3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair
Hongling Qin
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Investigation, Data curation, Writing - original draft, Writing - review & editing
Search for more papers by this authorYingming Wei
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Data curation, Writing - original draft
Search for more papers by this authorJiayin Han
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Writing - review & editing
Search for more papers by this authorXiaojian Jiang
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Formal analysis
Search for more papers by this authorXianyan Yang
Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
Contribution: Visualization
Search for more papers by this authorYanmin Wu
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Supervision
Search for more papers by this authorCorresponding Author
Zhongru Gou
Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
Correspondence
Lili Chen, Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Jiefang Road 88#, Hangzhou 310008, China.
Email: [email protected]
Zhongru Gou, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - review & editing
Search for more papers by this authorCorresponding Author
Lili Chen
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Correspondence
Lili Chen, Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Jiefang Road 88#, Hangzhou 310008, China.
Email: [email protected]
Zhongru Gou, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - review & editing
Search for more papers by this authorHongling Qin
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Investigation, Data curation, Writing - original draft, Writing - review & editing
Search for more papers by this authorYingming Wei
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Data curation, Writing - original draft
Search for more papers by this authorJiayin Han
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Writing - review & editing
Search for more papers by this authorXiaojian Jiang
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Formal analysis
Search for more papers by this authorXianyan Yang
Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
Contribution: Visualization
Search for more papers by this authorYanmin Wu
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Contribution: Supervision
Search for more papers by this authorCorresponding Author
Zhongru Gou
Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China
Correspondence
Lili Chen, Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Jiefang Road 88#, Hangzhou 310008, China.
Email: [email protected]
Zhongru Gou, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - review & editing
Search for more papers by this authorCorresponding Author
Lili Chen
Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
Correspondence
Lili Chen, Department of Periodontics, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Jiefang Road 88#, Hangzhou 310008, China.
Email: [email protected]
Zhongru Gou, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, China.
Email: [email protected]
Contribution: Conceptualization, Project administration, Writing - review & editing
Search for more papers by this authorAbstract
Bioceramic scaffolds for repairing mandibular bone defects have considerable effects, whereas pore architecture in porous scaffolds on osteogenesis in specific structures is still controversial. Herein 6 mol% magnesium-substituted calcium silicate scaffolds were fabricated with similar porosity (∼58%) but different cylindrical pore dimensions (Ø 480, 600, and 720 μm) via digital light processing-based three-dimensional (3D) printing technique. The mechanical properties, bioactive ion release, and bio-dissolution of the bioceramic scaffolds were evaluated in vitro, and the facilitation of scaffolds on bone formation was investigated after implanting in vivo. The results showed that as the pore dimension increased, the scaffolds indicated similar surface microstructures, but their compressive strength was enhanced gradually. There was no significant difference in vitro bio-dissolution between the 480 and 600 μm groups, whereas the 720 μm group showed a much slower dissolution and ion release. Interestingly, the two-dimensional/three-dimensional (2D/3D) micro-CT reconstruction analysis of rabbits' mandibular bone defects model showed that the 600 μm group exhibited evidently higher ratio of the newly formed bone volume to total volume (BV/TV) and trabecular number (Tb. N) values and lower ratio of the scaffolds residual volume to total volume (RV/TV) compare to the other two sizes. Furthermore, the histological analysis also revealed a considerably higher new bone ingrowth rate in the 600 μm group than the other two groups at 4–12 weeks post-implantation. Totally, it is proved from these experimental studies that the DLP-based accurately fabricated calcium (Ca) silicate bioceramic scaffolds with appropriate pore dimensions (i.e., 600 μm in pore size) are promising to guide new bone ingrowth and thus accelerate the regeneration and repair of cranial maxillofacial or periodontal bone defects.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
term3287-sup-0001-suppl-data.docx243.7 KB | Supplementary Material 1 |
term3287-sup-0002-suppl-data.txt13.2 KB | Supplementary Material 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive glasses: Where are we and where are we going? Journal of Functional Biomaterials, 9(1). https://doi.org/10.3390/jfb9010025
10.3390/jfb9010025 Google Scholar
- Barbosa, W. T., de Almeida, K. V., de Lima, G. G., Rodriguez, M. A., Lia Fook, M. V., Garcia-Carrodeguas, R., Amaro da Silva Junior, V., de Sousa Segundo, F. A., & de Sa, M. J. C. (2020). Synthesis and in vivo evaluation of a scaffold containing wollastonite/beta-TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(3), 1107–1116. https://doi.org/10.1002/jbm.b.34462
- Bi, Y. G., Lin, Z. T., & Deng, S. T. (2019). Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 100, 576–583. https://doi.org/10.1016/j.msec.2019.03.040
- Bohner, M., Santoni, B. L. G., & Dobelin, N. (2020). beta-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomaterialia, 113, 23–41. https://doi.org/10.1016/j.actbio.2020.06.022
- Bouler, J. M., Pilet, P., Gauthier, O., & Verron, E. (2017). Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia, 53, 1–12. https://doi.org/10.1016/j.actbio.2017.01.076
- Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., Ma, W., Qi, W., Ren, Z., Liao, H., Liu, M., Cai, D., & Fang, H. (2020). Influence of the pore size and porosity of selective laser melted Ti6A14V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl, 106, 110289. https://doi.org/10.1016/j.msec.2019.110289
- Choi, S. W., Zhang, Y., MacEwan, M. R., & Xia, Y. N. (2013). Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Advanced Healthcare Materials, 2(1), 145–154. https://doi.org/10.1002/adhm.201200106
- Delloye, C., Cornu, O., Druez, V., & Barbier, O. (2007). Bone allografts: What they can offer and what they cannot. J Bone Joint Surg Br, 89(5), 574–579. https://doi.org/10.1302/0301-620X.89B5.19039
- Dhandapani, R., Krishnan, P. D., Zennifer, A., Kannan, V., Manigandan, A., Arul, M. R., Jaiswal, D., Subramanian, A., Kumbar, S. G., & Sethuraman, S. (2020). Additive manufacturing of biodegradable porous orthopaedic screw. Bioact Mater, 5(3), 458–467. https://doi.org/10.1016/j.bioactmat.2020.03.009
- Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: Current concepts and future directions. BMC Medicine, 9, 66. https://doi.org/10.1186/1741-7015-9-66
- Du, Z. Y., Leng, H. J., Guo, L. Y., Huang, Y. Q., Zheng, T. Y., Zhao, Z. D., Liu, X., Zhang, X., Cai, Q., & Yang, X. P. (2020). Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites Part B: Engineering, 190. https://doi.org/10.1016/j.compositesb.2020.107937
10.1016/j.compositesb.2020.107937 Google Scholar
- Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science & engineering. C, Materials for Biological Applications, 71, 1293–1312. https://doi.org/10.1016/j.msec.2016.11.039
- Elder, B., Neupane, R., Tokita, E., Ghosh, U., Hales, S., & Kong, Y. L. (2020). Nanomaterial patterning in 3D printing. Advanced Materials, 32(17). https://doi.org/10.1002/adma.201907142
- Fang, J., Li, P., Lu, X., Fang, L., Lu, X., & Ren, F. (2019). A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 88, 503–513. https://doi.org/10.1016/j.actbio.2019.02.019
- Fan, X., Peng, H., Li, H., & Yan, Y. (2019). Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Journal of Biomaterials Science, Polymer Edition, 30(2), 107–121. https://doi.org/10.1080/09205063.2018.1554833
- Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A. M., Benkirane-Jessel, N., Bornert, F., & Offner, D. (2018). Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 9. https://doi.org/10.1177/2041731418776819
- Gandolfi, M. G., Zamparini, F., Degli Esposti, M., Chiellini, F., Fava, F., Fabbri, P., Taddei, P., & Prati, C. (2019). Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Materials Science & engineering. C, Materials for Biological Applications, 102, 341–361. https://doi.org/10.1016/j.msec.2019.04.040
- Gao, P., Zhang, H., Liu, Y., Fan, B., Li, X., Xiao, X., Lan, P., Li, M., Geng, L., Liu, D., Yuan, Y., Lian, Q., Lu, J., Guo, Z., & Wang, Z. (2016). Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Scientific Reports, 6, 23367. https://doi.org/10.1038/srep23367
- Ge, R., Xun, C., Yang, J. Z., Jia, W. T., & Li, Y. C. (2019). In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect. Biomedical Materials, 14(6). https://doi.org/10.1088/1748-605X/ab4238
- Ghamor-Amegavi, E. P., Yang, X. Y., Qiu, J. D., Xie, L. J., Pan, Z. J., Wang, J. C., Zhang, X. F., Ke, X. R., Zhao, T. F., Zhang, L., & Gou, Z. R. (2020). Composition control in biphasic silicate microspheres on stimulating new bone regeneration and repair of osteoporotic femoral bone defect. Journal of Biomedical Materials Research B, 108(2), 377–390. https://doi.org/10.1002/jbm.b.34396
- Ghayor, C., & Weber, F. E. (2018). Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited. Frontiers in Physiology, 9, 960. https://doi.org/10.3389/fphys.2018.00960
- Gomes, S., Renaudin, G., Mesbah, A., Jallot, E., Bonhomme, C., Babonneau, F., & Nedelec, J. M. (2010). Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomaterialia, 6(8), 3264–3274. https://doi.org/10.1016/j.actbio.2010.02.034
- Gupta, A., Kukkar, N., Sharif, K., Main, B. J., Albers, C. E., & El-Amin Iii, S. F. (2015). Bone graft substitutes for spine fusion: A brief review. World Journal of Orthopedics, 6(6), 449–456. https://doi.org/10.5312/wjo.v6.i6.449
- Haugen, H. J., Lyngstadaas, S. P., Rossi, F., & Perale, G. (2019). Bone grafts: Which is the ideal biomaterial? Journal of Clinical Periodontology, 46(Suppl 21), 92–102. https://doi.org/10.1111/jcpe.13058
- Horecka, A., Hordyjewska, A., Blicharski, T., Kocot, J., Zelazowska, R., Lewandowska, A., & Kurzepa, J. (2016). Simvastatin effect on calcium and silicon plasma levels in postmenopausal women with osteoarthritis. Biological Trace Element Research, 171(1), 1–5. https://doi.org/10.1007/s12011-016-0635-1
- Hornbeck, L. J. (2011). The DMDTM projection display chip: A MEMS-based technology. MRS Bulletin, 26(4), 325–327. https://doi.org/10.1557/mrs2001.72
- Itala, A. I., Ylanen, H. O., Ekholm, C., Karlsson, K. H., & Aro, H. T. (2001). Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits. Journal of Biomedical Materials Research, 58(6), 679–683. https://doi.org/10.1002/jbm.1069
- Jin, Z., Wu, R., Shen, J., Yang, X., Shen, M., Xu, W., Huang, R., Zhang, L., Yang, G., Gao, C., Gou, Z., & Xu, S. (2018). Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties. Journal of the Mechanical Behavior of Biomedical Materials, 88, 140–149. https://doi.org/10.1016/j.jmbbm.2018.08.018
- Kumar, H., & Kim, K. (2020). Stereolithography 3D bioprinting. Methods in Molecular Biology, 2140, 93–108. https://doi.org/10.1007/978-1-0716-0520-2_6
- Li, J. J., Dunstan, C. R., Entezari, A., Li, Q., Steck, R., Saifzadeh, S., Sadeghpour, A., Field, J. R., Akey, A., Vielreicher, M., Friedrich, O., Roohani-Esfahani, S. I., & Zreiqat, H. (2019). A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects. Advanceed Healthcare Materials, 8(8), e1801298. https://doi.org/10.1002/adhm.201801298
- Li, X. Y., Hu, K. H., & Lu, Z. G. (2019). Effect of light attenuation on polymerization of ceramic suspensions for stereolithography. Journal of the European Ceramic Society, 39(7), 2503–2509. https://doi.org/10.1016/j.jeurceramsoc.2019.01.002
- Liu, A., Sun, M., Shao, H., Yang, X., Ma, C., He, D., Gao, Q., Liu, Y., Yan, S., Xu, S., He, Y., Fu, J., & Gou, Z. (2016). The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. Journal of Materials Chemistry B, 4(22), 3945–3958. https://doi.org/10.1039/c6tb00449k
- Lodoso-Torrecilla, I., van den Beucken, J., & Jansen, J. A. (2021). Calcium phosphate cements: Optimization toward biodegradability. Acta Biomaterialia, 119, 1–12. https://doi.org/10.1016/j.actbio.2020.10.013
- Marques, A., Miranda, G., Silva, F., Pinto, P., & Carvalho, O. (2021). Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. Journal of Biomedical Materials Research B, 109(3), 377–393. https://doi.org/10.1002/jbm.b.34706
- Melchels, F. P., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
- Mirkhalaf, M., Wang, X., Entezari, A., Dunstan, C. R., Jiang, X. Q., & Zreiqat, H. (2021). Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration. Applied Materials Today, 25. https://doi.org/10.1016/j.apmt.2021.101168
10.1016/j.apmt.2021.101168 Google Scholar
- Nabiyouni, M., Bruckner, T., Zhou, H., Gbureck, U., & Bhaduri, S. B. (2018). Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia, 66, 23–43. https://doi.org/10.1016/j.actbio.2017.11.033
- No, Y. J., Li, J. J., & Zreiqat, H. (2017). Doped calcium silicate ceramics: A new class of candidates for synthetic bone substitutes. Materials, 10(2). https://doi.org/10.3390/ma10020153
- Nunez, J., Vignoletti, F., Caffesse, R. G., & Sanz, M. (2019). Cellular therapy in periodontal regeneration. Periodontology 2000, 79(1), 107–116. https://doi.org/10.1111/prd.12250
- Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo, T., & Nakamura, T. (2006). Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials, 27(35), 5892–5900. https://doi.org/10.1016/j.biomaterials.2006.08.013
- Peng, X. Y., Hu, M., Liao, F., Yang, F., Ke, Q. F., Guo, Y. P., & Zhu, Z. H. (2019). La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomaterials Science, 7(4), 1565–1573. https://doi.org/10.1039/c8bm01498a
- Quan, H. Y., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. Q. (2020). Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003
- Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., & Cai, K. (2018). Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 84, 1–11. https://doi.org/10.1016/j.jmbbm.2018.04.010
- Rao, S. H., Harini, B., Shadamarshan, R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International Journal of Biological Macromolecules, 110, 88–96. https://doi.org/10.1016/j.ijbiomac.2017.09.029
- Ribas, R. G., Schatkoski, V. M., Montanheiro, T. L. D., de Menezes, B. R. C., Stegemann, C., Leite, D. M. G., & Thim, G. P. (2019). Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceramics International, 45(17), 21051–21061. https://doi.org/10.1016/j.ceramint.2019.07.096
- Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 4(8), 743–765. https://doi.org/10.1002/mabi.200400026
- Sanmartin de Almeida, M., Fernandes, G. V. O., de Oliveira, A. M., & Granjeiro, J. M. (2018). Calcium silicate as a graft material for bone fractures: A systematic review. Journal of International Medical Research, 46(7), 2537–2548. https://doi.org/10.1177/0300060518770940
- Sun M., Liu A., Ma C., Shao H., Yu M., Liu Y., Yan S., Gou Z. (2016). Systematic investigation of β-dicalcium silicate-based bone cements in vitro and in vivo in comparison with clinically applied calcium phosphate cement and Bio-Oss®. RSC Advances, 6(1), 586–596. https://doi.org/10.1039/C5RA21340A
- Sun, M., Liu, A., Shao, H., Yang, X., Ma, C., Yan, S., Liu, Y., He, Y., & Gou, Z. (2016). Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Scientific Reports, 6, 34029. https://doi.org/10.1038/srep34029
- Szustakiewicz, K., Wlodarczyk, M., Gazinska, M., Rudnicka, K., Plocinski, P., Szymczyk-Ziolkowska, P., Ziolkowski, G., Biernat, M., Sieja, K., Grzymajlo, M., Jozwiak, P., Michlewska, S., & Trochimczuk, A. W. (2021). The effect of pore size distribution and l-lysine modified apatite whiskers (HAP) on osteoblasts response in PLLA/HAP foam scaffolds obtained in the thermally induced phase separation process. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073607
10.3390/ijms22073607 Google Scholar
- Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., Matsushita, T., Kokubo, T., & Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science & engineering. C, Materials for Biological Applications, 59, 690–701. https://doi.org/10.1016/j.msec.2015.10.069
- Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21(23), 2405–2412. https://doi.org/10.1016/s0142-9612(00)00108-3
- Wang, C., Huang, W., Zhou, Y., He, L., He, Z., Chen, Z., He, X., Tian, S., Liao, J., Lu, B., Wei, Y., & Wang, M. (2020). 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1), 82–91. https://doi.org/10.1016/j.bioactmat.2020.01.004
- Xie, J., Yang, X., Shao, H., Ye, J., He, Y., Fu, J., Gao, C., & Gou, Z. (2016). Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. Journal of the Mechanical Behavior of Biomedical Materials, 54, 60–71. https://doi.org/10.1016/j.jmbbm.2015.09.012
- Zhang, M., Lin, R. C., Wang, X., Xue, J. M., Deng, C. J., Feng, C., Zhuang, H., Ma, J. G., Qin, C., Wan, L., Chang, J., & Wu, C. T. (2020). 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Science Advances, 6(12). https://doi.org/10.1126/sciadv.aaz6725
10.1126/sciadv.aaz6725 Google Scholar
- Zhang, J., Liu, W., Schnitzler, V., Tancret, F., & Bouler, J. M. (2014). Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 10(3), 1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001
- Zhang, L., Yang, G., Johnson, B. N., & Jia, X. (2019). Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84, 16–33. https://doi.org/10.1016/j.actbio.2018.11.039