Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury
John T. Kim
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorKevin Roberts
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorGrady Dunlap
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorRichard Perry
Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorTyrone Washington
Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorCorresponding Author
Jeffrey C. Wolchok
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Correspondence
Jeffrey C. Wolchok, Department of Biomedical Engineering, University of Arkansas, John A. White, Jr. Engineering Hall, Suite 120, Fayetteville, AR 72701, USA.
Email: [email protected]
Search for more papers by this authorJohn T. Kim
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorKevin Roberts
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorGrady Dunlap
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorRichard Perry
Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorTyrone Washington
Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
Search for more papers by this authorCorresponding Author
Jeffrey C. Wolchok
Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
Correspondence
Jeffrey C. Wolchok, Department of Biomedical Engineering, University of Arkansas, John A. White, Jr. Engineering Hall, Suite 120, Fayetteville, AR 72701, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND−) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(−) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(−) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interes
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
term3286-sup-0001-fig_s1.tif133.4 KB | Figure S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allman, A. J., McPherson, T. B., Badylak, S. F., Merrill, L. C., Kallakury, B., Sheehan, C., & Metzger, D. W. (2001). Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 71(11), 1631–1640.
- Ashton, W. S., Degnan, B. M., Daniel, A., & Francis, G. L. (1995). Testosterone increases insulin-like growth factor-1 and insulin-like growth factor-binding protein. Annals of Clinical Laboratory Science, 25(5), 381–388.
- Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317(5839), 807–810. https://doi.org/10.1126/science.1144090
- Busardò, F. P., Frati, P., Sanzo, M. D., Napoletano, S., Pinchi, E., Zaami, S., & Fineschi, V. (2015). The impact of nandrolone decanoate on the central nervous system. Current Neuropharmacology, 13(1), 122–131. https://doi.org/10.2174/1570159x13666141210225822
- Camerino, G. M., Desaphy, J. F., De Bellis, M., Capogrosso, R. F., Cozzoli, A., Dinardo, M. M., Musaraj, K., Fonzino, A., Conte, E., Jagerschmidt, C., Namour, F., Liantonio, A., De Luca, A., Conte Camerino, D., & Pierno, S. (2015). Effects of nandrolone in the counteraction of skeletal muscle atrophy in a mouse model of muscle disuse: Molecular biology and functional evaluation. PLoS One, 10(6), e0129686. https://doi.org/10.1371/journal.pone.0129686
- Carlson, B. M. (1968). Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. Journal of Morphology, 125(4), 447–471.
- Carson, J. A., Lee, W. J., McClung, J., & Hand, G. A. (2002). Steroid receptor concentration in aged rat hindlimb muscle: Effect of anabolic steroid administration. Journal of Applied Physiology, 93(1), 242–250. https://doi.org/10.1152/japplphysiol.01212.2001
- Chang, J., Wang, Y., Shao, L., Laberge, R., Demaria, M., Campisi, J., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A., & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. https://doi.org/10.1038/nm.4010
- Conboy, I. M., & Rando, T. A. (2005). Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle, 4(3), 407–410. https://doi.org/10.4161/cc.4.3.1518
- Corona, B. T., Garg, K., Ward, C. L., McDaniel, J. S., Walters, T. J., & Rathbone, C. R. (2013). Autologous minced muscle grafts: A tissue engineering therapy for the volumetric loss of skeletal muscle. American Journal of Physiology – Cell Physiology, 305(7), C761–C775. https://doi.org/10.1152/ajpcell.00189.2013
- Corona, B. T., Ward, C. L., Baker, H. B., Walters, T. J., & Christ, G. J. (2014). Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Engineering Part A, 20(3–4), 705–715. https://doi.org/10.1089/ten.TEA.2012.0761
- Donini, L. M., Savina, C., & Cannella, C. (2003). Eating habits and appetite control in the elderly: The anorexia of aging. International Psychogeriatrics, 15(1), 73–87.
- Gentile, N. E., Stearns, K. M., Brown, E. H., Rubin, J. P., Boninger, M. L., Dearth, C. L., & Badylak, S. F. (2014). Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. American Journal of Physical Medicine & Rehabilitation, 93(11 Suppl 3), S79–S87. https://doi.org/10.1097/PHM.0000000000000145
- Gerber, C., Meyer, D. C., Nuss, K. M., & Farshad, M. (2011). Anabolic steroids reduce muscle damage caused by rotator cuff tendon release in an experimental study in rabbits. Journal of Bone and Joint Surgery, 93(23), 2189–2195. https://doi.org/10.2106/JBJS.J.01589
- Gilbert-Honick, J., Ginn, B., Zhang, Y., Salehi, S., Wagner, K. R., Mao, H. Q., & Grayson, W. L. (2018). Adipose-derived stem/stromal cells on electrospun fibrin microfiber bundles enable moderate muscle reconstruction in a volumetric muscle loss model. Cell Transplantation, 1644–1656. https://doi.org/10.1177/0963689718805370
- Gilbert-Honick, J., Iyer, S. R., Somers, S. M., Lovering, R. M., Wagner, K., Mao, H. Q., & Grayson, W. L. (2018). Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials, 164, 70–79. https://doi.org/10.1016/j.biomaterials.2018.02.006
- Gold, J., Batterham, M. J., Rekers, H., Harms, M. K., Geurts, T. B., Helmyr, P. M., Falleiros Carvalho, L., Panos, G., Pinchera, A., Aiuti, F., Lee, C., Horban, A., Gatell, J., Phanuphak, P., Prasithsirikul, W., Gazzard, B., Bloch, M., & Danner, S. (2006). Effects of nandrolone decanoate compared with placebo or testosterone on HIV-associated wasting. HIV Medicine, 7(3), 146–155. https://doi.org/10.1111/j.1468-1293.2006.00358.x
- Goldman, S. M., Henderson, B. E. P., Walters, T. J., & Corona, B. T. (2018). Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One, 13(1), e0191245. https://doi.org/10.1371/journal.pone.0191245
- Greising, S. M., Corona, B. T., McGann, C., Frankum, J. K., & Warren, G. L. (2019). Therapeutic approaches for volumetric muscle loss injury: A systematic review and meta-analysis. Tissue Engineering Part B Reviews, 25(6), 510–525. https://doi.org/10.1089/ten.TEB.2019.0207
- Hakuno, F., Yamauchi, Y., Kaneko, G., Yoneyama, Y., Nakae, J., Chida, K., Yamanouchi, K., Nishihara, M., & Takahashi, S.-I. (2011). Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. PLoS One, 6(10), e25655. https://doi.org/10.1371/journal.pone.0025655
- Hurd, S. A., Bhatti, N. M., Walker, A. M., Kasukonis, B. M., & Wolchok, J. C. (2015). Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials, 49, 9–17. https://doi.org/10.1016/j.biomaterials.2015.01.027
- Joubert, Y., & Tobin, C. (1995). Testosterone treatment results in quiescent satellite cells being activated and recruited into cell cycle in rat levator ani muscle. Developmental Biology, 169(1), 286–294. https://doi.org/10.1006/dbio.1995.1144
- Kang, C. (2019). Senolytics and senostatics: A two-pronged approach to target cellular senescence for delaying aging and age-related diseases. Molecular Cell, 42(12), 821–827.
- Kasukonis, B., Kim, J., Brown, L., Jones, J., Ahmadi, S., Washington, T., & Wolchok, J. (2016). Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Engineering Part A, 22, 1151–1163. https://doi.org/10.1089/ten.TEA.2016.0134
- Kasukonis, B., Kim, J., Washington, T., & Wolchok, J. (2016). Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds. Biotechnology Progress, 32, 745–755. https://doi.org/10.1002/btpr.2257
- Kim, J. T., Kasukonis, B. M., Brown, L. A., Washington, T. A., & Wolchok, J. C. (2016). Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Experimental Gerontology, 83, 37–46. https://doi.org/10.1016/j.exger.2016.07.008
- Kim, J. T., Kasukonis, B., Dunlap, G., Perry, R., Washington, T., & Wolchok, J. (2019). Regenerative repair of volumetric muscle loss injury is sensitive to age. Tissue Engineering Part A. https://doi.org/10.1089/ten.TEA.2019.0034
10.1089/ten.TEA.2019.0034 Google Scholar
- Kim, J. T., Kasukonis, B. M., Dunlap, G., Perry, R., Washington, T., & Wolchok, J. C. (2020). Regenerative repair of volumetric muscle loss injury is sensitive to age. Tissue Engineering Part A, 26(1–2), 3–14. https://doi.org/10.1089/ten.TEA.2019.0034
- Kovacheva, E. L., Hikim, A. P., Shen, R., Sinha, I., & Sinha-Hikim, I. (2010). Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology, 151(2), 628–638. https://doi.org/10.1210/en.2009-1177
- Kuang, S., Gillespie, M. A., & Rudnicki, M. A. (2008). Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell, 2(1), 22–31. https://doi.org/10.1016/j.stem.2007.12.012
- Lee, C. S., Yi, J. S., Jung, S. Y., Kim, B. W., Lee, N. R., Choo, H. J., Han, J., Chi, S.-G., Park, M., Lee, J.-H., & Ko, Y.-G. (2010). TRIM72 negatively regulates myogenesis via targeting insulin receptor substrate-1. Cell Death & Differentiation, 17(8), 1254–1265. https://doi.org/10.1038/cdd.2010.1
- Lopes-Paciencia, S., Saint-Germain, E., Rowell, M., Ruiz, A., Kalegari, P., & Ferbeye, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15–22.
- Mase, V. J., Jr, Hsu, J. R., Wolf, S. E., Wenke, J. C., Baer, D. G., Owens, J., & Walters, T. J. (2010). Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics, 33(7), 511. https://doi.org/10.3928/01477447-20100526-24
- Merritt, E. K., Cannon, M. V., Hammers, D. W., Le, L. N., Gokhale, R., Sarathy, A., Tierney, M. T., Suggs, L. J., Walters, T. J., & Farrar, R. P. (2010). Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Engineering Part A, 16(9), 2871–2881. https://doi.org/10.1089/ten.TEA.2009.0826
- Miller, B. F., Robinson, M. M., Bruss, M. D., Hellerstein, M., & Hamilton, K. L. (2012). A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell, 11(1), 150–161. https://doi.org/10.1111/j.1474-9726.2011.00769.x
- Nakayama, K. H., Alcazar, C., Yang, G., Quarta, M., Paine, P., Doan, L., Rando, T. A., & Huang, N. F. (2018). Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. npj Regenerative Medicine, 3, 16. https://doi.org/10.1038/s41536-018-0054-3
- Noorafshan, A., Karbalay-Doust, S., & Ardekani, F. M. (2005). High doses of nandrolone decanoate reduce volume of testis and length of seminiferous tubules in rats. APMIS, 113(2), 122–125. https://doi.org/10.1111/j.1600-0463.2005.apm1130205.x
- Owens, B. D., Kragh, J. F., Jr, Wenke, J. C., Macaitis, J., Wade, C. E., & Holcomb, J. B. (2008). Combat wounds in operation Iraqi freedom and operation enduring freedom. The Journal of Trauma, 64(2), 295–299. https://doi.org/10.1097/TA.0b013e318163b875
- Qiu, X., Liu, S., Zhang, H., Zhu, B., Su, Y., Zheng, C., Wang, M., Kuang, H., Zhao, X., & Jin, Y. (2018). Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Research & Therapy, 9(1), 88. https://doi.org/10.1186/s13287-018-0821-5
- Quarta, M., Cromie, M., Chacon, R., Blonigan, J., Garcia, V., Akimenko, I., Paine, P., Stok, M., Shrager, J. B., & Rando, T. A. (2017). Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nature Communications, 8, 15613. https://doi.org/10.1038/ncomms15613
- Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., & Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3(11), 1009–1013. https://doi.org/10.1038/ncb1101-1009
- Selakovic, D., Joksimovic, J., Zaletel, I., Puskas, N., Matovic, M., & Rosic, G. (2017). The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons. PLoS One, 12(12), e0189595. https://doi.org/10.1371/journal.pone.0189595
- Serra, C., Tangherlini, F., Rudy, S., Lee, D., Toraldo, G., Sandor, N. L., Jasuja, R., & Bhasin, S. (2013). Testosterone improves the regeneration of old and young mouse skeletal muscle. The Journals of Gerontology Series A Biological Sciences and Medical Sciences, 68(1), 17–26. https://doi.org/10.1093/gerona/gls083
- Shah, O. J., Anthony, J. C., Kimball, S. R., & Jefferson, L. S. (2000). 4E-BP1 and S6K1: Translational integration sites for nutritional and hormonal information in muscle. American Journal of Physiology, Endocrinology and Metabolism, 279(4), E715–E729. https://doi.org/10.1152/ajpendo.2000.279.4.E715
- Sicari, B. M., Agrawal, V., Siu, B. F., Medberry, C. J., Dearth, C. L., Turner, N. J., & Badylak, S. F. (2012). A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Engineering Part A, 18(19–20), 1941–1948.
- Stearns-Reider, K. M., D'Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W. R., Tsamis, A., Shinde, S., Zhang, C., Barchowsky, A., Rando, T. A., Tuan, R. S., & Ambrosio, F. (2017). Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell, 16(3), 518–528. https://doi.org/10.1111/acel.12578
- Steyn, F. J., Wan, Y., Clarkson, J., Veldhuis, J. D., Herbison, A. E., & Chen, C. (2013). Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology, 154(12), 4939–4945. https://doi.org/10.1210/en.2013-1502
- Studitsky, A. N. (1965). Free auto-and homografts of muscle tissue in experiments on animals. Annals of the New York Academy of Sciences, 120(2), 789–801.
- Takahashi, M., Tatsugi, Y., & Kohno, T. (2004). Endocrinological and pathological effects of anabolic-androgenic steroid in male rats. Endocrine Journal, 51(4), 425–434.
- Turner, N. J., Badylak, J. S., Weber, D. J., & Badylak, S. F. (2012). Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. Journal of Surgical Research, 176(2), 490–502. https://doi.org/10.1016/j.jss.2011.11.1029
- Urciuolo, A., Urbani, L., Perin, S., Maghsoudlou, P., Scottoni, F., Gjinovci, A., Collins-Hooper, H., Loukogeorgakis, S., Tyraskis, A., Torelli, S., Germinario, E., Fallas, M. E. A., Julia-Vilella, C., Eaton, S., Blaauw, B., Patel, K., & De Coppi, P. (2018). Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Scientific Reports, 8(1), 8398. https://doi.org/10.1038/s41598-018-26371-y
- Vinciguerra, M., Musaro, A., & Rosenthal, N. (2010). Regulation of muscle atrophy in aging and disease. Advances in Experimental Medicine & Biology, 694, 211–233. https://doi.org/10.1007/978-1-4419-7002-2_15
- Washington, T. A., Healey, J. M., Thompson, R. W., Lowe, L. L., & Carson, J. A. (2014). Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Experimental Gerontology, 57, 66–74. https://doi.org/10.1016/j.exger.2014.05.003
- Wilson, K., Terlouw, A., Roberts, K., & Wolchok, J. C. (2016). The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds. Journal of Materials Science: Materials in Medicine, 27(8), 125. https://doi.org/10.1007/s10856-016-5735-0