Therapeutic ketosis for mild traumatic brain injury
Corresponding Author
James Emery Joseph Crownover
Department of Orthopedic Surgery, Medical College of Georgia, Augusta, Georgia
Correspondence
James Emery Joseph Crownover, Augusta University, 1220 West Wheeler Parkway, Augusta, 30909 GA.
Email: [email protected]
Search for more papers by this authorAngelia Maleah Holland
Nutrition, Exercise, and Stress Laboratory, Department of Kinesiology, Augusta University, Augusta, Georgia
Search for more papers by this authorCorresponding Author
James Emery Joseph Crownover
Department of Orthopedic Surgery, Medical College of Georgia, Augusta, Georgia
Correspondence
James Emery Joseph Crownover, Augusta University, 1220 West Wheeler Parkway, Augusta, 30909 GA.
Email: [email protected]
Search for more papers by this authorAngelia Maleah Holland
Nutrition, Exercise, and Stress Laboratory, Department of Kinesiology, Augusta University, Augusta, Georgia
Search for more papers by this authorAbstract
Traumatic brain injuries (TBIs) are common in the United States, especially in the athlete and pediatric populations. Treatment options to expedite the recovery process are limited. The immediate disruption of cellular metabolism in the brain contributes to the pathophysiological cascade that occurs after a TBI. Recent studies show that providing ketone bodies via supplementation, a very-low-carbohydrate diet, or fasting improves cellular metabolism and reduces the pathophysiological features of a TBI. The current review presents the damaging physiological processes that occur after a mild TBI and illustrates the potential therapeutic nature of ketosis as it relates to each occurrence including ionic imbalance, mitochondrial dysfunction, metabolic deficiencies, oxidative stress, cerebral blood flow, and neuroinflammation.
CONFLICTS OF INTEREST
No conflicts of interest are declared by the authors.
REFERENCES
- 1Rose SC, Weber KD, Collen JB, Heyer GL. The Diagnosis and Management of Concussion in Children and Adolescents. Pediatr Neurol. 2015; 53(2): 108–118.
- 2Langlois JA, Rutland-Brown W, Wald MM. The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview. J Head Trauma Rehabil. 2006; 21(5): 375-378.
- 3Meehan III WP, Mannix R. Pediatric Concussions in United States Emergency Departments in the Years 2002 to 2006. The Journal of Pediatrics. 2002; 157(6): 889-893.
- 4Brukner P, Karim K. Brukner & Khan's Clinical Sports Medicine, 4th edn. Sydney, NSW: Australia McGraw Hill Education; 2013.
- 5Meehan WP. Medical Therapies for Concussion. Clin Sports Med. 2011; 30(1): 115–ix.
- 6Leddy JJ, Hinds AL, Miecznikowski J, et al. Safety and prognostic utility of provocative exercise testing in acutely concussed adolescents: a randomized trial. Clin J Sport Med. 2018; 28(1): 13-20.
- 7Leddy JJ, Willer B. Use of Graded Exercise Testing in Concussion and Return-to-Activity Management. Curr Sports Med Rep. 2013; 12(6): 370-376.
- 8Liu Y-C, Wang H-S. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and A comparison with other ketogenic diets. Biomedical journal. 2013; 36(1): 9-15.
- 9Vining EG, Freeman JM, Ballaban-Gil K, et al. A multicenter study of the efficacy of the ketogenic diet. Arch Neurol. 1998; 55(11): 1433-1437.
- 10Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM. The Efficacy of the Ketogenic Diet—1998: A Prospective Evaluation of Intervention in 150 Children. Pediatrics. 1998; 102(6): 1358-1363
- 11Hemingway C, Freeman JM, Pillas DJ, Pyzik PL. The ketogenic diet: A 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics. 2001; 108(4): 898–905.
- 12Lefevre F, Aronson N. Ketogenic diet for the treatment of refractory epilepsy in children: a systematic review of efficacy. Pediatrics. 2000; 105(4): e46–e46
- 13Keene D. A Systematic Review of the Use of the Ketogenic Diet in Childhood Epilepsy. Pediatr Neurol. 2006; 35(1): 1–5.
- 14Henderson CB, Filloux FM, Alder SC, Lyon JL, Caplin DA. Efficacy of the Ketogenic Diet as a Treatment Option for Epilepsy: Meta-analysis. J Child Neurol. 2006; 21(3): 193-198.
- 15Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008; 7(6): 500–506.
- 16Cheng B, Yang X, An L, Gao B, Liu X, Liu S. Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson's disease. Brain Res. 2009; 1286: 25-31.
- 17Reger MA, Henderson ST, Hale C, et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004; 25(3): 311-314.
- 18Studzinski CM, MacKay WA, Beckett TL, et al. Induction of ketosis may improve mitochondrial function and decrease steady-state amyloid-β precursor protein (APP) levels in the aged dog. Brain Res. 2008; 1226: 209-217.
- 19Tieu K, Perier C, Caspersen C, et al. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest. 2003; 112(6): 892-901.
- 20Torosyan N, Sethanandha C, Grill JD, et al. Changes in regional cerebral blood flow associated with a 45 day course of the ketogenic agent, caprylidene, in patients with mild to moderate Alzheimer's disease: Results of a randomized, double-blinded, pilot study. Exp Gerontol. 2018; 111: 118-121.
- 21Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutr Metab (Lond). 2005; 2: 28-28.
- 22VanItallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB. Treatment of Parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology. 2005; 64(4): 728-730.
- 23Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF. Ketone Bodies, Potential Therapeutic Uses. IUBMB Life. 2001; 51(4): 241-247.
- 24Yamanashi T, Iwata M, Kamiya N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep. 2017; 7: 7677.
- 25Weinstein G, Maillard P, Himali JJ, et al. Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology. 2015; 84(23): 2329-2337.
- 26Yaffe K, Falvey C, Hamilton N, et al. Diabetes, glucose control and 9 year cognitive decline among non-demented older adults. Arch Neurol. 2012; 69(9): 1170-1175.
- 27Kerti L, Witte AV, Winkler A, Grittner U, Rujescu D, Flöel A. Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology. 2013; 81(20): 1746-1752.
- 28Francis HM, Stevenson RJ. Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci. 2011; 125(6): 943-955.
- 29Nyaradi A, Foster JK, Hickling S, et al. Prospective associations between dietary patterns and cognitive performance during adolescence. J Child Psychol Psychiatry. 2014; 55(9): 1017-1024.
- 30Micha R, Rogers PJ, Nelson M. Glycaemic index and glycaemic load of breakfast predict cognitive function and mood in school children: a randomised controlled trial. Br J Nutr. 2011; 106(10): 1552-1561.
- 31Nabb S, Benton D. The influence on cognition of the interaction between the macro-nutrient content of breakfast and glucose tolerance. Physiol Behav. 2006; 87(1): 16-23.
- 32Hoane MR, Swan AA, Heck SE. The effects of a high-fat sucrose diet on functional outcome following cortical contusion injury in the rat. Behav Brain Res. 2011; 223(1): 119-124.
- 33Greco T, Prins ML. Traumatic Brain Injury and Diet. J Child Neurol. 2013; 28(8): 983-988.
- 34Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res. 2014; 55(12): 2450-2457.
- 35Prins ML. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008; 28(1): 1-16.
- 36McGarry JD, Foster DW. Hormonal control of ketogenesis: biochemical considerations. Arch Intern Med. 1977; 137(4): 495-501.
- 37White H, Venkatesh B. Clinical review: Ketones and brain injury. Crit Care. 2011; 15(2): 219-219.
- 38Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Brain Metabolism during Fasting. J Clin Invest. 1967; 46(10): 1589-1595.
- 39Deng-Bryant Y, Prins ML, Hovda DA, Harris NG. Ketogenic Diet Prevents Alterations in Brain Metabolism in Young but not Adult Rats after Traumatic Brain Injury. J Neurotrauma. 2011; 28(9): 1813-1825.
- 40Prins ML, Fujima LS, Hovda DA. Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res. 2005; 82(3): 413-420.
- 41Hu ZG, Wang HD, Jin W, Yin HX. Ketogenic diet reduces cytochrome c release and cellular apoptosis following traumatic brain injury in juvenile rats. Ann Clin Lab Sci. 2009; 39(1): 76-83.
- 42Hu Z-G, Wang H-D, Qiao L, Yan W, Tan Q-F, Yin H-X. The protective effect of the ketogenic diet on traumatic brain injury-induced cell death in juvenile rats. Brain Inj. 2009; 23(5): 459-465.
- 43Prins ML, Hovda DA. The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. J Neurotrauma. 2009; 26(7): 1083-1093.
- 44Prins ML, Giza CC. Induction of monocarboxylate transporter 2 expression and ketone transport following traumatic brain injury in juvenile and adult rats. Dev Neurosci. 2006; 28(4–5): 447-456.
- 45Davis LM, Pauly JR, Readnower RD, Rho JM, Sullivan PG. Fasting is neuroprotective following traumatic brain injury. J Neurosci Res. 2008; 86(8): 1812-1822.
- 46Rich NJ, Van Landingham JW, Figueiroa S, Seth R, Corniola RS, Levenson CW. Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. J Neurosci Res. 2010; 88(13): 2933-2939.
- 47Ritter AM, Robertson CS, Goodman JC, Contant CF, Grossman RG. Evaluation of a carbohydrate-free diet for patients with severe head injury. J Neurotrauma. 1996; 13(8): 473-485.
- 48Lucke-Wold BP, Logsdon AF, Nguyen L, et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci. 2018; 21(2): 79-91.
- 49Prins ML, Lee SM, Fujima LS, Hovda DA. Increased cerebral uptake and oxidation of exogenous βHB improves ATP following traumatic brain injury in adult rats. J Neurochem. 2004; 90(3): 666-672.
- 50Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014; 75: S24–S33.
- 51Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 1991; 561(1): 106-119.
- 52Bergsneider M, Hovda DA, Shalmon E, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997; 86(2): 241-251.
- 53Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990; 73(6): 889-900.
- 54Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 2017; 143(4): 418-431.
- 55Fineman I, Hovda DA, Smith M, Yoshino A, Becker DP. Concussive brain injury is associated with a prolonged accumulation of calcium: a45Ca autoradiographic study. Brain Res. 1993; 624(1): 94-102.
- 56Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM. Upregulation of Pentose Phosphate Pathway and Preservation of Tricarboxylic Acid Cycle Flux after Experimental Brain Injury. J Neurotrauma. 2005; 22(10): 1052-1065.
- 57Sen S, Morehead M, Murphy S, Phillis JW. Alpha-phenyl-tert-butyl-nitrone inhibits free radical release in brain concussion. Free Radic Biol Med. 1994; 16(6): 685-691.
- 58Sheline CT, Behrens MM, Choi DW. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J Neurosci. 2000; 20(9): 3139-3146.
- 59Cosi C, Marien M. Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly(ADP-ribose) polymerase inhibitor, benzamide. Brain Res. 1998; 809(1): 58-67.
- 60Ying W, Garnier P, Swanson RA. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun. 2003; 308(4): 809-813.
- 61Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab. 2016; 36(9): 1603-1613.
- 62Meier TB, Bellgowan PF, Singh R, Kuplicki R, Polanski DW, Mayer AR. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015; 72(5): 530-538.
- 63Yamakami I, McIntosh TK. Alterations in Regional Cerebral Blood Flow following Brain Injury in the Rat. J Cereb Blood Flow Metab. 1991; 11(4): 655-660.
- 64Pasco A, Lemaire L, Franconi F, et al. Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. J Neurotrauma. 2007; 24(8): 1321-1330.
- 65McGoron AJ, Capille M, Georgiou MF, et al. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping. BMC Med Imaging. 2008; 8: 4-4.
- 66Kim J, Whyte J, Patel S, et al. Resting Cerebral Blood Flow Alterations in Chronic Traumatic Brain Injury: An Arterial Spin Labeling Perfusion fMRI Study. J Neurotrauma. 2010; 27(8): 1399-1411.
- 67Soustiel JF, Glenn TC, Shik V, Boscardin J, Mahamid E, Zaaroor M. Monitoring of Cerebral Blood Flow and Metabolism in Traumatic Brain Injury. J Neurotrauma. 2005; 22(9): 955-965.
- 68Wang Y, Nencka AS, Meier TB, et al. Cerebral blood flow in acute concussion: preliminary ASL findings from the NCAA-DoD CARE consortium. Brain Imaging Behav. 2018.
- 69Grossman EJ, Jensen JH, Babb JS, et al. Cognitive Impairment in Mild Traumatic Brain Injury: A Longitudinal Diffusional Kurtosis and Perfusion Imaging Study. AJNR Am J Neuroradiol. 2013; 34(5): 951-S953.
- 70Bonne O, Gilboa A, Louzoun Y, et al. Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Res. 2003; 124(3): 141-152.
- 71Ge Y, Patel MB, Chen Q, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labeling MR imaging at 3T. Brain Inj. 23(7): 666-674.
- 72Bartnik-Olson BL, Holshouser B, Wang H, et al. neurovascular unit function contributes to persistent symptoms after concussion: a pilot study. J Neurotrauma. 2014; 31(17): 1497-1506.
- 73Maugans TA, Farley C, Altaye M, Leach J, Cecil KM. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics. 2012; 129(1): 28-37.
- 74Choe MC. The Pathophysiology of Concussion. Curr Pain Headache Rep. 2016; 20(6): 42.
- 75Hasselbalch SG, Madsen PL, Hageman LP, et al. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiol Endocrinol Metab. 1996; 270(5): E746-E751.
- 76Linde R, Hasselbalch SG, Topp S, Paulson OB, Madsen PL. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat. J Cereb Blood Flow Metab. 2005; 26(2): 170-180.
- 77Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018; 8: 6670.
- 78Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: Its role in traumatic brain and spinal cord injury. J Cell Physiol. 2018; 233(7): 5160-5169.
- 79Irrera N, Pizzino G, Calò M, et al. Lack of the Nlrp3 Inflammasome Improves Mice Recovery Following Traumatic Brain Injury. Front Pharmacol. 2017; 8: 459.
- 80Mc Fie S, Abrahams S, Patricios J, Suter J, Posthumus M, September A. Inflammatory and apoptotic signalling pathways and concussion severity: A genetic association study. J Sports Sci. 2018; 36(19): 2226-2234.
- 81Gill J, Merchant-Borna K, Lee H, et al. Sports-Related Concussion Results in Differential Expression of Nuclear Factor-κB Pathway Genes in Peripheral Blood During the Acute and Subacute Periods. J Head Trauma Rehabil. 2016; 31(4): 269-276.
- 82Qian H, Li Q, Shi W. Hyperbaric oxygen alleviates the activation of NLRP-3-inflammasomes in traumatic brain injury. Mol Med Report. 2017; 16(4): 3922-3928.
- 83Xu X, Yin D, Ren H, et al. Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol Dis. 2018; 117: 15-27.
- 84Gugliandolo E, D'Amico R, Cordaro M, et al. Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury. Front Neurol. 2018; 9: 590.
- 85Youm Y-H, Nguyen KY, Grant RW, et al. Ketone body β-hydroxybutyrate blocks the NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015; 21(3): 263-269.
- 86Goldberg EL, Asher JL, Molony RD, et al. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 2017; 18(9): 2077-2087.