomaterial flow towards a stretched surface. Chaos, Solito. Fractal. 150, 111145 (2021). https://doi.org/10.1016/j.chaos.2021.111145
- 29Ahmad, L., Latif, M., Eldin, S.M.: Chemically reactive and thin film flow analysis of cross nano-liquid over a moving surface. Arab. J. Chem. 16(11), 105264 (2023). https://doi.org/10.1016/j.arabjc.2023.105264
- 30Alqahtani, A.M., Ahmad, L., Alabdullkarem, E.A., Ullah, I.: Chemically reactive flow of non-Newtonian nano-liquid over different magnetized and slippery inclined surfaces. J. Appl. Math. Mech. 104, e202300976 (2024). https://doi.org/10.1002/zamm.202300976
10.1002/zamm.202300976 Google Scholar
- 31Ibrahim, M.G.: Numerical simulation to the activation energy study on blood flow of seminal nanofluid with mixed convection effects. Comput. Meth. Biomecha Biomedi Eng. 26(3), 315–325 (2023). https://doi.org/10.1080/10255842.2023.2167176
- 32Irfan, M., Muhammad, T.: Numerical simulation of bio-convection radiative heat transport flow of MHD Carreau nanofluid. J. Appl. Math. Mech. 104, e202300813 (2024). https://doi.org/10.1002/zamm.202300813
10.1002/zamm.202300813 Google Scholar
- 33Sarvar-Ardeh, S., Rafee, R., Rashidi, S.: Heat transfer and entropy generation of hybrid nanofluid inside the convergent double-layer tapered microchannel. Math. Meth. Appl. Sci. 46(10), 11618–11641 (2023). https://doi.org/10.1002/mma.8820
- 34Ullah, A., Yao, H., Ikramullah, Othman, N.A., Sherif, E.S.M.: A neuro-computational study of viscous dissipation and nonlinear Arrhenius chemical kinetics during the hypodicarbonous acid-based hybrid nanofluid flow past a Riga plate. J. Appl. Math. Mech. 104(9), e202400208 (2024). https://doi.org/10.1002/zamm.202400208
10.1002/zamm.202400208 Google Scholar
- 35Sulochana, C., Kumar, T.P.: Enhancing heat transfer with 50%–50% water-ethylene glycol hybrid nanofluid flow over a nonlinear stretching sheet. ZAMM-J. Appl. Math. Mech. 103(12), e202200225 (2023). https://doi.org/10.1002/zamm.202200225
10.1002/zamm.202200225 Google Scholar
- 36Patel, V.K., Pandya, J.U., Patel, M.R.: Exploring the effects of TiO₂–Ag/water hybrid nanofluid on MHD flow over a permeable exponentially stretching–shrinking sheet with radiative heat transfer and slip conditions. J. Appl. Math. Mech. 104, e202200351 (2024). https://doi.org/10.1002/zamm.202200351
10.1002/zamm.202200351 Google Scholar
- 37Maranna, T., Mahabaleshwar, U.S., Ravichandra Nayakar, S.N., Sarris, I., Souayeh, B.: An influence of radiation and magnetohydrodynamic flow of hybrid nanofluid past a stretching/shrinking sheet with mass transpiration. J. Appl. Math. Mech. 103(12), e202300140 (2023). https://doi.org/10.1002/zamm.202300140
10.1002/zamm.202300140 Google Scholar
- 38Zehra, I., Nadeem, S., Amjad, M., Abbas, N., Saleem, S., Issakhov, A.: Casson nanoliquid flow with Cattaneo-Christov flux analysis over a curved stretching/shrinking channel. Case Stud. Ther. Eng. 27, 101146 (2021). https://doi.org/10.1016/j.csite.2021.101146
- 39Ahmad, L., Latif, M., Eldin, S.M.: Chemically reactive and thin film flow analysis of cross nano-liquid over a moving surface. Arab. J. Chem. 16(11), 105264 (2023). https://doi.org/10.1016/j.arabjc.2023.105264
- 40Abbasi, F.M., Shehzad, S.A.: Magnetized peristaltic transportation of boron-nitride and ethylene-glycol nanofluid through a curved channel. Chem. Phys. Lett. 803, 139860 (2022). https://doi.org/10.1016/j.cplett.2022.139860
- 41Ullah, I.: Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles. Inter. Comm. Heat Mass Trans. 132, 105920 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.105920
- 42Hussain, S.M., Jamshed, W., Safdar, R., Shahzad, F., Mohd Nasir, N.A.A., Ullah, I.: Chemical reaction and thermal characteristics of Maxwell nanofluid flow-through solar collector as a potential solar energy cooling application: A modified Buongiorno's model. Energy Environ. 34(5), 1409–1432 (2023). https://doi.org/10.1177/0958305x231160995
- 43Ahmad, L., Latif, M., Eldin, S.M.: Chemically reactive and thin film flow analysis of cross nano-liquid over a moving surface. Arab. J. Chem. 16(11), 105264 (2023). https://doi.org/10.1016/j.arabjc.2023.105264
- 44Alharbi, A.F., Alhawiti, M., Usman, M., Ullah, I., Alam, M.M., Bilal, M.: Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation. Inter. J. Heat Fluid Flow. 107, 109360 (2024). https://doi.org/10.1016/j.ijheatfluidflow.2024.109360
- 45Alqahtani, A.M., Ahmad, L., Alabdullkarem, E.A., Ullah, I.: Chemically reactive flow of non-Newtonian nano-liquid over different magnetized and slippery inclined surfaces. J. Appl. Math. Mech. 104(8), e202300976 (2024). https://doi.org/10.1002/zamm.202300976
10.1002/zamm.202300976 Google Scholar
- 46Ullah, I.: Heat transfer enhancement in Marangoni convection and nonlinear radiative flow of gasoline oil conveying Boehmite alumina and aluminum alloy nanoparticles. Inter. Comm. Heat Mass Trans. 132, 105920 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.105920
- 47Javed, S., Ahmad, L.: Steady mathematical modeling and numerical analysis of Cross magneto-nanofluid flow over a wavy surface with heat and mass transfer features. J. Appl. Math. Mech. 105(2), e202400749 (2025). https://doi.org/10.1002/zamm.202400749
10.1002/zamm.202400749 Google Scholar
- 48Vafai, K., Khan, A.A., Fatima, G., Sait, S.M., Ellahi, R.: Dufour, Soret and radiation effects with magnetic dipole on Powell-Eyring fluid flow over a stretching sheet. Inter. J. Num. Meth. Heat Fluid Flow. 31(4), 1085–1103 (2021). https://doi.org/10.1108/HFF-06-2020-0343
- 49Sharma, R., Hussain, S.M., Mishra, G.: Soret and Dufour effects on viscoelastic radiative and heat absorbing nanofluid driven by a stretched sheet with inclined magnetic field. Def. Diffu. Forum. 388, 223–245 (2018). https://doi.org/10.4028/www.scientific.net/DDF.388.223
10.4028/www.scientific.net/DDF.388.223 Google Scholar
- 50Khan, A.A., Naeem, S., Ellahi, R., Sait, S.M., Vafai, K.: Dufour and Soret effects on Darcy-Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity. Inter. J. Num. Meth. Heat Fluid Flow. 30(9), 4331–4347 (2020). https://doi.org/10.1108/HFF-01-2020-0038
- 51Hayat, T., Zahir, H., Tanveer, A., Alsaedi, A.: Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel. Resul. Phys. 8, 1291–1300 (2018). https://doi.org/10.1016/j.rinp.2018.01.058
- 52Devi, G.L., Niranjan, H.: Influence of Soret and Dufour, activation energy on MHD chemically reacting nanofluid flow past a vertical surface with radiation. Lat. Amer. Appl. Res. 52(3), 239–246 (2022). https://doi.org/10.52292/j.laar.2022.926
- 53Meng, Y., Li, B.: On viscoelastic fluid in a vertical porous media channel with Soret and Dufour effects. Appl. Math. Lett. 124, 107656 (2022). https://doi.org/10.1016/j.aml.2021.107656
- 54Seid, E., Haile, E., Walelign, T.: Multiple slip, Soret and Dufour effects in fluid flow near a vertical stretching sheet in the presence of magnetic nanoparticles. Inter. J. Ther. 13, 100136 (2022). https://doi.org/10.1016/j.ijft.2022.100136
- 55Mabood, F., Abbasi, A., Farooq, W., Hussain, Z.: Thermophoresis effect on peristaltic flow of viscous nanofluid in rotating frame. J. Therm. Anal. Calorim. 143, 2621–2635 (2021). https://doi.org/10.1007/s10973-020-10348-z
- 56Hayat, T., Zahir, H., Alsaedi, A., Ahmad, B.: Peristaltic flow of rotating couple stress fluid in a non-uniform channel. Resul. Phys. 7, 2865–2873 (2017). https://doi.org/10.1016/j.rinp.2017.08.003
- 57Siva, T., Kumbhakar, B., Jangili, S., Mondal, P.K.: Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: An analytical solution. Phys. Fluids 32(10), 102013 (2020). https://doi.org/10.1063/5.0023747
- 58Krishna, M.V., Chamkha, A.J.: MHD peristaltic rotating flow of a couple stress fluid through a porous medium with wall and slip effects. Spec. Top. Rev. Porous Media: Inter. J. 10(3), 245–258 (2019). https://doi.10.1615/SpecialTopicsRevPorousMedia.2019028609
10.1615/SpecialTopicsRevPorousMedia.2019028609 Google Scholar
- 59Aziz, A., Aziz, A., Ullah, I., Shah, S.I., Mahtab Alam, M.: Numerical simulation of 3D swirling flow of Maxwell nanomaterial with a binary chemical mechanism and nonlinear thermal radiation effects. Waves Random Complex Media 1–19 (2022). https://doi.org/10.1080/17455030.2022.2066216
- 60Aziz, A., Aziz, A., Ullah, I., Subhani, M.: Numerical simulation for 3D rotating flow of nanofluid with entropy generation. Inter. J. Model. Simul. 43(3), 101–122 (2023). https://doi.org/10.1080/02286203.2022.2051993
10.1080/02286203.2022.2051993 Google Scholar
- 61Sharma, R.P., Badak, K., Khan, U., Ishak, A., Sherif, E.S.M., Wróblewski, P.: Dynamics of variable thermal conductivity and multiple slip conditions in a Carreau hybrid nanofluid flow past a stretching sheet. J. Appl. Math. Mech. e202400388 (2024). https://doi.org/10.1002/zamm.202400388
10.1002/zamm.202400388 Google Scholar