A review of diabetic wound models—Novel insights into diabetic foot ulcer
Correction(s) for this article
-
Corrigendum
- Volume 16Issue 9Journal of Tissue Engineering and Regenerative Medicine
- pages: 850-850
- First Published online: September 1, 2022
Shou Jin Phang
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorBavani Arumugam
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorUmah Rani Kuppusamy
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorMh Busra Fauzi
Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Mee Lee Looi
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Correspondence
Mee Lee Looi, Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Email: [email protected]
Search for more papers by this authorShou Jin Phang
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorBavani Arumugam
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorUmah Rani Kuppusamy
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Search for more papers by this authorMh Busra Fauzi
Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Mee Lee Looi
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
Correspondence
Mee Lee Looi, Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Email: [email protected]
Search for more papers by this authorAbstract
Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. Many research investigations have been conducted with the aims to uncover the diabetic wound healing mechanisms, develop novel therapeutics, and screen bioactive wound dressings in order to improve the current management of DFU. These would have not been possible without the utilization of an appropriate wound model, especially in a diabetic wound context. This review focuses on the different in vitro research models used in DFU investigations such as the 2D scratch wound assay, 3D skin model, and 3D angiogenesis model as well as their limitations. The current efforts and challenges to apply the 2D and 3D in vitro models in a hyperglycemic context to provide insights into DFU modeling will be reviewed. Perspectives of utilizing 3D bioprinting and skin-on-the-chip model as a diabetic wound model in the future will also be highlighted. By leveraging knowledge from past experiences and current research, an improved experimental model for DFU is anticipated to be established in near future.
CONFLICT OF INTEREST
The authors hereby declare that they have no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Abaci, H. E., Gledhill, K., Guo, Z., Christiano, A. M., & Shuler, M. L. (2015). Pumpless microfluidic platform for drug testing on human skin equivalents. Lab on a Chip, 15(3), 882–888. https://doi.org/10.1039/c4lc00999a
- Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., & Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications, 8, 163–176. https://doi.org/10.2147/CPAA.S64788
- Ackermann, M., Pabst, A. M., Houdek, J. P., Ziebart, T., & Konerding, M. A. (2014). Priming with proangiogenic growth factors and endothelial progenitor cells improves revascularization in linear diabetic wounds. International Journal of Molecular Medicine, 33(4), 833–839. https://doi.org/10.3892/ijmm.2014.1630
- Admane, P., Gupta, A. C., Jois, P., Roy, S., Chandrasekharan Lakshmanan, C., Kalsi, G., & Ghosh, S. (2019). Direct 3D bioprinted full-thickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin. Bioprinting, 15, e00051. https://doi.org/10.1016/j.bprint.2019.e00051
10.1016/j.bprint.2019.e00051 Google Scholar
- Albanna, M., Binder, K. W., Murphy, S. V., Kim, J., Qasem, S. A., Zhao, W., El-Amin, I. B., Dice, D. D., Marco, J., Green, J., Xu, T., Skardal, A., Holmes, J. H., Jackson, J. D., Atala, A., & Yoo, J. J. (2019). In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Scientific Reports, 9(1), 1856. https://doi.org/10.1038/s41598-018-38366-w
- Antoine, E. E., Vlachos, P. P., & Rylander, M. N. (2014). Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Engineering Part B Reviews, 20(6), 683–696. https://doi.org/10.1089/ten.TEB.2014.0086
- Avitabile, S., Odorisio, T., Madonna, S., Eyerich, S., Guerra, L., Eyerich, K., Cavani, A., & Cianfarani, F. (2015). Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. Journal of Investigative Dermatology, 135(11), 2862–2870. https://doi.org/10.1038/jid.2015.278
- Ayuk, S. M., Abrahamse, H., & Houreld, N. N. (2016). The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. Journal of Diabetes Research, 2016, 2897656. https://doi.org/10.1155/2016/2897656
- Bakker, K., & Schaper, N. C. (2012). The development of global consensus guidelines on the management and prevention of the diabetic foot 2011. Diabetes/Metabolism Research and Reviews, 28(Suppl 1), 116–118. https://doi.org/10.1002/dmrr.2254
- Bandyk, D. F. (2018). The diabetic foot: Pathophysiology, evaluation, and treatment. Seminars in Vascular Surgery, 31(2–4), 43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001
- Berning, M., Prätzel-Wunder, S., Bickenbach, J. R., & Boukamp, P. (2015). Three-dimensional in vitro skin and skin cancer models based on human fibroblast-derived matrix. Tissue Engineering Part C: Methods, 21(9), 958–970. https://doi.org/10.1089/ten.TEC.2014.0698
- Berthod, F., Germain, L., Tremblay, N., & Auger, F. A. (2006). Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. Journal of Cellular Physiology, 207(2), 491–498. https://doi.org/10.1002/jcp.20584
- Besser, M., Khosravani, M., Severing, A.-L., Rembe, J.-D., & Stuermer, E. K. (2017). Acute and chronic wound fluid inversely influence wound healing in an in-vitro 3D wound model. Journal of Tissue Repair and Regeneration, 1(1), 1–11. https://doi.org/10.14302/issn.2640-6403.jtrr-17-1818
10.14302/issn.2640?6403.jtrr?17?1818 Google Scholar
- Boa, O., Cloutier, C. B., Genest, H., Labbé, R., Rodrigue, B., Soucy, J., Arsenault, F., Ospina, C. E., Dubé, N., Rochon, M.-H., Larouche, D., Moulin, V. J., Germain, L., & Auger, F. A. (2013). Prospective study on the treatment of lower-extremity chronic venous and mixed ulcers using tissue-engineered skin substitute made by the self-assembly approach. Advances in Skin & Wound Care, 26(9), 400–409. https://doi.org/10.1097/01.ASW.0000433102.48268.2a
- Bolajoko, E. B., Akinosun, O. M., & Khine, A. A. (2020). Chapter 4 – Hyperglycemia-induced oxidative stress in the development of diabetic foot ulcers. In V. R Preedy (Ed.), Diabetes ( 2nd ed., pp. 35–48). Academic Press.
10.1016/B978-0-12-815776-3.00004-8 Google Scholar
- Bolinder, J., Ungerstedt, U., & Arner, P. (1992). Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia, 35(12), 1177–1180. https://doi.org/10.1007/bf00401374
- Boniakowski, A. E., Kimball, A. S., Jacobs, B. N., Kunkel, S. L., & Gallagher, K. A. (2017). Macrophage-mediated inflammation in normal and diabetic wound healing. The Journal of Immunology, 199(1), 17–24. https://doi.org/10.4049/jimmunol.1700223
- Brem, H., Golinko, M. S., Stojadinovic, O., Kodra, A., Diegelmann, R. F., Vukelic, S., Coppock, D. L., & Tomic-Canic, M. (2008). Primary cultured fibroblasts derived from patients with chronic wounds: A methodology to produce human cell lines and test putative growth factor therapy such as GMCSF. Journal of Translational Medicine, 6, 75. https://doi.org/10.1186/1479-5876-6-75
- Bronneke, S., Bruckner, B., Sohle, J., Siegner, R., Smuda, C., Stab, F., Kolbe, L., Grönniger, E., & Winnefeld, M. (2015). Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis. Angiogenesis, 18(3), 361–371. https://doi.org/10.1007/s10456-015-9472-7
- Browne, S., Zeugolis, D. I., & Pandit, A. (2013). Collagen: Finding a solution for the source. Tissue Engineering Part A, 19(13–14), 1491–1494. https://doi.org/10.1089/ten.TEA.2012.0721
- Buranasin, P., Mizutani, K., Iwasaki, K., Pawaputanon Na Mahasarakham, C., Kido, D., Takeda, K., & Izumi, Y. (2018). High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One, 13(8), e0201855. https://doi.org/10.1371/journal.pone.0201855
- Cantin-Warren, L., Guignard, R., Cortez Ghio, S., Larouche, D., Auger, F. A., & Germain, L. (2018). Specialized living wound dressing based on the self-assembly approach of tissue engineering. Journal of Functional Biomaterials, 9(3), 53. https://doi.org/10.3390/jfb9030053
- Carlson, M. W., Alt-Holland, A., Egles, C., & Garlick, J. A. (2008). Three-dimensional tissue models of normal and diseased skin. Current Protocols in Cell Biology, 41. https://doi.org/10.1002/0471143030.cb1909s41
10.1002/0471143030.cb1909s41 Google Scholar
- Cui, H., Chai, Y., & Yu, Y. (2019). Progress in developing decellularized bioscaffolds for enhancing skin construction. Journal of Biomedical Materials Research Part A, 107(8), 1849–1859. https://doi.org/10.1002/jbm.a.36688
- Dai, J., Chen, H., & Chai, Y. (2019). Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 7499–7508. https://doi.org/10.12659/MSM.915806
- Derosa, G., D'Angelo, A., Tinelli, C., Devangelio, E., Consoli, A., Miccoli, R., Del Prato, S., Paniga, S., & Cicero, A. F. G. (2007). Evaluation of metalloproteinase 2 and 9 levels and their inhibitors in diabetic and healthy subjects. Diabetes & Metabolism, 33(2), 129–134. https://doi.org/10.1016/j.diabet.2006.11.008
- Derr, K., Zou, J., Luo, K., Song, M. J., Sittampalam, G. S., Zhou, C., Ferrer, M., & Derr, P. (2019). Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Engineering Part C: Methods, 25(6), 334–343. https://doi.org/10.1089/ten.TEC.2018.0318
- Díaz, L., Zambrano, E., Flores, M. E., Contreras, M., Crispín, J. C., Alemán, G., & Bobadilla, N. A. (2020). Ethical considerations in animal research: The principle of 3R's. Revista de Investigación Clínica, 73(5). https://doi.org/10.24875/ric.20000380
10.24875/ric.20000380 Google Scholar
- Dumont, C., Prieto, P., Asturiol, D., & Worth, A. (2015). Review of the availability of in vitro and in silico methods for assessing dermal bioavailability. Applied In Vitro Toxicology, 1(2), 147–164. https://doi.org/10.1089/aivt.2015.0003
10.1089/aivt.2015.0003 Google Scholar
- Egles, C., Garlick, J. A., & Shamis, Y. (2010). Three-dimensional human tissue models of wounded skin. Methods in Molecular Biology, 585, 345–359. https://doi.org/10.1007/978-1-60761-380-0_24
- Ejiugwo, M., Rochev, Y., Gethin, G., & O'Connor, G. (2021). Toward developing immunocompetent diabetic foot ulcer-on-a-chip models for drug testing. Tissue Engineering Part C: Methods, 27(2), 77–88. https://doi.org/10.1089/ten.tec.2020.0331
- Flaten, G. E., Palac, Z., Engesland, A., Filipović-Grčić, J., Vanić, Ž., & Škalko-Basnet, N. (2015). In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences, 75, 10–24. https://doi.org/10.1016/j.ejps.2015.02.018
- Franz, T. J., Lehman, P. A., & Raney, S. G. (2009). Use of excised human skin to assess the bioequivalence of topical products. Skin Pharmacology and Physiology, 22(5), 276–286. https://doi.org/10.1159/000235828
- Gangatirkar, P., Paquet-Fifield, S., Li, A., Rossi, R., & Kaur, P. (2007). Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nature Protocols, 2(1), 178–186. https://doi.org/10.1038/nprot.2006.448
- Gao, S., Shen, Y., Geng, F., Li, Y., & Gao, J. (2017). [Research progress on the animal models and treatment strategies of diabetic foot ulcer]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 46(1), 97–105.
- Gerami-Naini, B., Smith, A., Maione, A. G., Kashpur, O., Carpinito, G., Veves, A., & Garlick, J. A. (2016). Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative sendai virus. Cellular Reprogramming, 18(4), 214–223. https://doi.org/10.1089/cell.2015.0087
- Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/circresaha.110.223545
- Goetsch, K. P., & Niesler, C. U. (2011). Optimization of the scratch assay for in vitro skeletal muscle wound healing analysis. Analytical Biochemistry, 411(1), 158–160. https://doi.org/10.1016/j.ab.2010.12.012
- Goodwin, A. M. (2007). In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvascular Research, 74(2–3), 172–183. https://doi.org/10.1016/j.mvr.2007.05.006
- Gordillo, G. M., Bernatchez, S. F., Diegelmann, R., Di Pietro, L. A., Eriksson, E., Hinz, B., Kirsner, R., Liu, P., Parnell, L. K. S., Sandusky, G. E., Sen, C. K., Tomic-Canic, M., Volk, S. W., & Baird, A. (2013). Preclinical models of wound healing: Is man the model? Proceedings of the Wound Healing Society Symposium. Advances in Wound Care, 2(1), 1–4. https://doi.org/10.1089/wound.2012.0367
- Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z., & Falanga, V. (2017). Research techniques made simple: Analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 137(2), e11–e16. https://doi.org/10.1016/j.jid.2016.11.020
- Greenhalgh, D. G., & Rieman, M. (1994). Effects of basic fibroblast growth factor on the healing of partial-thickness donor sites. A prospective, randomized, double-blind trial. Wound Repair and Regeneration, 2(2), 113–121. https://doi.org/10.1046/j.1524-475X.1994.20205.x
- Hakkinen, K. M., Harunaga, J. S., Doyle, A. D., & Yamada, K. M. (2011). Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Engineering Part A, 17(5–6), 713–724. https://doi.org/10.1089/ten.TEA.2010.0273
- He, P., Zhao, J., Zhang, J., Li, B., Gou, Z., Gou, M., & Li, X. (2018). Bioprinting of skin constructs for wound healing. Burns & Trauma, 6, 5. https://doi.org/10.1186/s41038-017-0104-x
- Heiss, M., Hellström, M., Kalén, M., May, T., Weber, H., Hecker, M., & Korff, T. (2015). Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. The FASEB Journal, 29(7), 3076–3084. https://doi.org/10.1096/fj.14-267633
- Huang, X., Sun, J., Chen, G., Niu, C., Wang, Y., Zhao, C., Huang, H., Huang, S., Liang, Y., Shen, Y., Cong, W., Jin, L., & Zhu, Z. (2019). Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Frontiers in Pharmacology, 10, 421. https://doi.org/10.3389/fphar.2019.00421
- Huijberts, M. S., Schaper, N. C., & Schalkwijk, C. G. (2008). Advanced glycation end products and diabetic foot disease. Diabetes/Metabolism Research and Reviews, 24(Suppl 1), S19–S24. https://doi.org/10.1002/dmrr.861
- Huynh, P., Phie, J., Krishna, S. M., & Golledge, J. (2020). Systematic review and meta-analysis of mouse models of diabetes-associated ulcers. BMJ Open Diabetes Research & Care, 8(1), e000982. https://doi.org/10.1136/bmjdrc-2019-000982
- Hyun, S.-W., Kim, J., Jo, K., Kim, J. S., & Kim, C.-S. (2018). Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integrative Medicine Research, 7(4), 351–357. https://doi.org/10.1016/j.imr.2018.09.001
- International Diabetes Federation. (2019). IDF diabetes atlas. www.diabetesatlas.org/en/resources/
- Iyer, K., Chen, Z., Ganapa, T., Wu, B. M., Tawil, B., & Linsley, C. S. (2018). Keratinocyte migration in a three-dimensional in vitro wound healing model co-cultured with fibroblasts. Tissue Engineering and Regenerative Medicine, 15(6), 721–733. https://doi.org/10.1007/s13770-018-0145-7
- Jonkman, J. E., Cathcart, J. A., Xu, F., Bartolini, M. E., Amon, J. E., Stevens, K. M., & Colarusso, P. (2014). An introduction to the wound healing assay using live-cell microscopy. Cell Adhesion & Migration, 8(5), 440–451. https://doi.org/10.4161/cam.36224
- Kim, B. S., Lee, J. S., Gao, G., & Cho, D. W. (2017). Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 9(2), 025034. https://doi.org/10.1088/1758-5090/aa71c8
- Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Aryee, M. J., Ji, H., Ehrlich, L. I. R., Yabuuchi, A., Takeuchi, A., Cunniff, K. C., Hongguang, H., Mckinney-Freeman, S., Naveiras, O., Yoon, T. J., Irizarry, R. A., Jung, N., Seita, J., … Daley, G. Q. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290. https://doi.org/10.1038/nature09342
- King, A. J. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166(3), 877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
- Kinikoglu, B. (2017). A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use. Alternatives to Laboratory Animals, 45(6), 309–316. https://doi.org/10.1177/026119291704500607
- Klicks, J., von Molitor, E., Ertongur-Fauth, T., Rudolf, R., & Hafner, M. (2017). In vitro skin three-dimensional models and their applications. Journal of Cellular Biotechnology, 3, 21–39. https://doi.org/10.3233/JCB-179004
10.3233/JCB?179004 Google Scholar
- Kober, J., Gugerell, A., Schmid, M., Kamolz, L.-P., & Keck, M. (2015). Generation of a fibrin based three-layered skin substitute. BioMed Research International, 2015, 170427. https://doi.org/10.1155/2015/170427
- Kole, T. P., Tseng, Y., Jiang, I., Katz, J. L., & Wirtz, D. (2005). Intracellular mechanics of migrating fibroblasts. Molecular Biology of the Cell, 16(1), 328–338. https://doi.org/10.1091/mbc.e04-06-0485
- Kruse, C. R., Singh, M., Sørensen, J. A., Eriksson, E., & Nuutila, K. (2016). The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats. Journal of Surgical Research, 206(2), 418–426. https://doi.org/10.1016/j.jss.2016.08.060
- Lamers, M. L., Almeida, M. E. S., Vicente-Manzanares, M., Horwitz, A. F., & Santos, M. F. (2011). High glucose-mediated oxidative stress impairs cell migration. PLoS One, 6(8), e22865. https://doi.org/10.1371/journal.pone.0022865
- Lan, C. C., Liu, I. H., Fang, A. H., Wen, C. H., & Wu, C. S. (2008). Hyperglycaemic conditions decrease cultured keratinocyte mobility: Implications for impaired wound healing in patients with diabetes. British Journal of Dermatology, 159(5), 1103–1115. https://doi.org/10.1111/j.1365-2133.2008.08789.x
- Lan, C. C., Wu, C. S., Kuo, H. Y., Huang, S. M., & Chen, G. S. (2009). Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: New insights on poor wound closure in patients with diabetes. British Journal of Dermatology, 160(6), 1206–1214. https://doi.org/10.1111/j.1365-2133.2009.09089.x
- Lee, V., Singh, G., Trasatti, J. P., Bjornsson, C., Xu, X., Tran, T. N., Dai, G., & Karande, P. (2014). Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C: Methods, 20(6), 473–484. https://doi.org/10.1089/ten.TEC.2013.0335
- Lewis, E. E. L., Barrett, M. R. T., Freeman-Parry, L., Bojar, R. A., & Clench, M. R. (2018). Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging. International Journal of Cosmetic Science, 40(2), 148–156. https://doi.org/10.1111/ics.12446
- Li, L., Zhang, J., Zhang, Q., Zhang, D., Xiang, F., Jia, J., Zhang, J., Hu, J., & Huang, Y. (2019). High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway. Frontiers in Physiology, 10, 24. https://doi.org/10.3389/fphys.2019.00024
- Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333. https://doi.org/10.1038/nprot.2007.30
- Liao, H., Zakhaleva, J., & Chen, W. (2009). Cells and tissue interactions with glycated collagen and their relevance to delayed diabetic wound healing. Biomaterials, 30(9), 1689–1696. https://doi.org/10.1016/j.biomaterials.2008.11.038
- Liu, M., Saeki, K., Matsunobu, T., Okuno, T., Koga, T., Sugimoto, Y., Nakamizo, S., Kabashima, K., Narumiya, S., Shimizu, T., & Yokomizo, T. (2014). 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. Journal of Experimental Medicine, 211(6), 1063–1078. https://doi.org/10.1084/jem.20132063
- Lobmann, R., Ambrosch, A., Schultz, G., Waldmann, K., Schiweck, S., & Lehnert, H. (2002). Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia, 45(7), 1011–1016. https://doi.org/10.1007/s00125-002-0868-8
- Lynch, S. E., Colvin, R. B., & Antoniades, H. N. (1989). Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. Journal of Clinical Investigation, 84(2), 640–646. https://doi.org/10.1172/jci114210
- Lyons, T. J., & Basu, A. (2012). Biomarkers in diabetes: Hemoglobin A1c, vascular and tissue markers. Translational Research, 159(4), 303–312. https://doi.org/10.1016/j.trsl.2012.01.009
- Maione, A. G., Brudno, Y., Stojadinovic, O., Park, L. K., Smith, A., Tellechea, A., Kearney, C. J., Veves, A., Tomic-Canic, M., Mooney, D. J., & Garlick, J. A. (2015). Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Engineering Part C: Methods, 21(5), 499–508. https://doi.org/10.1089/ten.TEC.2014.0414
- Maione, A. G., Smith, A., Kashpur, O., Yanez, V., Knight, E., Mooney, D. J., Tomic-Canic, M., & Garlick, J. A. (2016). Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair. Wound Repair and Regeneration, 24(4), 630–643. https://doi.org/10.1111/wrr.12437
- Mandrycky, C., Wang, Z., Kim, K., & Kim, D. H. (2016). 3D bioprinting for engineering complex tissues. Biotechnology Advances, 34(4), 422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011
- Martin, P. E., O'Shaughnessy, E. M., Wright, C. S., & Graham, A. (2018). The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro. Clinical Science, 132(15), 1629–1643. https://doi.org/10.1042/cs20171483
- Martinot, V., Mitchell, V., Fevrier, P., Duhamel, A., & Pellerin, P. (1994). Comparative study of split thickness skin grafts taken from the scalp and thigh in children. Burns, 20(2), 146–150. https://doi.org/10.1016/s0305-4179(06)80012-4
- Mascharak, S., desJardins-Park, H. E., & Longaker, M. T. (2020). Fibroblast heterogeneity in wound healing: Hurdles to clinical translation. Trends in Molecular Medicine, 26(12), 1101–1106. https://doi.org/10.1016/j.molmed.2020.07.008
- McGrath, J. A., Eady, R. A. J., & Pope, F. M. (2004). Anatomy and organization of human skin. In T. Burns, S. Breathnach, N. Cox, & C. Griffiths (Eds.), Rook's textbook of dermatology (pp. 3.1–3.84). Blackwell Science Ltd Oxford.
10.1002/9780470750520.ch3 Google Scholar
- Menegazzo, L., Ciciliot, S., Poncina, N., Mazzucato, M., Persano, M., Bonora, B., Vigili de Kreutzenberg, S., Avogaro, A., & Fadini, G. P. (2015). NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica, 52(3), 497–503. https://doi.org/10.1007/s00592-014-0676-x
- Monsuur, H. N., Boink, M. A., Weijers, E. M., Roffel, S., Breetveld, M., Gefen, A., & Gibbs, S. (2016). Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics, 49(8), 1381–1387. https://doi.org/10.1016/j.jbiomech.2016.01.040
- Morita, K., Urabe, K., Moroi, Y., Koga, T., Nagai, R., Horiuchi, S., & Furue, M. (2005). Migration of keratinocytes is impaired on glycated collagen I. Wound Repair and Regeneration, 13(1), 93–101. https://doi.org/10.1111/j.1067-1927.2005.130112.x
- Moriyama, M., Moriyama, H., Uda, J., Kubo, H., Nakajima, Y., Goto, A., Yoshida, I., Matsuoka, N., & Hayakawa, T. (2016). Beneficial effects of the genus Aloe on wound healing, cell proliferation, and differentiation of epidermal keratinocytes. PloS One, 11(10), e0164799. https://doi.org/10.1371/journal.pone.0164799
- Nakatsu, M. N., Sainson, R. C., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Pérez-del-Pulgar, S., Carpenter, P. M., & Hughes, C. C. (2003). Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and angiopoietin-1. Microvascular Research, 66(2), 102–112. https://doi.org/10.1016/s0026-2862(03)00045-1
- Nardini, J. T., Chapnick, D. A., Liu, X., & Bortz, D. M. (2016). Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration. Journal of Theoretical Biology, 400, 103–117. https://doi.org/10.1016/j.jtbi.2016.04.015
- Ng, W. L., Yeong, W. Y., & Win Naing, M. (2015). Cellular approaches to tissue-engineering of skin: A review. Journal of Tissue Science & Engineering, 6. https://doi.org/10.4172/2157-7552.1000150
10.4172/2157?7552.1000150 Google Scholar
- Niu, Y., Cao, X., Song, F., Xie, T., Ji, X., Miao, M., Tian, M., Lin, Y., & Lu, S. (2012). Reduced dermis thickness and AGE accumulation in diabetic abdominal skin. The International Journal of Lower Extremity Wounds, 11(3), 224–230. https://doi.org/10.1177/1534734612457570
- Niu, Y., Xie, T., Ge, K., Lin, Y., & Lu, S. (2008). Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. The American Journal of Dermatopathology, 30(4), 344–351. https://doi.org/10.1097/DAD.0b013e31816a8c5b
- Okonkwo, U. A., & DiPietro, L. A. (2017). Diabetes and wound angiogenesis. International Journal of Molecular Sciences, 18(7), 1419. https://doi.org/10.3390/ijms18071419
- Ozdogan, C. Y., Kenar, H., Davun, K. E., Yucel, D., Doger, E., & Alagoz, S. (2020). An in vitro 3D diabetic human skin model from diabetic primary cells. Biomedical Materials, 16, 015027. https://doi.org/10.1088/1748-605X/abc1b1
- Pageon, H., Zucchi, H., Dai, Z., Sell, D. R., Strauch, C. M., Monnier, V. M., & Asselineau, D. (2015). Biological effects induced by specific advanced glycation end products in the reconstructed skin model of aging. BioResearch Open Access, 4(1), 54–64. https://doi.org/10.1089/biores.2014.0053
- Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology, 18(2), 134–147. https://doi.org/10.1038/nri.2017.105
- Park, L. K., Maione, A. G., Smith, A., Gerami-Naini, B., Iyer, L. K., Mooney, D. J., & Garlick, J. A. (2014). Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts. Epigenetics, 9(10), 1339–1349. https://doi.org/10.4161/15592294.2014.967584
- Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy, 112, 108615. https://doi.org/10.1016/j.biopha.2019.108615
- Pirkmajer, S., & Chibalin, A. V. (2011). Serum starvation: Caveat emptor. American Journal of Physiology – Cell Physiology, 301(2), C272–C279. https://doi.org/10.1152/ajpcell.00091.2011
- Pop-Busui, R., Boulton, A. J. M., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., & Ziegler, D. (2017). Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care, 40(1), 136–154. https://doi.org/10.2337/dc16-2042
- Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., & Silberzan, P. (2007). Collective migration of an epithelial monolayer in response to a model wound. Proceedings of the National Academy of Sciences, 104(41), 15988–15993. https://doi.org/10.1073/pnas.0705062104
- Pouyani, T., Ronfard, V., Scott, P. G., Dodd, C. M., Ahmed, A., Gallo, R. L., & Parenteau, N. L. (2009). De novo synthesis of human dermis in vitro in the absence of a three-dimensional scaffold. In Vitro Cellular & Developmental Biology Animal, 45(8), 430–441. https://doi.org/10.1007/s11626-009-9213-6
- Randall, M. J., Jüngel, A., Rimann, M., & Wuertz-Kozak, K. (2018). Advances in the biofabrication of 3D skin in vitro: Healthy and pathological models. Frontiers in Bioengineering and Biotechnology, 6(154). https://doi.org/10.3389/fbioe.2018.00154
- Rikken, G., Niehues, H., & van den Bogaard, E. H. (2020). Organotypic 3D skin models: Human epidermal equivalent cultures from primary keratinocytes and immortalized keratinocyte cell lines. Methods in Molecular Biology, 2154, 45–61. https://doi.org/10.1007/978-1-0716-0648-3_5
- Rognoni, E., & Watt, F. M. (2018). Skin cell heterogeneity in development, wound healing, and cancer. Trends in Cell Biology, 28(9), 709–722. https://doi.org/10.1016/j.tcb.2018.05.002
- Rossi, A., Appelt-Menzel, A., Kurdyn, S., Walles, H., & Groeber, F. (2015). Generation of a three-dimensional full thickness skin equivalent and automated wounding. Journal of Visualized Experiments, 96. https://doi.org/10.3791/52576
10.3791/52576 Google Scholar
- Seo, M. D., Kang, T. J., Lee, C. H., Lee, A. Y., & Noh, M. (2012). HaCaT keratinocytes and primary epidermal keratinocytes have different transcriptional profiles of cornified envelope-associated genes to T helper cell cytokines. Biomolecules & Therapeutics (Seoul), 20(2), 171–176. https://doi.org/10.4062/biomolther.2012.20.2.171
- Shamis, Y., Hewitt, K. J., Bear, S. E., Alt-Holland, A., Qari, H., Margvelashvilli, M., Smith, A., & Garlick, J. A. (2012). iPSC-derived fibroblasts demonstrate augmented production and assembly of extracellular matrix proteins. In Vitro Cellular & Developmental Biology Animal, 48(2), 112–122. https://doi.org/10.1007/s11626-011-9478-4
- Sidgwick, G. P., McGeorge, D., & Bayat, A. (2016). Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model. Archives of Dermatological Research, 308(5), 297–308. https://doi.org/10.1007/s00403-016-1645-8
- Siller, R., Greenhough, S., Park, I. H., & Sullivan, G. J. (2013). Modelling human disease with pluripotent stem cells. Current Gene Therapy, 13(2), 99–110. https://doi.org/10.2174/1566523211313020004
- Smith, A., Huang, M., Watkins, T., Burguin, F., Baskin, J., & Garlick, J. A. (2020). De novo production of human extracellular matrix supports increased throughput and cellular complexity in 3D skin equivalent model. Journal of Tissue Engineering and Regenerative Medicine, 14(8), 1019–1027. https://doi.org/10.1002/term.3071
- Smith, A., Watkins, T., Theocharidis, G., Lang, I., Leschinsky, M., Maione, A., Raimondo, T., Rahmani, S., Baskin, J., Mooney, D., Veves, A., & Garlick, J. (2021). A novel three-dimensional skin disease model to assess macrophage function in diabetes. Tissue Engineering Part C Methods, 27(2), 49–58. https://doi.org/10.1089/ten.TEC.2020.0263
- Smits, J. P. H., Niehues, H., Rikken, G., van Vlijmen-Willems, I. M. J. J., van de Zande, G. W. H. J. F., Zeeuwen, P. L. J. M., Schalkwijk, J., & van den Bogaard, E. H. (2017). Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Scientific Reports, 7(1), 11838. https://doi.org/10.1038/s41598-017-12041-y
- Sriram, G., Alberti, M., Dancik, Y., Wu, B., Wu, R., Feng, Z., Bigliardi, P. L., Bigliardi-Qi, M., & Wang, Z. (2018). Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Materials Today, 21(4), 326–340. https://doi.org/10.1016/j.mattod.2017.11.002
- Sriram, G., Bigliardi, P. L., & Bigliardi-Qi, M. (2015). Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European Journal of Cell Biology, 94(11), 483–512. https://doi.org/10.1016/j.ejcb.2015.08.001
- Stephens, P., Caley, M., & Peake, M. (2013). Alternatives for animal wound model systems. Methods in Molecular Biology, 1037, 177–201. https://doi.org/10.1007/978-1-62703-505-7_10
- Suarez-Arnedo, A., Torres Figueroa, F., Clavijo, C., Arbeláez, P., Cruz, J. C., & Muñoz-Camargo, C. (2020). An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PloS One, 15(7), e0232565. https://doi.org/10.1371/journal.pone.0232565
- Suhail, S., Sardashti, N., Jaiswal, D., Rudraiah, S., Misra, M., & Kumbar, S. G. (2019). Engineered skin tissue equivalents for product evaluation and therapeutic applications. Biotechnology Journal, 14(7), e1900022. https://doi.org/10.1002/biot.201900022
- Sutterby, E., Thurgood, P., Baratchi, S., Khoshmanesh, K., & Pirogova, E. (2020). Microfluidic skin-on-a-chip models: Toward biomimetic artificial skin. Small, 16(39), 2002515. https://doi.org/10.1002/smll.202002515
- Szymański, Ł., Jęderka, K., Cios, A., Ciepelak, M., Lewicka, A., Stankiewicz, W., & Lewicki, S. (2020). A simple method for the production of human skin equivalent in 3D, multi-cell culture. International Journal of Molecular Sciences, 21(13), 4644. https://doi.org/10.3390/ijms21134644
- Tetzlaff, F., & Fischer, A. (2018). Human endothelial cell spheroid-based sprouting angiogenesis assay in collagen. Bio-Protocol, 8(17), e2995. https://doi.org/10.21769/BioProtoc.2995
- Tsuboi, R., & Rifkin, D. B. (1990). Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. Journal of Experimental Medicine, 172(1), 245–251. https://doi.org/10.1084/jem.172.1.245
- Unterleuthner, D., Kramer, N., Pudelko, K., Burian, A., Hengstschläger, M., & Dolznig, H. (2017). An optimized 3D coculture assay for preclinical testing of pro- and antiangiogenic drugs. SLAS Discovery, 22(5), 602–613. https://doi.org/10.1177/2472555216686529
- van Drongelen, V., Danso, M. O., Mulder, A., Mieremet, A., van Smeden, J., Bouwstra, J. A., & El Ghalbzouri, A. (2014). Barrier properties of an N/TERT-based human skin equivalent. Tissue Engineering Part A, 20(21–22), 3041–3049. https://doi.org/10.1089/ten.TEA.2014.0011
- Velander, P., Theopold, C., Hirsch, T., Bleiziffer, O., Zuhaili, B., Fossum, M., Gheerardyn, R., Chen, M., Visovatti, S., Svensson, H., Yao, F., & Eriksson, E. (2008). Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair and Regeneration, 16(2), 288–293. https://doi.org/10.1111/j.1524-475X.2008.00367.x
- Vitorino, P., & Meyer, T. (2008). Modular control of endothelial sheet migration. Genes & Development, 22(23), 3268–3281. https://doi.org/10.1101/gad.1725808
- Vorwald, C. E., Murphy, K. C., & Leach, J. K. (2018). Restoring vasculogenic potential of endothelial cells from diabetic patients through spheroid formation. Cellular and Molecular Bioengineering, 11(4), 267–278. https://doi.org/10.1007/s12195-018-0531-1
- Wahabzada, M., Besser, M., Khosravani, M., Kuska, M. T., Kersting, K., Mahlein, A.-K., & Stürmer, E. (2017). Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering. PloS One, 12(12), e0186425. https://doi.org/10.1371/journal.pone.0186425
- Walsh, J. W., Hoffstad, O. J., Sullivan, M. O., & Margolis, D. J. (2016). Association of diabetic foot ulcer and death in a population-based cohort from the United Kingdom. Diabetic Medicine, 33(11), 1493–1498. https://doi.org/10.1111/dme.13054
- Wang, T.-y., Wang, W., Li, F.-f., Chen, Y.-c., Jiang, D., Chen, Y.-d., Liu, L., Lu, M., Sun, J.-s., Gu, D.-m., Wang, J., & Wang, A.-P. (2020). Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a – TSP-1 axis. Diabetes Research and Clinical Practice, 165, 108140. https://doi.org/10.1016/j.diabres.2020.108140
- Wei, Z., Liu, X., Ooka, M., Zhang, L., Song, M. J., Huang, R., Simeonov, A., Xia, M., & Ferrer, M. (2020). Two-dimensional cellular and three-dimensional bio-printed skin models to screen topical-use compounds for irritation potential. Frontiers in Bioengineering and Biotechnology, 8(109). https://doi.org/10.3389/fbioe.2020.00109
- Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22(2), 246–255. https://doi.org/10.1111/wrr.12154
- Wong, C.-W., LeGrand, C. F., Kinnear, B. F., Sobota, R. M., Ramalingam, R., Dye, D. E., Lane, E. B., & Coombe, D. R. (2019). In vitro expansion of keratinocytes on human dermal fibroblast-derived matrix retains their stem-like characteristics. Scientific Reports, 9(1), 18561. https://doi.org/10.1038/s41598-019-54793-9
- Wong, S. L., Demers, M., Martinod, K., Gallant, M., Wang, Y., Goldfine, A. B., & Wagner, D. D. (2015). Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine, 21(7), 815–819. https://doi.org/10.1038/nm.3887
- Wright, C. S., Pollok, S., Flint, D. J., Brandner, J. M., & Martin, P. E. (2012). The connexin mimetic peptide Gap27 increases human dermal fibroblast migration in hyperglycemic and hyperinsulinemic conditions in vitro. Journal of Cellular Physiology, 227(1), 77–87. https://doi.org/10.1002/jcp.22705
- Xuan, Y. H., Huang, B. B., Tian, H. S., Chi, L. S., Duan, Y. M., Wang, X., Cai, W. H., Zhu, Y. T., Wei, T. M., Ye, H. B., Cong, W. T., & Jin, L. T. (2014). High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One, 9(9), e108182. https://doi.org/10.1371/journal.pone.0108182
- Yang, D. J., Moh, S. H., Son, D. H., You, S., Kinyua, A. W., Ko, C. M., Yeo, J., Choi, Y.-H., & Kim, K. (2016). Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules, 21(7), 899. https://doi.org/10.3390/molecules21070899
- Yang, S., Gu, Z., Lu, C., Zhang, T., Guo, X., Xue, G., & Zhang, L. (2020). Neutrophil extracellular traps are markers of wound healing impairment in patients with diabetic foot ulcers treated in a multidisciplinary Setting. Advances in Wound Care, 9(1), 16–27. https://doi.org/10.1089/wound.2019.0943
- Yazdanpanah, L., Shahbazian, H., Nazari, I., Arti, H. R., Ahmadi, F., Mohammadianinejad, S. E., & Hesam, S. (2018). Incidence and risk factors of diabetic foot ulcer: A population-based diabetic foot cohort (ADFC Study)-two-year follow-up study. International Journal of Endocrinology, 2018, 7631659. https://doi.org/10.1155/2018/7631659
- Yu, J., Nam, D., & Park, K.-S. (2020). Substance P enhances cellular migration and inhibits senescence in human dermal fibroblasts under hyperglycemic conditions. Biochemical and Biophysical Research Communications, 522(4), 917–923. https://doi.org/10.1016/j.bbrc.2019.11.172
- Yu, J. R., Navarro, J., Coburn, J. C., Mahadik, B., Molnar, J., Holmes IV, J. H., & Fisher, J. P. (2019). Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application. Advanced Healthcare Materials, 8(5), 1801471. https://doi.org/10.1002/adhm.201801471
- Yue, P. Y., Leung, E. P., Mak, N. K., & Wong, R. N. (2010). A simplified method for quantifying cell migration/wound healing in 96-well plates. Journal of Biomolecular Screening, 15(4), 427–433. https://doi.org/10.1177/1087057110361772
- Zahra, F. T., Choleva, E., Sajib, M. S., Papadimitriou, E., & Mikelis, C. M. (2019). In vitro spheroid sprouting assay of angiogenesis. Methods in Molecular Biology, 1952, 211–218. https://doi.org/10.1007/978-1-4939-9133-4_17
- Zhang, X. N., Ma, Z. J., Wang, Y., Sun, B., Guo, X., Pan, C. Q., & Chen, L. M. (2017). Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes. PLoS One, 12(5), e0177862. https://doi.org/10.1371/journal.pone.0177862
- Zhao, Y., Wang, X., Yang, S., Song, X., Sun, N., Chen, C., Yao, D., Huang, J., Wang, J., Zhang, Y., & Yang, B. (2020). Kanglexin accelerates diabetic wound healing by promoting angiogenesis via FGFR1/ERK signaling. Biomedicine & Pharmacotherapy, 132, 110933. https://doi.org/10.1016/j.biopha.2020.110933
- Zomer, H. D., & Trentin, A. G. (2018). Skin wound healing in humans and mice: Challenges in translational research. Journal of Dermatological Science, 90(1), 3–12. https://doi.org/10.1016/j.jdermsci.2017.12.009