Influence of electroosmosis, thermal radiation, magnetic field, and activation energy on the peristaltic motion of Hyperbolic tangent nanofluid in an asymmetric channel
P. Tamizharasi
Department of Mathematics, Easwari Engineering College, Chennai, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
A. Magesh
Department of Mathematics, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India
Correspondence
A. Magesh, Department of Mathematics, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorP. Praveen Kumar
Department of Mathematics, Sathya College of Arts and Science, Kilvisharam, Tamil Nadu, India
Search for more papers by this authorP. Tamizharasi
Department of Mathematics, Easwari Engineering College, Chennai, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
A. Magesh
Department of Mathematics, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India
Correspondence
A. Magesh, Department of Mathematics, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India.
Email: [email protected]
Search for more papers by this authorP. Praveen Kumar
Department of Mathematics, Sathya College of Arts and Science, Kilvisharam, Tamil Nadu, India
Search for more papers by this authorAbstract
This paper aims to provide insight into the response of a non-Newtonian nano liquid driven by peristaltic motion in an asymmetric conduit. Additionally, activation energy and thermal radiation are considered. The investigation of activation energy and thermal radiation as energy transfer is crucial and intriguing for scientists due to their implications in cancer therapy. As a result, heat kills cancer cells and shrinks tumours, transforming hyperthermia therapy into a state-of-the-art cancer remedy. The momentum, temperature, and concentration equations of Hyperbolic tangent nanofluids were formulated. The Partial differential equations are reduced to Ordinary differential equations using long wavelength and small Reynolds number approximation. The resulting equations were solved by the numerical computations by the NDSolve command using Mathematica software. The impact of important fluid parameters was discussed in detail through the graphs. The current investigation's findings demonstrate that a drop in temperature and a rise in concentration are the results of raising the temperature ratio parameter. The investigation further displays how expanding the dimensionless reaction rate significantly raises the reactant's kinetic energy, enabling additional particle collisions and increasing the temperature field.
REFERENCES
- 1Bestman, A.R.: Radiative heat transfer to flow of a combustible mixture in a vertical pipe. Int. J. Energy Res. 15(3), 179–184 (1991). https://doi.org/10.1002/er.4440150305
- 2Makinde, O.D., Olanrewaju, P.O., Charles, W.M.: Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afrika Matematika 22(1), 65–78 (2011). https://doi.org/10.1007/s13370-011-0008-z
10.1007/s13370-011-0008-z Google Scholar
- 3Alsaadi, F.E., Ullah, I., Hayat, T., Alsaadi, F.E.: Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by arrhenius activation energy and thermal radiation. J. Therm. Anal. Calorim. 140(2), 799–809 (2019). https://doi.org/10.1007/s10973-019-08648-0
- 4Magesh, A., Tamizharasi, P., Makinde, O.D., Srinivas, S.: Analysis of activation energy on the Johnson–segalman nanofluid through an asymmetric microchannel: numerical study. Int. J. Mod. Phys. B 39(2), (2024). https://doi.org/10.1142/s0217979225500195
10.1142/S0217979225500195 Google Scholar
- 5Saleem, N., Munawar, S., Tripathi, D.: Entropy analysis in ciliary transport of radiated hybrid nanofluid in presence of electromagnetohydrodynamics and activation energy. Case Stud. Therm. Eng. 28, 101665 (2021). https://doi.org/10.1016/j.csite.2021.101665
- 6Magesh, A., Pushparaj, V., Srinivas, S., Tamizharasi, P.: Numerical investigations of activation energy on the peristaltic transport of Carreau nanofluid through a curved asymmetric channel. Phys. Fluids 35(10) (2023). https://doi.org/10.1063/5.0167829
- 7Rashidi, M., Vishnu Ganesh, N., Abdul Hakeem, A., Ganga, B.: Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq. 198, 234–238 (2014). https://doi.org/10.1016/j.molliq.2014.06.037
- 8Tlili, I., Hamadneh, N.N., Khan, W.A., Atawneh, S.: Thermodynamic analysis of MHD couette–poiseuille flow of water-based nanofluids in a rotating channel with radiation and hall effects. J. Therm. Anal. Calorim. 132(3), 1899–1912 (2018). https://doi.org/10.1007/s10973-018-7066-5
- 9Akram, J., Akbar, N.S., Tripathi, D.: Thermal analysis on MHD flow of ethylene glycol-based BNNTs nanofluids via peristaltically induced electroosmotic pumping in a curved microchannel. Arab. J. Sci. Eng. 47(6), 7487–7503 (2021). https://doi.org/10.1007/s13369-021-06173-7
- 10Bilal, S., Akram, S., Athar, M., Saeed, K., Razia, A., Riaz, A.: Numerical analysis on theoretical model of magneto-Williamson nanofluid in relation to viscous dissipation, double-diffusion convection, thermal radiation and multiple slip boundaries. Pramana 98(3) (2024). https://doi.org/10.1007/s12043-024-02798-z
- 11Yasmin, H., Akram, S., Athar, M., Saeed, K., Razia, A., Al-Juaid, J.G.: Impact of multiple slips on thermally radiative peristaltic transport of Sisko nanofluid with double diffusion convection, viscous dissipation, and induced magnetic field. Nanotechnol. Rev. 13(1) (2024). https://doi.org/10.1515/ntrev-2024-0004
- 12Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: D.A. Siginer, H.P. Wang (eds.) Developments and Applications of Non-Newtonian Flows, vol. 231, pp. 99–105. ASME FED, New York (1995)
- 13Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2005). https://doi.org/10.1115/1.2150834
- 14Reddy, M.G., Tripathi, D., Bég, O.A., Tiwari, A.K.: Numerical modelling of Electromagnetohydrodynamic (EMHD) radiative transport of hybrid Ti6Al4V-AA7075/H2O Nanofluids from a Riga plate sensor surface. Adv. Sustain. Sci. Technol. 225–248 (2023). https://doi.org/10.1007/978-981-99-6924-1_12
10.1007/978-981-99-6924-1_12 Google Scholar
- 15Tamizharasi, P., Vijayaragavan, R., Arjunan, M.: Electro-osmotic driven flow of Eyring Powell nanofluid in an asymmetric channel. Math. Methods Appl. Sci. 46(12), 13540–13557 (2023). https://doi.org/10.1002/mma.9270
10.1002/mma.9270 Google Scholar
- 16Riaz, A., Shehzadi, M., Akram, S., Alhamzi, G., Mahmoud, E.E.: A peristaltic motion for pressure driven flow of Casson nanoliquid along with gyrotactic microorganisms in an entropic porous channel: a numerical study. Mater. Today Commun. 40, 109971 (2024). https://doi.org/10.1016/j.mtcomm.2024.109971
- 17Kumar, P.P., Balakrishnan, S., Magesh, A.: Effect of heat and mass transfer on the MHD Al2O3/H2O and Al2O3/C2H6O2 nanoliquid through an asymmetric vertical channel. Pramana 98(3) (2024). https://doi.org/10.1007/s12043-024-02814-2
- 18Latham, T.W.: Fluid Motion in a Peristaltic Pump, Thesis MS. MIT, Cambridge, MA (1966)
- 19Cueva, C., Gil-Sánchez, I., Tamargo, A., Miralles, B., Crespo, J., Bartolomé, B., Moreno-Arribas, M.V.: Gastrointestinal digestion of food-use silver nanoparticles in the dynamic simulator of the gastrointestinal tract (simgi®). Impact on human gut microbiota. Food Chem. Toxicol. 132, 110657 (2019). https://doi.org/10.1016/j.fct.2019.110657
- 20Akbar, N.S., Tripathi, D., Beg, O.A.: Modeling nanoparticle geometry effects on peristaltic pumping of medical magnetohydrodynamic nanofluids with heat transfer. J. Mech. Med. Biol. 16(06), 1650088 (2016). https://doi.org/10.1142/s0219519416500883
10.1142/S0219519416500883 Google Scholar
- 21Khan, Y., Akram, S., Athar, M., Saeed, K., Razia, A., Alameer, A.: Mechanism of thermally radiative Prandtl nanofluids and double-diffusive convection in tapered channel on peristaltic flow with viscous dissipation and induced magnetic field. Comput. Model. Eng. Sci. 138(2), 1501–1520 (2024). https://doi.org/10.32604/cmes.2023.029878
- 22Saeed, K., Akram, S., Ahmad, A., Athar, M., Razia, A., Muhammad, T.: Impact of slip boundaries on double diffusivity convection in an asymmetric channel with magneto-tangent hyperbolic nanofluid with peristaltic flow. J. Appl. Math. Mech. 103(1), e202100338 (2022). https://doi.org/10.1002/zamm.202100338
10.1002/zamm.202100338 Google Scholar
- 23Elogail, M.: Peristaltic flow of a hyperbolic tangent fluid with variable parameters. Results Eng. 17, 100955 (2023). https://doi.org/10.1016/j.rineng.2023.100955
- 24Bowen, W., Clark, R.A.: Electro-osmosis at microporous membranes and the determination of Zeta-potential. J. Colloid Interface Sci. 97(2), 401–409 (1984). https://doi.org/10.1016/0021-9797(84)90311-4
- 25Sadr, R., Yoda, M., Zheng, Z., Conlisk, A.T.: An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357–367 (2004). https://doi.org/10.1017/s0022112004008626
- 26Tripathi, D., Jhorar, R., Anwar Bég, O., Shaw, S.: Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel: mathematical model. Meccanica 53(8), 2079–2090 (2017). https://doi.org/10.1007/s11012-017-0795-x
10.1007/s11012-017-0795-x Google Scholar
- 27Noreen, S., Fatima, K., Tripathi, D.: Electroosmosis-driven heat transfer in Jeffrey fluid flow through tapered porous channel. Numer. Heat Transf. A 85(15), 2473–2497 (2023). https://doi.org/10.1080/10407782.2023.2225738
- 28Vijayaragavan, R., Tamizharasi, P., Magesh, A.: Peristaltic motion of non-Newtonian fluid under the influence of inclined magnetic field, porous medium and chemical reaction. Sci. Iran. 31(8), 632-645 (2024). https://doi.org/10.24200/SCI.2024.59484.6270
10.24200/SCI.2024.59484.6270 Google Scholar
- 29Khan, Z.H., Akbar, N.S., Akram, J., Hamid, M., Wei, Y.: Electroosmotically augmented peristaltic flow of carbon nanotubes based nanofluid through asymmetrical channel. J. Appl. Math. Mech. 103(8), e202100354 (2023). https://doi.org/10.1002/zamm.202100354
10.1002/zamm.202100354 Google Scholar
- 30Akram, S., Nadeem, S.: Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of APT (tending) magnetic field. J. Magn. Magn. Mater. 358–359, 183–191 (2014). https://doi.org/10.1016/j.jmmm.2014.01.052
- 31Mustafa, M., Hina, S., Hayat, T., Alsaedi, A.: Slip effects on the peristaltic motion of Nanofluid in a channel with wall properties. J. Heat Transf. 135(4), 041701 (2013). https://doi.org/10.1115/1.4023038
- 32Vaidya, H., Tripathi, D., Mebarek-Oudina, F., Rajashekhar, C., Baskonus, H.M., Prasad, K., Shivaleela: Scrutiny of MHD impact on Carreau Yasuda (CY) fluid flow over a heated wall of the uniform micro-channel. Chin. J. Phys. 87, 766–781 (2024). https://doi.org/10.1016/j.cjph.2023.12.015
- 33Vaidya, H., Prasad, K., Gudekote, M., Tripathi, D., Choudhari, R., Hanumantha: A comprehensive analysis of magnetized non-newtonian nanofluids ' peristaltic mechanism for optimized fluid flow and heat transfer. Case Stud. Therm. Eng. 61, 104929 (2024). https://doi.org/10.1016/j.csite.2024.104929
- 34Zeeshan, A., Riaz, A., Javaid, A., Nawaz, T., Akram, S.: Effects of tapering and electro-osmosis on copper-suspended nanofluid through a composite stenosed artery with permeable walls: exact solutions. Braz. J. Phys. 54, 195 (2024). https://doi.org/10.1007/s13538-024-01576-x
- 35Akram, S., Athar, M., Saeed, K., Razia, A., Muhammad, T., Alghamdi, H.A.: Mechanism of double-diffusive convection on peristaltic transport of thermally radiative Williamson nanomaterials with slip boundaries and induced magnetic Field: a bio-nanoengineering model. Nanomaterials 13(5), 941 (2023). https://doi.org/10.3390/nano13050941
- 36Magesh, A., Tamizharasi, P., Kamalakkannan, J.: Analysis of Bejan number and entropy generation of non-Newtonian nanofluid through an asymmetric microchannel. Numer. Heat Transf. A 1–17 (2023). https://doi.org/10.1080/10407782.2023.2240507
- 37Saeed, K., Akram, S., Ahmad, A.: Outcomes of partial slip on double-diffusive convection on peristaltic waves of Johnson–Segalmann nanofluids under the impact of inclined magnetic Field. Arab. J. Sci. Eng. 48(12), 15865–15881 (2023). https://doi.org/10.1007/s13369-023-07706-y
10.1007/s13369-023-07706-y Google Scholar
- 38Kamalakkannan, J., Dhanapal, C., Kothandapani, M., Magesh, A.: Peristaltic transport of non-newtonian nanofluid through an asymmetric microchannel with electroosmosis and thermal radiation effects. Indian J. Phys. 97(9), 2735–2744 (2023). https://doi.org/10.1007/s12648-023-02636-9
- 39Akram, J., Akbar, N.S., Tripathi, D.: Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid. J. Comput. Sci. 62, 101696 (2022). https://doi.org/10.1016/j.jocs.2022.101696